1
|
Yaya JAG, Zingue S, Offermann A, Feunaing Toko R, Kang D, Bapong E, Henoumont C, Laurent S, Sailer VW, Kirfef J, Talla E, Perner S. Kerstinginone, a new flavanone derivative from Commiphora kerstingii Engl. (Burseraceae) with potent apoptosis-inducing activity and inhibition of AKT/mTOR signaling pathway in non-sensitive prostate cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119073. [PMID: 39522846 DOI: 10.1016/j.jep.2024.119073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Commiphora kerstingii Engl is a tree which is 20-30 m in height and commonly called "ararrabi" in Hausa. It is found in the Sahelian region (Cameroon, Chad, and Nigeria) where it is utilized for the treatment of several ailments including cancer. AIM OF THE STUDY This study was aimed at investigating the chemical constituents and cytotoxic effect of extracts and isolates from the stem barks and leaves of C. kerstingii. MATERIALS AND METHODS Using classical chromatography technique coupled with spectroscopic analysis and literature information, ten (10) compounds were isolated from C. kerstingii stem barks and leaves, out of which two [kerstingilactone (3) and kerstinginone (10)] were new. To evaluate their potential cytotoxic effect, the impact on cell viability, growth, and proliferation was assessed using MTT and CCK-8 assays. Cell death mechanisms were analyzed via flow cytometry, and Western blotting was utilized to examine the expression of specific regulatory proteins. Furthermore, anti-metastatic properties were investigated through assays on cell migration, adhesion, and chemotaxis. RESULTS Among the tested compounds, 2 (Masticadienonic Acid) and 10 (kerstinginone) exhibited significant dose-dependent inhibition of PC3 and LNCaP cell growth. Compound 2 displayed optimal inhibitory effects within a concentration range of 10-40 μg/mL, while compound 10 demonstrated potent growth inhibition at concentrations of 2.5-10 μg/mL. Both compounds suppressed cell proliferation and the formation of clones. Specifically, compound 2 induced apoptosis solely in the androgen-sensitive LNCaP prostate cancer cells, whereas compound 10 induced a stronger and concentration-dependent apoptotic response in both PC3 and LNCaP cells, resulting in approximately 50-70% apoptotic cells. It also induced potent cell migration/invasion arrest at concentrations ranging from 2.5 to 5 μg/mL and increased cell adhesion to the extracellular matrix. CONCLUSION Kerstinginone exhibits potent cytotoxicity and apoptosis-inducing activity, making it a promising lead for discovering a new anticancer drug.
Collapse
Affiliation(s)
- Joël Abel Gbaweng Yaya
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon; Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Ngaoundere, Cameroon
| | - Stephane Zingue
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, P.O. Box 1364, Yaounde, Cameroon; Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany.
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany; Gerhard-Domagk Institute of Pathology, University Hospital Münster, Germany
| | - Roméo Feunaing Toko
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Duan Kang
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Elisée Bapong
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Céline Henoumont
- Department of General Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, Belgium, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Sophie Laurent
- Department of General Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, Belgium, Avenue Maistriau, 19, B-7000, Mons, Belgium
| | - Verena-Wilbeth Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Jutta Kirfef
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| |
Collapse
|
2
|
Kim HI, Han Y, Kim MH, Boo M, Cho KJ, Kim HL, Lee IS, Jung JH, Kim W, Um JY, Park J, Ko SG. The multi-herbal decoction SH003 alleviates LPS-induced acute lung injury by targeting inflammasome and extracellular traps in neutrophils. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155926. [PMID: 39128302 DOI: 10.1016/j.phymed.2024.155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a devastating condition caused by sepsis, pneumonia, trauma, and more recently, COVID-19. SH003, an herbal formula consisted of Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii, is known for its effects on cancer and immunoregulation. HYPOTHESIS/PURPOSE Previous studies show SH003 exerts a promising anti-inflammatory effect. This study investigates the effect of modified SH003 on ALI using in silico, in vivo, and in vitro models. STUDY DESIGN AND METHODS We performed in silico-based analysis of SH003 on ALI-related pathways. C57BL/6 mice were intraperitoneally subjected to lipopolysaccharide (LPS) to induce septic ALI, followed by oral administration of SH003 for 2 weeks. Dexamethasone was used as the positive control. Human peripheral blood-derived polymorphonuclear neutrophils (PMN) were used to investigate the effect and mechanisms of SH003 on neutrophil extracellular trap (NET) formation. RESULTS Network pharmacology analysis suggested SH003 regulates lung inflammation by modulating NET formation. SH003 significantly reduced mortality in sepsis in vivo by inhibiting local and systemic inflammation, likely via nuclear factor kappa B and mitogen-activated protein kinase pathways-mediated inflammasome suppression. SH003 also decreased NET-related markers in lung tissues and inhibited LPS- and phorbol myristate acetate-induced NET formation in PMN. Cytometry time-of-flight analysis confirmed regulation of NETosis-related pathways by SH003. CONCLUSION SH003 effectively inhibits excessive immune responses in the lung by suppressing inflammasome activation and NET formation. These findings suggest SH003 as a potential therapeutic agent for septic ALI.
Collapse
Affiliation(s)
- Hyo In Kim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yohan Han
- Department of Microbiology and Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Mi-Hye Kim
- College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang-Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Hoon Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Choi YJ, Lee K, Lee SY, Kwon Y, Woo J, Jeon CY, Ko SG. p53 activation enhances the sensitivity of non-small cell lung cancer to the combination of SH003 and docetaxel by inhibiting de novo pyrimidine synthesis. Cancer Cell Int 2024; 24:156. [PMID: 38704578 PMCID: PMC11069295 DOI: 10.1186/s12935-024-03337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Identifying molecular biomarkers for predicting responses to anti-cancer drugs can enhance treatment precision and minimize side effects. This study investigated the novel cancer-targeting mechanism of combining SH003, an herbal medicine, with docetaxel in non-small cell lung cancer (NSCLC) cells. Also, the present study aimed to identify the genetic characteristics of cancer cells susceptible to this combination. METHODS Cell viability was analyzed by WST-8 assay. Apoptosis induction, BrdU incorporation, and cell cycle analysis were performed using flow cytometry. Metabolites were measured by LC-MS/MS analysis. Real-time PCR and western blotting evaluated RNA and protein expression. DNA damage was quantified through immunofluorescence. cBioPortal and GEPIA data were utilized to explore the mutual co-occurrence of TP53 and UMPS and UMPS gene expression in NSCLC. RESULTS The combination treatment suppressed de novo pyrimidine nucleotide biosynthesis by reducing the expression of related enzymes. This blockade of pyrimidine metabolism led to DNA damage and subsequent apoptosis, revealing a novel mechanism for inducing lung cancer cell death with this combination. However, some lung cancer cells exhibited distinct responses to the combination treatment that inhibited pyrimidine metabolism. The differences in sensitivity in lung cancer cells were determined by the TP53 gene status. TP53 wild-type lung cancer cells were effectively inhibited by the combination treatment through p53 activation, while TP53 mutant- or null-type cells exhibited lower sensitivity. CONCLUSIONS This study, for the first time, established a link between cancer cell genetic features and treatment response to simultaneous SH003 and docetaxel treatment. It highlights the significance of p53 as a predictive factor for susceptibility to this combination treatment. These findings also suggest that p53 status could serve as a crucial criterion in selecting appropriate therapeutic strategies for targeting pyrimidine metabolism in lung cancer.
Collapse
Affiliation(s)
- Yu-Jeong Choi
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| | - Seo Yeon Lee
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Youngbin Kwon
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jaehyuk Woo
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chan-Yong Jeon
- Department of Internal Medicine, College of Korean Medicine, Gachon University, Gyeonggi-Do, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
4
|
Adico MDW, Bayala B, Bunay J, Baron S, Simpore J, Lobaccaro JMA. Contribution of Sub-Saharan African medicinal plants to cancer research: Scientific basis 2013-2023. Pharmacol Res 2024; 202:107138. [PMID: 38467241 DOI: 10.1016/j.phrs.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Cancer incidence and mortality rates are increasing worldwide. Cancer treatment remains a real challenge for African countries, especially in sub-Saharan Africa where funding and resources are very limited. High costs, side effects and drug resistance associated with cancer treatment have encouraged scientists to invest in research into new herbal cancer drugs. In order to identify potential anticancer plants for drug development, this review aims to collect and summarize anticancer activities (in vitro/in vivo) and molecular mechanisms of sub-Saharan African medicinal plant extracts against cancer cell lines. Scientific databases such as ScienceDirect, Google Scholar and PubMed were used to search for research articles published from January 2013 to May 2023 on anticancer medicinal plants in sub-Saharan Africa. The data were analyzed to highlight the cytotoxicity and molecular mechanisms of action of these listed plants. A total of 85 research papers covering 204 medicinal plant species were selected for this review. These plants come from 57 families, the most dominant being the plants of the family Amaryllidaceae (16), Fabaceae (14), Annonaceae (10), Asteraceae (10). Plant extracts exert their anticancer activity mainly by inducing apoptosis and stopping the cell cycle of cancer cells. Several plant extracts from sub-Saharan Africa therefore have strong potential for the search for original anticancer phytochemicals. Chemoproteomics, multi-omics, genetic editing technology (CRISPR/Cas9), combined therapies and artificial intelligence tools are cutting edge emerging technologies that facilitate the discovery and structural understanding of anticancer molecules of medicinal plants, reveal their direct targets, explore their therapeutic uses and molecular bases.
Collapse
Affiliation(s)
- Marc D W Adico
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Département de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216, Ouagadougou 01, Burkina Faso
| | - Bagora Bayala
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Département de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216, Ouagadougou 01, Burkina Faso; Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France; Ecole Normale Supérieure, BP 376, Koudougou, Burkina Faso.
| | - Julio Bunay
- Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France
| | - Silvère Baron
- Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Département de Biochimie-Microbiologie, Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso; Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216, Ouagadougou 01, Burkina Faso
| | - Jean-Marc A Lobaccaro
- Institut Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, et Centre de Recherche en Nutrition Humaine Auvergne, 28, Place Henri Dunant, BP38, Clermont-Ferrand F63001, France.
| |
Collapse
|
5
|
Kim SW, Kim CW, Kim HS. Scoparone attenuates PD-L1 expression in human breast cancer cells by MKP-3 upregulation. Anim Cells Syst (Seoul) 2024; 28:55-65. [PMID: 38348341 PMCID: PMC10860470 DOI: 10.1080/19768354.2024.2315950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
Breast cancer is a frequently occurring malignant tumor that is one of the leading causes of cancer-related deaths in women worldwide. Monoclonal antibodies that block programed cell death 1 (PD-1)/programed cell death ligand 1 (PD-L1) - a typical immune checkpoint - are currently the recommended standard therapies for many advanced and metastatic tumors such as triple-negative breast cancer. However, some patients develop drug resistance, leading to unfavorable treatment outcomes. Therefore, other approaches are required for anticancer treatments, such as downregulation of PD-L1 expression and promotion of degradation of PD-L1. Scoparone (SCO) is a bioactive compound isolated from Artemisia capillaris that exhibits antitumor activity. However, the effect of SCO on PD-L1 expression in cancer has not been confirmed yet. This study aimed to evaluate the role of SCO in PD-L1 expression in breast cancer cells in vitro. Our results show that SCO downregulated PD-L1 expression in a dose-dependent manner, via AKT inhibition. Interestingly, SCO treatment did not alter PTEN expression, but increased the expression of mitogen-activated protein kinase phosphatase-3 (MKP-3). In addition, the SCO-induced decrease in PD-L1 expression was reversed by siRNA-mediated MKP-3 knockdown. Collectively, these findings suggest that SCO inhibited the expression of PD-L1 in breast cancer cells by upregulating MKP-3 expression. Therefore, SCO may serve as an innovative combinatorial agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
6
|
Lee K, Choi YJ, Lim HI, Cho KJ, Kang N, Ko SG. Network pharmacology study to explore the multiple molecular mechanism of SH003 in the treatment of non-small cell lung cancer. BMC Complement Med Ther 2024; 24:70. [PMID: 38303001 PMCID: PMC10832243 DOI: 10.1186/s12906-024-04347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the leading causes of human death worldwide. Herbal prescription SH003 has been developed to treat several cancers including NSCLC. Due to the multi-component nature of SH003 with multiple targets and pathways, a network pharmacology study was conducted to analyze its active compounds, potential targets, and pathways for the treatment of NSCLC. METHODS We systematically identified oral active compounds within SH003, employing ADME criteria-based screening from TM-MC, OASIS, and TCMSP databases. Concurrently, SH003-related and NSCLC-associated targets were amalgamated from various databases. Overlapping targets were deemed anti-NSCLC entities of SH003. Protein-protein interaction networks were constructed using the STRING database, allowing the identification of pivotal proteins through node centrality measures. Empirical validation was pursued through LC-MS analysis of active compounds. Additionally, in vitro experiments, such as MTT cell viability assays and western blot analyses, were conducted to corroborate network pharmacology findings. RESULTS We discerned 20 oral active compounds within SH003 and identified 239 core targets shared between SH003 and NSCLC-related genes. Network analyses spotlighted 79 hub genes, including TP53, JUN, AKT1, STAT3, and MAPK3, crucial in NSCLC treatment. GO and KEGG analyses underscored SH003's multifaceted anti-NSCLC effects from a genetic perspective. Experimental validations verified SH003's impact on NSCLC cell viability and the downregulation of hub genes. LC-MS analysis confirmed the presence of four active compounds, namely hispidulin, luteolin, baicalein, and chrysoeriol, among the eight compounds with a median of > 10 degrees in the herb-compounds-targets network in SH003. Previously unidentified targets like CASP9, MAPK9, and MCL1 were unveiled, supported by existing NSCLC literature, enhancing the pivotal role of empirical validation in network pharmacology. CONCLUSION Our study pioneers the harmonization of theoretical predictions with practical validations. Empirical validation illuminates specific SH003 compounds within NSCLC, simultaneously uncovering novel targets for NSCLC treatment. This integrated strategy, accentuating empirical validation, establishes a paradigm for in-depth herbal medicine exploration. Furthermore, our network pharmacology study unveils fresh insights into SH003's multifaceted molecular mechanisms combating NSCLC. Through this approach, we delineate active compounds of SH003 and target pathways, reshaping our understanding of its therapeutic mechanisms in NSCLC treatment.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, 30019, South Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hae-In Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Kwang Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Nuri Kang
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
7
|
Jung T, Cheon C. Synergistic and Additive Effects of Herbal Medicines in Combination with Chemotherapeutics: A Scoping Review. Integr Cancer Ther 2024; 23:15347354241259416. [PMID: 38867515 PMCID: PMC11179546 DOI: 10.1177/15347354241259416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Natural products are increasingly gaining interest as potential new drug candidates for cancer treatment. Herbal formula, which are combinations of several herbs, are primarily used in East Asia and have a long history of use that continues today. Recently, research exploring the combination of herbal formulas and chemotherapy for cancer treatment has been on the rise. METHODS This study reviewed research on the co-administration of herbal formulas and chemotherapy for cancer treatment. The databases PubMed, Embase, and Cochrane Library were used for article searches. The following keywords were employed: "Antineoplastic agents," "Chemotherapy," "Phytotherapy," "Herbal medicine," "Drug synergism," and "Synergistic effect." The selection process focused on studies that investigated the synergistic interaction between herbal formulas and chemotherapeutic agents. RESULTS Among the 30 studies included, 25 herbal formulas and 7 chemotherapies were used. The chemotherapy agents co-administered included cisplatin, 5-fluorouracil, docetaxel, doxorubicin, oxaliplatin, irinotecan, and gemcitabine. The types of cancer most frequently studied were lung, breast, and colon cancers. Most studies evaluating the anticancer efficacy of combined herbal formula and chemotherapy treatment were conducted in vitro or in vivo. DISCUSSION Most studies reported synergistic effects on cytotoxicity, apoptosis, and tumor growth inhibition. These effects were found to be associated with cell cycle arrest, anti-angiogenesis, and gene expression regulation. Further studies leading to clinical trials are required. Clinical experiences in East Asian countries could provide insights for future research.
Collapse
Affiliation(s)
- Taehun Jung
- Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Chunhoo Cheon
- Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
8
|
Ning Y, Wu Y, Zhou Q, Teng Y. The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway. Comb Chem High Throughput Screen 2024; 27:863-876. [PMID: 37259219 DOI: 10.2174/1386207326666230530095355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND It remains a challenge to effectively treat prostate cancer (PCa) that affects global men's health. It is essential to find a natural alternative drug and explore its antitumor mechanism due to the serious toxic side effects of chemotherapy. METHODS The targets and signaling pathways were analyzed by network pharmacology and verified by molecular docking and LC-MS. The proliferation, apoptosis, invasion, and migration of DU145 cells were detected by the CCK-8 method, flow cytometry, and Transwell, respectively. The Bcl-2, caspase-3, CXCL12, and CXCR4 expressions and Akt1 phosphorylation were determined by Western blot. Akt1 overexpression was applied to identify the involvement of the Akt1- related CXCL12/CXCR4 pathway in regulating PCa. Nude mouse tumorigenesis was performed to analyze the effect of quercetin on PCa in vivo. RESULTS Network pharmacology analysis displayed that quercetin was the main active component of the Yishen Tongluo Jiedu recipe and Akt1 was the therapy target of PCa. LC-MS analysis showed that quercetin existed in the Yishen Tongluo Jiedu recipe, and molecular docking proved that quercetin bound to Akt1. Quercetin inhibited the proliferation of DU145 cells by upregulating caspase-3 and downregulating Bcl-2 expression, promoting apoptosis and reducing invasion and migration abilities. In vivo, quercetin downregulated CXCL12 and CXCR4 expressions and inhibited PCa development by the Akt1-related CXCL12/CXCR4 pathway. CONCLUSION As the active component of the Yishen Tongluo Jiedu recipe, quercetin inhibited PCa development through the Akt1-related CXCL12/CXCR4 pathway. This study provided a new idea for PCa treatment and a theoretical basis for further research.
Collapse
Affiliation(s)
- Yu Ning
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongrong Wu
- Academy of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410218, China
| | - Qing Zhou
- Surgery of traditional Chinese Medicine, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| | - Yongjie Teng
- Department of Anesthesiology Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China
| |
Collapse
|
9
|
Cheon C, Lee HW, Sym SJ, Ko SG. Safety of the Herbal Medicine SH003 in Patients With Solid Cancer: A Multi-Center, Single-Arm, Open-Label, Dose-Escalation Phase I Study. Integr Cancer Ther 2024; 23:15347354241293451. [PMID: 39469996 PMCID: PMC11528795 DOI: 10.1177/15347354241293451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND SH003, a novel herbal medicine comprising Huang-Qi, Dang-Gui, and Gua-Lou-Gen, has historical roots in traditional medicine with reported anticancer properties. The need to explore safe and effective treatments in oncology underlines the importance of this study. METHODS This phase I trial, conducted at Ajou University Hospital and Gachon University Gil Medical Center in Korea, adopted a single-arm, open-label, dose-escalation design. It aimed to evaluate the safety of escalated doses of SH003 in patients with various solid cancers, focusing on determining its maximum tolerated dose. Participants with confirmed solid cancers, unresponsive to standard treatments, were enrolled. The dosage of SH003 was escalated from 4800 to 9600 mg per day, using a 3 + 3 design. Safety was assessed based on the Common Terminology Criteria for Adverse Events ver. 5.0. RESULTS The study established that the maximum tolerated dose of SH003 is 9600 mg/day. Most adverse events were mild, primarily including dizziness and nausea, indicating the tolerability of SH003 at this dosage. CONCLUSIONS SH003 demonstrates safety and promises as an anticancer treatment at doses up to 9600 mg/day. This research supports further investigation into its efficacy for cancer therapy, emphasizing the significance of natural products in oncology, particularly concerning patient safety and tolerance.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyun Woo Lee
- Ajou University Hospital, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sun Jin Sym
- Gachon University Gil Medical Center, Namdong-gu, Incheon, Republic of Korea
| | - Seong-Gyu Ko
- Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
10
|
Han NR, Park HJ, Ko SG, Moon PD. The Mixture of Natural Products SH003 Exerts Anti-Melanoma Effects through the Modulation of PD-L1 in B16F10 Cells. Nutrients 2023; 15:2790. [PMID: 37375695 DOI: 10.3390/nu15122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is the most invasive and lethal skin cancer. Recently, PD-1/PD-L1 pathway modulation has been applied to cancer therapy due to its remarkable clinical efficacy. SH003, a mixture of natural products derived from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, and formononetin (FMN), an active constituent of SH003, exhibit anti-cancer and anti-oxidant properties. However, few studies have reported on the anti-melanoma activities of SH003 and FMN. This work aimed to elucidate the anti-melanoma effects of SH003 and FMN through the PD-1/PD-L1 pathway, using B16F10 cells and CTLL-2 cells. Results showed that SH003 and FMN reduced melanin content and tyrosinase activity induced by α-MSH. Moreover, SH003 and FMN suppressed B16F10 growth and arrested cells at the G2/M phase. SH003 and FMN also led to cell apoptosis with increases in PARP and caspase-3 activation. The pro-apoptotic effects were further enhanced when combined with cisplatin. In addition, SH003 and FMN reversed the increased PD-L1 and STAT1 phosphorylation levels induced by cisplatin in the presence of IFN-γ. SH003 and FMN also enhanced the cytotoxicity of CTLL-2 cells against B16F10 cells. Therefore, the mixture of natural products SH003 demonstrates therapeutic potential in cancer treatment by exerting anti-melanoma effects through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
LEE SEOYEON, KIM TAEHOON, CHOI WONGEUN, CHUNG YOONHEY, KO SEONGGYU, CHEON CHUNHOO, CHO SUNGGOOK. SH003 Causes ER Stress-mediated Apoptosis of Breast Cancer Cells via Intracellular ROS Production. Cancer Genomics Proteomics 2023; 20:88-116. [PMID: 36581346 PMCID: PMC9806670 DOI: 10.21873/cgp.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM Breast cancer is one of the most common cancers in women all over the world and new treatment options are urgent. ER stress in cancer cells results in apoptotic cell death, and it is being proposed as a new therapeutic target. SH003, a newly developed herbal medicine, has been reported to have anti-cancer effects. However, its molecular mechanism is not yet clearly defined. MATERIALS AND METHODS Microarray was performed to check the differential gene expression patterns in various breast cancer cell lines. Cell viability was measured by MTT assays to detect cytotoxic effects. Annexin V-FITC and 7AAD staining, TUNEL assay and DCF-DA staining were analyzed by flow cytometry to evaluate apoptosis and ROS levels, respectively. Protein expression was examined in SH003-breast cancer cells using immunoblotting assays. The expression of C/EBP Homologous Protein (CHOP) mRNA was measured by real-time PCR. The effects of CHOP by SH003 treatment were investigated using transfection method. RESULTS Herein, we investigated the molecular mechanisms through which SH003 causes apoptosis of human breast cancer cells. Both cell viability and apoptosis assays confirmed the SH003-induced apoptosis of breast cancer cells. Meanwhile, SH003 altered the expression patterns of several genes in a variety of breast cancer cell lines. More specifically, it upregulated gene sets including the response to unfolded proteins, independently of the breast cancer cell subtype. In addition, SH003-induced apoptosis was due to an increase in ROS production and an activation of the ER stress-signaling pathway. Moreover, CHOP gene silencing blocked SH003-induced apoptosis. CONCLUSION SH003 causes apoptosis of breast cancer cells by upregulating ROS production and activating the ER stress-mediated pathway. Thus, our findings suggest that SH003 can be a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- SEO YEON LEE
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - TAE HOON KIM
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - WON GEUN CHOI
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - YOON HEY CHUNG
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - SEONG-GYU KO
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - CHUNHOO CHEON
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - SUNG-GOOK CHO
- Department of Biotechnology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
12
|
Development and Validation of a New Analytical HPLC-PDA Method for Simultaneous Determination of Cucurbitacins B and D from the Roots of Trichosanthes kirilowii. J CHEM-NY 2022. [DOI: 10.1155/2022/2109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Trichosanthes kirilowii, one of the herbal formulas named SH003, has been used for treatment in traditional medicine. This paper aimed to analyze the marker compounds from the roots of T. kirilowii and evaluate a validation method for cucurbitacins B and D using high-performance liquid chromatography-photodiode array detector (HPLC-PDA). Two marker compounds were identified as cucurbitacin B (1) and cucurbitacin D (2) from the roots of T. kirilowii by spectroscopic analyses. Cucurbitacins B and D peaks were well separated and were detected at 15.4 min and 12.4 min, respectively, by a UV detector at 230 nm with the linearity (R2 > 0.999) range between 5 and 250 μg/mL, limit of detections (LODs) were 1.87 μg/mL and 1.30 μg/mL, respectively, while limit of quantifications (LOQs) were 5.66 μg/mL and 3.93 μg/mL, respectively. The established method offered good precision with overall intra- and inter-day variations of 0.34–1.26 and 0.26–1.35%, respectively, for % relative standard deviation (RSD, acceptance limit %RSD <3%). The cucurbitacins B and D recoveries ranged from 99.2 to 101.7% and 98.6 to 102.0%, respectively. These results suggest that cucurbitacins B and D could be a valuable candidate for marker compounds of the extract from T. kirilowii, and the proposed method was shown applicability for quality control of SH003.
Collapse
|
13
|
You X, Wu Y, Li Q, Sheng W, Zhou Q, Fu W. Astragalus–Scorpion Drug Pair Inhibits the Development of Prostate Cancer by Regulating GDPD4-2/PI3K/AKT/mTOR Pathway and Autophagy. Front Pharmacol 2022; 13:895696. [PMID: 35847007 PMCID: PMC9277392 DOI: 10.3389/fphar.2022.895696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Prostate cancer (PCa) is an epithelial malignancy of the prostate that currently lacks effective treatment. Traditional Chinese medicine (TCM) can play an anticancer role through regulating the immune system, anti-tumor angiogenesis, regulating tumor cell apoptosis, autophagy dysfunction, and other mechanisms. This study attempted to explore the active ingredients and potential mechanism of action of the Astragalus–Scorpion (A–S) drug pair in PCa, in order to provide new insights into the treatment of PCa. Methods: Network pharmacology was used to analyze the A–S drug pair and PCa targets. Bioinformatics analysis was used to analyze the LncRNAs with significant differences in PCa. The expression of LC3 protein was detected by immunofluorescence. CCK8 was used to detect cell proliferation. The expressions of GDPD4-2, AC144450.1, LINC01513, AC004009.2, AL096869.1, AP005210.1, and BX119924.1 were detected by RT-qPCR. The expression of the PI3K/AKT/mTOR pathway and autophagy-related proteins were detected by western blot. LC-MS/MS was used to identify the active components of Astragalus and Scorpion. Results: A–S drug pair and PCa have a total of 163 targets, which were mainly related to the prostate cancer and PI3K/AKT pathways. A–S drug pair inhibited the formation of PCa, promoted the expression of LC3Ⅱ and Beclin1 proteins, and inhibited the expression of P62 and PI3K–AKT pathway proteins in PCa mice. Astragaloside IV and polypeptide extract from scorpion venom (PESV) were identified as the main active components of the A–S drug pair. GDPD4-2 was involved in the treatment of PCa by Astragaloside IV-PESV. Silencing GDPD4-2 reversed the therapeutic effects of Astragaloside IV-PESV by regulating the PI3K/AKT/mTOR pathway. Conclusion: Astragaloside IV-PESV is the main active components of A–S drug pair treated PCa by regulating the GDPD4-2/PI3K–AKT/mTOR pathway and autophagy.
Collapse
Affiliation(s)
- Xujun You
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongrong Wu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wen Sheng
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Qing Zhou, ; Wei Fu,
| | - Wei Fu
- Department of Andrology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Qing Zhou, ; Wei Fu,
| |
Collapse
|
14
|
SH003 and Docetaxel Show Synergistic Anticancer Effects by Inhibiting EGFR Activation in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3647900. [PMID: 35572726 PMCID: PMC9098291 DOI: 10.1155/2022/3647900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Although many anticancer drugs have been developed for triple-negative breast cancer (TNBC) treatment, there are no obvious therapies. Moreover, the combination of epidermal growth factor receptor- (EGFR-) targeted therapeutics and classical chemotherapeutic drugs has been assessed in clinical trials for TNBC treatment, but those are not yet approved. Our serial studies for newly developed herbal medicine named SH003 provide evidence of its broad effectiveness in various cancers, especially on TNBC. The current study demonstrates a synergic effect of combinatorial treatment of SH003 and docetaxel (DTX) by targeting EGFR activation. The combinatorial treatment reduced the viability of both BT-20 and MDA-MB-231 TNBC cells, displaying the synergism. The combination of SH003 and DTX also caused the synergistic effect on apoptosis. Mechanistically, the cotreatment of SH003 and DTX inhibited phosphorylation of EGFR and AKT in both BT-20 and MDA-MB-231 cells. Moreover, our xenograft mouse tumor growth assays showed the inhibitory effect of the combinatorial treatment with no effect on body weight. Our immunohistochemistry confirmed its inhibition of EGFR phosphorylation in vivo. Collectively, combinatorial treatment of SH003 and DTX has a synergistic anticancer effect at a relatively low concentration by targeting EGFR in TNBC, indicating safety and efficacy of SH003 as adjuvant combination therapy with docetaxel. Thus, it is worth testing the combinatorial effect in clinics for treating TNBC.
Collapse
|
15
|
Han NR, Kim KC, Kim JS, Ko SG, Park HJ, Moon PD. The immune-enhancing effects of a mixture of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) or its active constituent nodakenin. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114893. [PMID: 34875347 DOI: 10.1016/j.jep.2021.114893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A mixture (SH003) of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) has beneficial effects against several carcinomas. There have been few reports on an immune-enhancing activity of SH003 and its active constituent nodakenin. AIM OF THE STUDY This study aimed at identifying the immune-enhancing effect of SH003 and nodakenin. MATERIALS AND METHODS The immune-enhancing effect was evaluated using RAW264.7 macrophages, mouse primary splenocytes, and a cyclophosphamide (CP)-induced immunosuppression murine model. RESULTS The results show that SH003 or nodakenin stimulated the production levels of granulocyte colony-stimulating factor, IL-12, IL-2, IL-6, TNF-α, and nitric oxide (NO) and the expression levels of iNOS in RAW264.7 macrophages. SH003 or nodakenin also enhanced NF-κB p65 activation in RAW264.7 macrophages. SH003 or nodakenin stimulated the production levels of IFN-γ, IL-12, IL-2, TNF-α, and NO and the expression levels of iNOS in splenocytes. SH003 or nodakenin increased the splenic lymphocyte proliferation and splenic NK cell activity. In addition, SH003 or nodakenin increased the levels of IFN-γ, IL-12, IL-2, IL-6, and TNF-α in the serum and spleen of CP-treated mice, alleviating CP-induced immunosuppression. CONCLUSION Taken together, the results of this study show that SH003 improved immunosuppression through the activation of macrophages, splenocytes, and NK cells. These findings suggest that SH003 could be applied as a potential immunostimulatory agent for a variety of diseases caused or exacerbated by immunodeficiency.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
16
|
State of the Art and Future Implications of SH003: Acting as a Therapeutic Anticancer Agent. Cancers (Basel) 2022; 14:cancers14041089. [PMID: 35205836 PMCID: PMC8870567 DOI: 10.3390/cancers14041089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer ranks as the first leading cause of death globally. Despite the various types of cancer treatments, negative aspects of the treatments, such as side effects and drug resistance, have been a continuous dilemma for patients. Thus, natural compounds and herbal medicines have earned profound interest as chemopreventive agents for reducing burden for patients. SH003, a novel herbal medicine containing Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, showed the potential to act as an anticancer agent in previous research studies. A narrative review was conducted to present the significant highlights of the total 15 SH003 studies from the past nine years. SH003 has shown positive results in both in vivo and vitro studies against various types of cancer cells; furthermore, the first clinical trial was performed to identify the maximum tolerated dose among solid cancer patients. So far, the potential of SH003 as a chemotherapeutic agent has been well-documented in research studies; continuous work on SH003's efficacy and safety is required to facilitate better cancer patient care but is part of the knowledge needed to understand whether SH003 has the potential to become a pharmaceutical.
Collapse
|
17
|
Lee JH, Kim B, Ko SG, Kim W. Analgesic Effect of SH003 and Trichosanthes kirilowii Maximowicz in Paclitaxel-Induced Neuropathic Pain in Mice. Curr Issues Mol Biol 2022; 44:718-730. [PMID: 35723335 PMCID: PMC8929024 DOI: 10.3390/cimb44020050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Pacliatxel is a taxol-based chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are prescribed to attenuate neuropathies, no optimal treatment is available. Thus, in our study, we analyzed whether SH003 and its sub-components could alleviate paclitaxel-induced neuropathic pain. Multiple paclitaxel injections (cumulative dose 8 mg/kg, i.p.) induced cold and mechanical allodynia from day 10 to day 21 after the first injection in mice. Oral administration of SH003, an herbal mixture extract of Astragalus membranaceus, Angelica gigas, and Trichosantheskirilowii Maximowicz (Tk), dose-dependently attenuated both allodynia. However, when administered separately only Tk decreased both allodynia. The effect of Tk was shown to be mediated by the spinal noradrenergic system as intrathecal pretreatment with α1- and α2-adrenergic-receptor antagonists (prazosin and idazoxan), but not 5-HT1/2, and 5-HT3-receptor antagonists (methysergide and MDL-72222) blocked the effect of Tk. The spinal noradrenaline levels were also upregulated. Among the phytochemicals of Tk, cucurbitacin D was shown to play a major role, as 0.025 mg/kg (i.p.) of cucurbitacin D alleviated allodynia similar to 500 mg/kg of SH003. These results suggest that Tk should be considered when treating paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
18
|
Cheon C. Synergistic effects of herbal medicines and anticancer drugs: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27918. [PMID: 34797348 PMCID: PMC8601363 DOI: 10.1097/md.0000000000027918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND An increasing number of studies have been reporting combination therapy using herbal medicines and anticancer drugs, and the synergistic effects of this combination have gained much attention across the medical community. In this study, we will review and summarize all published studies that have investigated the synergistic interaction between herbal medicines and anticancer drugs. METHODS We will search the PubMed, Embase, and Cochrane Library databases. Studies investigated the synergistic interaction between herbal medicines and anticancer drugs will be included. The selection and extraction process will be performed by 2 independent reviewers, and we will perform qualitative synthesis. DISCUSSION The present study is being performed to investigate the herbal medicines and anticancer drugs that are used concomitantly, and to determine the combinations that are expected to show a synergistic effect. This knowledge will provide new insights into the possible role of herbal medicines in anticancer treatment. REVIEW REGISTRATION Trial registration: OSF Registration number: DOI 10.17605/OSF.IO/H5QS9.
Collapse
|
19
|
Herbal Prescription SH003 Alleviates Docetaxel-Induced Neuropathic Pain in C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4120334. [PMID: 34422067 PMCID: PMC8373497 DOI: 10.1155/2021/4120334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
Docetaxel-based therapy has been applied to kill cancers including lung and breast cancers but frequently causes peripheral neuropathy such as mechanical allodynia. Lack of effective drugs for chemotherapy-induced peripheral neuropathy (CIPN) treatment leads us to find novel drugs. Here, we investigated whether and how novel anticancer herbal prescription SH003 alleviates mechanical allodynia in mouse model of docetaxel-induced neuropathic pain. Docetaxel-induced mechanical allodynia was evaluated using von Frey filaments. Nerve damage and degeneration in paw skin of mice were investigated by immunofluorescence staining. Neuroinflammation markers in bloodstream, lumbar (L4-L6) spinal cord, and sciatic nerves were examined by ELISA or western blot analysis. Docetaxel (15.277 mg/kg) was intravenously injected into the tail vein of C57BL/6 mice, and mechanical allodynia was followed up. SH003 (557.569 mg/kg) was orally administered at least 60 min before the mechanical allodynia test, and von Frey test was performed twice. Docetaxel injection induced mechanical allodynia, and SH003 administration restored withdrawal threshold. Meanwhile, degeneration of intraepidermal nerve fibers (IENF) was observed in docetaxel-treated mice, but SH003 treatment suppressed it. Moreover, docetaxel injection increased levels of TNF-α and IL-6 in plasma and expressions of phospho-NF-κB and phospho-STAT3 in both of lumbar spinal cord and sciatic nerves, while SH003 treatment inhibited those changes. Taken together, it is worth noting that TNF-α and IL-6 in plasma and phospho-NF-κB and phospho-STAT3 in spinal cord and sciatic nerves are putative biomarkers of docetaxel-induced peripheral neuropathy (DIPN) in mouse models. In addition, we suggest that SH003 would be beneficial for alleviation of docetaxel-induced neuropathic pain.
Collapse
|
20
|
Synergistic Antitumor Activity of SH003 and Docetaxel via EGFR Signaling Inhibition in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22168405. [PMID: 34445110 PMCID: PMC8395077 DOI: 10.3390/ijms22168405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in lung cancer patients. Despite treatment with various EGFR tyrosine kinase inhibitors, recurrence and metastasis of lung cancer are inevitable. Docetaxel (DTX) is an effective conventional drug that is used to treat various cancers. Several researchers have studied the use of traditional herbal medicine in combination with docetaxel, to improve lung cancer treatment. SH003, a novel herbal mixture, exerts anticancer effects in different cancer cell types. Here, we aimed to investigate the apoptotic and anticancer effects of SH003 in combination with DTX, in human non-small-cell lung cancer (NSCLC). SH003, with DTX, induced apoptotic cell death, with increased expression of cleaved caspases and cleaved poly (ADP-ribose) polymerase in NSCLC cells. Moreover, SH003 and DTX induced the apoptosis of H460 cells via the suppression of the EGFR and signal transducer and activator of transcription 3 (STAT3) signaling pathways. In H460 tumor xenograft models, the administration of SH003 or docetaxel alone diminished tumor growth, and their combination effectively killed cancer cells, with increased expression of apoptotic markers and decreased expression of p-EGFR and p-STAT3. Collectively, the combination of SH003 and DTX may be a novel anticancer strategy to overcome the challenges that are associated with conventional lung cancer therapy.
Collapse
|
21
|
Cheon C, Ko SG. A Phase I Study to Evaluate the Safety of the Herbal Medicine SH003 in Patients With Solid Cancer. Integr Cancer Ther 2021; 19:1534735420911442. [PMID: 32186413 PMCID: PMC7081467 DOI: 10.1177/1534735420911442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Cancer is a major health problem worldwide and the
leading cause of death in many countries. Preclinical studies have shown the
therapeutic anticancer effects of SH003, a novel herbal medicine containing
Astragalus membranaceus, Angelica gigas, and
Trichosanthes kirilowii. The present study investigated the
maximum tolerated dose of SH003 in patients with solid cancers.
Methods: This open-label, dose-escalation trial used the
traditional 3 + 3 dose-escalation design. Patients with solid cancers were
recruited and administered 1 to 4 tablets of SH003 thrice daily for 3 weeks
according to the dose level. Adverse events were evaluated according to the
Common Terminology Criteria for Adverse Events (CTCAE). Dose-limiting toxicities
(DLTs) were defined as Grade 3 or higher adverse events based on CTCAE. The
maximum tolerated dose was defined as the highest dose at which no more than 1
of 6 patients experienced DLT. Results: The present study enrolled
11 patients. A total of 31 adverse events occurred. According to the CTCAE, all
the observed adverse events were grade 2 or less and no adverse events of grade
3 or more corresponding to DLT occurred. Conclusion: The study
results indicated that the maximum tolerated dose of SH003 was 4800 mg/day. A
Phase 2 study is required to determine the efficacy of SH003 in patients with
cancer at a dose of 4800 mg/day or less.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Cheon C, Ko SG. Phase I study to evaluate the maximum tolerated dose of the combination of SH003 and docetaxel in patients with solid cancer: A study protocol. Medicine (Baltimore) 2020; 99:e22228. [PMID: 32957363 PMCID: PMC7505292 DOI: 10.1097/md.0000000000022228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Cancer is the second leading cause of death, and the burden of cancer continues to grow globally. Research on the efficacy of combined administration of herbal medicine and anticancer drugs is also increasing. SH003 is a new herbal medicine composed of Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii. SH003 alone up to 4800 mg daily was found to be safe. Preclinical studies have shown SH003 to have a synergistic effect with coadministration of anticancer drugs. This study aimed to determine the maximum tolerated dose of SH003 combined with docetaxel in patients with lung or breast cancer. METHODS This is an open-label, dose-escalation study to evaluate the safety of SH003 combined with docetaxel. Patients with lung or breast cancer will be recruited. The participants will be divided into 3 groups based on SH003 daily dose (2400, 3600, and 4800 mg); the medication will be taken orally for 21 days. The traditional 3 + 3 design will be adopted for the dose escalation. Dose-limiting toxicities are defined as grade 3 or 4 adverse events according to the Common Terminology Criteria for Adverse Events. The highest dose at which no more than 1 of the 6 patients experience dose-limiting toxicity will be determined as the maximum tolerated dose of SH003 combined with docetaxel. DISCUSSION This study investigates the safety of SH003 when combined with docetaxel. The results of this study will provide a safe dose range for conducting therapeutic exploratory trials. TRIAL REGISTRATIONS ClinicalTrials.gov NCT04360317.
Collapse
|
23
|
Kim TW, Cheon C, Ko SG. SH003 activates autophagic cell death by activating ATF4 and inhibiting G9a under hypoxia in gastric cancer cells. Cell Death Dis 2020; 11:717. [PMID: 32879309 PMCID: PMC7468158 DOI: 10.1038/s41419-020-02924-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
In gastric cancer (GC), hypoxia is one of the greatest obstacles to cancer therapy. In this present study, we report that SH003, an herbal formulation, induces ER stress via PERK-ATF4-CHOP signaling in GC. SH003-mediated ER stress inhibits G9a, a histone methyltransferase, by reducing STAT3 phosphorylation and activates autophagy, indicating to the dissociation of Beclin-1 and autophagy initiation from Bcl-2/Beclin-1 complex. However, the inhibition of PERK and CHOP inhibited SH003-induced cell death and autophagy activation. Moreover, targeting autophagy using specific siRNAs of LC3B or p62 or the autophagy inhibitor 3-MA also inhibited SH003-induced cell death in GC. Interestingly, SH003 induces BNIP3-mediated autophagic cell death under hypoxia than normoxia in GC. These findings reveal that SH003-induced ER stress regulates BNIP3-induced autophagic cell death via inhibition of STAT3-G9a axis under hypoxia in GC. Therefore, SH003 may an important tumor therapeutic strategy under hypoxia-mediated chemo-resistance.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
24
|
Curcumin Inhibits ERK/c-Jun Expressions and Phosphorylation against Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8912961. [PMID: 32083122 PMCID: PMC7012278 DOI: 10.1155/2019/8912961] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/16/2019] [Indexed: 01/31/2023]
Abstract
Curcumin has been shown to have anticancer effects in a variety of tumors. However, there are fewer studies on the role of curcumin in endometrial carcinoma (EC). The purpose of this experiment was to examine the inhibitory effect of curcumin on endometrial carcinoma cells and ERK/c-Jun signaling pathway. We first predicted the mechanism of action of curcumin on endometrial carcinoma by network pharmacology. Then, we found that curcumin can decrease the cell viability of Ishikawa cells, inhibit the migration of cancer cells, induce apoptosis, and cause cell cycle arrest in the S phase. For molecular mechanism, curcumin reduced the mRNA expression levels of ERK2 and JUN genes and inhibited the phosphorylation of ERK and c-Jun. This suggests that curcumin inhibits the proliferation of endometrial carcinoma cells by downregulating ERK/c-Jun signaling pathway activity.
Collapse
|
25
|
Salehi B, Fokou PVT, Yamthe LRT, Tali BT, Adetunji CO, Rahavian A, Mudau FN, Martorell M, Setzer WN, Rodrigues CF, Martins N, Cho WC, Sharifi-Rad J. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019; 11:E1483. [PMID: 31261861 PMCID: PMC6683070 DOI: 10.3390/nu11071483] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is a heterogeneous disease, the second deadliest malignancy in men and the most commonly diagnosed cancer among men. Traditional plants have been applied to handle various diseases and to develop new drugs. Medicinal plants are potential sources of natural bioactive compounds that include alkaloids, phenolic compounds, terpenes, and steroids. Many of these naturally-occurring bioactive constituents possess promising chemopreventive properties. In this sense, the aim of the present review is to provide a detailed overview of the role of plant-derived phytochemicals in prostate cancers, including the contribution of plant extracts and its corresponding isolated compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde I, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon
| | | | - Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa-Yaoundé 812, Cameroon
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria
| | - Amirhossein Rahavian
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran
| | - Fhatuwani Nixwell Mudau
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
26
|
Cheon C, Kang S, Ko Y, Kim M, Jang BH, Shin YC, Ko SG. Single-arm, open-label, dose-escalation phase I study to evaluate the safety of a herbal medicine SH003 in patients with solid cancer: a study protocol. BMJ Open 2018; 8:e019502. [PMID: 30082340 PMCID: PMC6078237 DOI: 10.1136/bmjopen-2017-019502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Cancer is a major health problem worldwide and the leading cause of death in many countries. The number of patients with cancer and socioeconomic costs of cancer continues to increase. SH003 is a novel herbal medicine consisting of Astragalus membranaceus, Angelica gigas and Trichosanthes Kirilowii Maximowicz. Preclinical studies have shown that SH003 has therapeutic anticancer effects. The aim of this study is to determine the maximum tolerated dose of SH003 in patients with solid cancers. METHODS AND ANALYSIS This study is an open-label, dose-escalation trial evaluating the safety and tolerability of SH003. The traditional 3+3 dose-escalation design will be implemented. Patients with solid cancers will be recruited. According to dose level, the patients will receive one to four tablets of SH003, three times a day for 3 weeks. Toxicity will be evaluated using common terminology criteria for adverse events (CTCAE). Dose-limiting toxicities are defined as grade 3 or higher adverse events based on CTCAE. The maximum tolerated dose will be determined by the highest dose at which no more than one of six patients experiences dose-limiting toxicity. ETHICS AND DISSEMINATION This study has been approved by the institutional review board of the Ajou University Hospital (reference AJIRB-MED-CT1-16-311). The results of this study will be disseminated through a scientific journal and a conference. TRIAL REGISTRATION NUMBER NCT03081819; Pre-results.
Collapse
Affiliation(s)
- Chunhoo Cheon
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sohyeon Kang
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youme Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Mia Kim
- Department of Cardiovascular and Neurologic Disease (Stroke Center), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bo-Hyoung Jang
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Cheol Shin
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Korean Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Lee K, Cho SG, Choi YK, Choi YJ, Lee GR, Jeon CY, Ko SG. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 colorectal cancer cells. Int J Mol Med 2017; 41:373-380. [PMID: 29115450 DOI: 10.3892/ijmm.2017.3241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α‑mediated (TNF‑α) epithelial‑mesenchymal transition (EMT) is associated with distant metastasis in patients with colorectal cancer with poor prognosis. Although traditional herbal medicines have long been used to treat colorectal cancer, the incidence and mortality in patients with colorectal cancer has continued to increase. Danggui‑Sayuk‑Ga‑Osuyu‑Saenggang‑Tang (DSGOST) has long been used for treatment of chills, while few studies have reported its anticancer effect. This study aimed to demonstrate the inhibitory effect of DSGOST on TNF‑α‑mediated invasion and migration of colorectal cancer HCT116 cell lines. MTT was used to measure cell viability. Wound healing and Τranswell invasion assay were used to detect migration and invasion of cells, respectively. The intracellular localization of proteins of interest was assessed by immunocytochemistry. Western blotting was performed to determine the expression level of various proteins. A non‑toxic dose of DSGOST (50 µg/ml) on HCT116 cells was determined by MTT assay. Furthermore, DSGOST prevented the TNF‑α‑induced invasive phenotype in HCT116 cells. DSGOST inhibition of the invasive phenotype was also associated with increased expression of EMT markers. Furthermore, DSGOST treatment blocked TNF‑α‑induced migration and invasion of HCT116 cells. In addition, DSGOST treatment inhibited TNF‑α‑mediated nuclear translocation of Snail. DSGOST treatment also downregulated TNF‑α‑induced phosphorylation of AKT and glycogen synthase kinase‑3β. Therefore, the findings of the current study suggest that DSGOST exhibits anti‑migration and anti‑invasion effects in TNF‑α‑treated HCT116 human colorectal cells.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Chungbuk 27469, Republic of Korea
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Gyu-Ri Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Chan-Yong Jeon
- Department of Korean Internal Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
28
|
Lee KM, Lee K, Choi YK, Choi YJ, Seo HS, Ko SG. SH003‑induced G1 phase cell cycle arrest induces apoptosis in HeLa cervical cancer cells. Mol Med Rep 2017; 16:8237-8244. [PMID: 28944910 DOI: 10.3892/mmr.2017.7597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is a prevalent disease that may lead to mortality in women. In spite of the development of common therapeutic agents to treat cancer, there are several limitations of their use owing to side effects and drug resistance, which may induce cancer recurrence. The anticancer effects of the new herbal mixture SH003 (comprising Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii Maximowicz) have been examined in various types of cancer. Thus, the present study hypothesized that SH003 may be an effective treatment for cervical cancer. SH003 treatment inhibited the growth of HeLa cells, whereas it did not affect the growth of rat intestinal epithelial cells. In addition, SH003 treatment increased the expression of apoptosis‑related proteins and promoted apoptotic cell death in HeLa cells. SH003 treatment also led to G1 phase arrest in HeLa cells. Furthermore, SH003 treatment induced the production of reactive oxygen species (ROS); however, ROS production did not appear to be related to SH003‑mediated apoptosis. Results from the present study indicated that the SH003‑induced inhibition of HeLa cell growth may be mediated through G1 phase arrest and extrinsic apoptosis, suggested that SH003 may be a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Kang Min Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Kangwook Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science and Technology, Jeju 63349, Republic of Korea
| | - Yu-Jeong Choi
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Hye-Sook Seo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02247, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02247, Republic of Korea
| |
Collapse
|
29
|
Wei B, Liang J, Hu J, Mi Y, Ruan J, Zhang J, Wang Z, Hu Q, Jiang H, Ding Q. TRAF2 is a Valuable Prognostic Biomarker in Patients with Prostate Cancer. Med Sci Monit 2017; 23:4192-4204. [PMID: 28855498 PMCID: PMC5590516 DOI: 10.12659/msm.903500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND TRAF2 exerts important functions in regulating the development and progression of cancer. The aim of this study is to investigate whether TRAF2 is a valuable prognostic biomarker and to determine if it regulates TRAIL-induced apoptosis in prostate cancer. MATERIAL AND METHODS Microarray gene expression data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to determine TRAF2 expression in prostate cancer. TRAF2 expression in prostate cancer was further investigated by immunohistochemistry assay. Kaplan-Meier curves and log-rank test were used to assess the recurrence-free rate. Cox regression was used to analyze prognostic factors. Effects of TRAF2 on regulating TRAIL-induced apoptosis in DU-145 cells were further investigated. RESULTS We found that TRAF2 was significantly upregulated in prostate cancer compared with normal prostate samples (P<0.001). In addition, compared with primary prostate cancer, TRAF2 was upregulated in metastatic prostate cancer (P=0.006). Furthermore, our results showed that high expression of TRAF2 was significantly associated with tumor stage of prostate cancer (P=0.035). TRAF2 high expression was associated with poorer recurrence-free survival in prostate cancer patients (P=0.013). TRAF2 was found to be a valuable independent prognostic factor for predicting recurrence-free survival (P=0.026). In addition, the present results indicate that TRAF2 affects TRAIL-induced apoptosis in prostate cancer DU-145 cells via regulating cleaved Caspase-8 and c-Flip expression. CONCLUSIONS TRAF2 could be a novel prognostic biomarker for predicting recurrence-free survival in patients with prostate cancer, which might be associated with the effects of TRAF2 in regulating TRAIL-induced apoptosis in prostate cancer cells via c-Flip/Caspase-8 signalling.
Collapse
Affiliation(s)
- Bingbing Wei
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Jiabei Liang
- Department of Pathology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Yuanyuan Mi
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Jun Ruan
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Jian Zhang
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Zhirong Wang
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Qiang Hu
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
30
|
Wei B, Ruan J, Mi Y, Hu J, Zhang J, Wang Z, Hu Q, Jiang H, Ding Q. Knockdown of TNF receptor-associated factor 2 (TRAF2) modulates in vitro growth of TRAIL-treated prostate cancer cells. Biomed Pharmacother 2017; 93:462-469. [PMID: 28667915 DOI: 10.1016/j.biopha.2017.05.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 01/18/2023] Open
Abstract
TNF receptor-associated factor 2 (TRAF2) is documented to regulate tumor development and progression. Currently, the effect of TRAF2 on growth of androgen-refractory prostate cancer in response to TRAIL and the molecular mechanisms are not well understood. Here, we aim to investigate the effect of TRAF2 on in vitro growth of human androgen-insensitive prostate cancer DU-145 cells in the presence of TRAIL. Bioinformatics analysis of the Cancer Genome Atlas (TCGA) data was performed to examine TRAF2 expression and the prognostic value in prostate cancer. Microarray data of GSE21032 dataset were downloaded from Gene Expression Omnibus (GEO) to explore TRAF2 expression in metastatic prostate cancer. Bioinformatics analysis was further conducted to investigate the association of TRAF2 expression with recurrence-free survival in prostate cancer patients. Colony formation, cell viability, and Annexin V/PI apoptosis assays were performed to investigate the effect of TRAF2 on in vitro growth and apoptosis in TRAIL-treated DU-145 cells. The expression levels of mRNA and protein were detected by quantitative RT-PCR and immunoblotting assays. Bioinformatics analysis indicated that TRAF2 expression is significantly upregulated in prostate cancer patients with high Gleason scores (GS>7) compared with those with low Gleason scores (GS≤7). Upregulation of TRAF2 expression is significantly associated with recurrence-free survival in patients. In addition, TRAF2 knockdown can enhance apoptosis and downregulate SIRT1 expression in TRAIL-treated DU-145 cells. In vitro experiments further showed that SIRT1 knockdown can inhibit growth, and promote apoptosis in TRAIL-treated DU-145 cells. Overall, TRAF2 can influence in vitro growth of TRAIL-treated DU-145 cells at least partially via regulating SIRT1 expression, and may be a potentially valuable biomarker predicting recurrence-free survival in prostate cancer patients.
Collapse
Affiliation(s)
- Bingbing Wei
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Ruan
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Yuanyuan Mi
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Zhang
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Zhirong Wang
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Qiang Hu
- Department of Urology, Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
31
|
Ji C, Zhao Y, Kou YW, Shao H, Guo L, Bao CH, Jiang BC, Chen XY, Dai JW, Tong YX, Yang R, Sun W, Wang Q. Cathepsin F Knockdown Induces Proliferation and Inhibits Apoptosis in Gastric Cancer Cells. Oncol Res 2017; 26:83-93. [PMID: 28474574 PMCID: PMC7844561 DOI: 10.3727/096504017x14928634401204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers in the world. The cathepsin F (CTSF) gene has recently been found to participate in the progression of several types of cancer. However, the clinical characteristics and function of CTSF in GC as well as its molecular mechanisms are not clear. Six GC cell lines and 44 paired adjacent noncancerous and GC tissue samples were used to assess CTSF expression by quantitative polymerase chain reaction (qPCR). We used lentivirus-mediated small hairpin RNA (Lenti-shRNA) against CTSF to knock down the expression of CTSF in GC cells. Western blot and qPCR were used to analyze the mRNA and related protein expression. The biological phenotypes of gastric cells were examined by cell proliferation and apoptosis assays. Microarray-based mRNA expression profile screening was also performed to evaluate the potential molecular pathways in which CTSF may be involved. The CTSF mRNA level was associated with tumor differentiation, depth of tumor invasion, and lymph node metastasis. Downregulation of CTSF expression efficiently inhibited apoptosis and promoted the proliferation of GC cells. Moreover, a total of 1,117 upregulated mRNAs and 1,143 downregulated mRNAs were identified as differentially expressed genes (DEGs). Further analysis identified the involvement of these mRNAs in cancer-related pathways and various other biological processes. Nine DEGs in cancer-related pathways and three downstream genes in the apoptosis pathway were validated by Western blot, which was mainly in agreement with the microarray data. To our knowledge, this is the first report investigating the effect of CTSF on the growth and apoptosis in GC cells and its clinical significance. The CTSF gene may function as a tumor suppressor in GC and may be a potential therapeutic target in the treatment of GC.
Collapse
Affiliation(s)
- Ce Ji
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ying Zhao
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - You-Wei Kou
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Hua Shao
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Lin Guo
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Chen-Hui Bao
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ben-Chun Jiang
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Xin-Ying Chen
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Jing-Wei Dai
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yu-Xin Tong
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ren Yang
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Wei Sun
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Qiang Wang
- Department of Gastrointestinal and Nutrition Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|