1
|
Ayilara GO, Owoyele BV. Effectiveness of Bacopa Monnieri (Brahmi) in the management of schizophrenia: a systematic review. Nutr Neurosci 2024:1-8. [PMID: 39498770 DOI: 10.1080/1028415x.2024.2421782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Schizophrenia is a psychotic disorder affecting approximately 0.32% of the global population. Despite advancements in pharmacological treatments, many patients with schizophrenia continue to experience significant impairments, and approximately one-third of these patients do not respond to antipsychotic drugs. However, various studies have demonstrated the potential benefits of herbs in managing schizophrenia due to the diverse biological activities of phytochemicals, including neuroprotective activity, anti-oxidant potential, modulation of neurotransmission, and anti-inflammatory activity. Bacopa monnieri (Brahmi) is a widely studied herb used in the treatment of the central nervous system. This study conducted a systematic review to determine the effectiveness of Brahmi in managing schizophrenia. PubMed, Scopus, Web of Science, and Cochrane databases were searched between February and March, 2024. A total of 103 articles were found, with only 9 studies meeting the eligibility criteria. Data analysis was done by using themes. The review found that Brahmi could reverse positive, negative, and cognitive symptoms of schizophrenia. It does this by changing the glutamatergic pathway and GABAergic transmission, lowering MDA levels, raising GSH levels, slowing down the activity of acetylcholinesterase (AchE), and maintaining the density of neurones. It is recommended that additional research elucidating the effects of Brahmi in other models of schizophrenia and the possible mechanisms of action be conducted.
Collapse
Affiliation(s)
- Gideon Opeyemi Ayilara
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Bamidele Victor Owoyele
- Neuroscience and Inflammation Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Feitosa MBJ, Araújo SS, Mesquita TRR, Gioda CR, Sá LADE, Almeida GKM, Miguel-Dos-Santos R, Barbosa AM, Vasconcelos CMLDE, Camargo EA, Barreiros ALBS, Estevam CS, Moraes ÉRDE, Amaral RG, Lauton-Santos S. Antioxidants and cardioprotective effects of ethyl acetate fraction of Canavalia rosea leaves in myocardial ischemia-reperfusion injury. AN ACAD BRAS CIENC 2023; 95:e20220514. [PMID: 37493694 DOI: 10.1590/0001-3765202320220514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 07/27/2023] Open
Abstract
Different degrees in the biological activities of Canavalia rosea had been previously reported . In this study, our group assessed the cardioprotective effects of the ethyl acetate fraction (EAcF) of the Canavalia rosea leaves. Firstly, it was confirmed, by in vitro approach, that the EAcF has high antioxidant properties due to the presence of important secondary metabolites, as flavonoids. In order to explore their potential protector against cardiovascular disorders, hearts were previously perfused with EAcF (300 μg.mL-1) and submitted to the global ischemia followed by reperfusion in Langendorff system. The present findings have demonstrated that EAcF restored the left ventricular developed pressure and decreased the arrhythmias severity index. Furthermore, EAcF significantly increased the glutathiones peroxidase activity with decreased malondialdehyde and creatine kinase levels. EAcF was effective upon neither the superoxide dismutase, glutationes reductase nor the catalase activities. In addition, the Western blot analysis revealed that ischemia-reperfusion injury significantly upregulates caspase 3 protein expression, while EAcF abolishes this effect. These results provide evidence that the EAcF reestablishes the cardiac contractility and prevents arrhythmias; it is suggested that EAcF could be used to reduce injury caused by cardiac reperfusion. However more clinical studies should be performed, before applying it in the clinic.
Collapse
Affiliation(s)
- Maraísa B J Feitosa
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Silvan S Araújo
- Federal University of Sergipe, Laboratory of Biochemistry and Chemistry of Natural Products, Biological Sciences and Health Centre, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Thássio Ricardo R Mesquita
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Carolina R Gioda
- Federal University of Rio Grande, Institute of Biological Sciences, Campus Carreiros, Avenida Itália Km 8, 96203-900 Rio Grande, RS, Brazil
| | - Lucas A DE Sá
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Grace Kelly M Almeida
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Rodrigo Miguel-Dos-Santos
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Andriele M Barbosa
- Tiradentes University, Center for Study on Colloidal Systems (NUESC), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49032-490 Aracaju, SE, Brazil
| | - Carla Maria L DE Vasconcelos
- Federal University of Sergipe, Laboratory of Heart Biophysics - Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Enilton A Camargo
- Federal University of Sergipe, Laboratory of Inflammatory Process Pharmacology - Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - André Luís B S Barreiros
- Federal University of Sergipe, Natural Products Laboratory - Sciences and Technology Center, Department of Chemistry, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Charles S Estevam
- Federal University of Sergipe, Laboratory of Biochemistry and Chemistry of Natural Products, Biological Sciences and Health Centre, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Éder Ricardo DE Moraes
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Ricardo G Amaral
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| | - Sandra Lauton-Santos
- Federal University of Sergipe, Cardiovascular Biology and Oxidative Stress Laboratory, Biological Sciences and Health Center, Department of Physiology, Av. Marechal Rondon, s/n, Jardim Rosa Elze, 49100-000 São Cristóvão, SE, Brazil
| |
Collapse
|
3
|
Anwar S, Mohammad T, Azhar MK, Fatima H, Alam A, Hasan GM, Islam A, Kaur P, Hassan MI. Investigating MARK4 inhibitory potential of Bacopaside II: Targeting Alzheimer's disease. Int J Biol Macromol 2023:125364. [PMID: 37315665 DOI: 10.1016/j.ijbiomac.2023.125364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
Microtubule affinity regulating kinase (MARK4) is known to hyperphosphorylate tau protein, which subsequently causes Alzheimer's disease (AD). MARK4 is a well-validated drug target for AD; thus, we employed its structural features to discover potential inhibitors. On the other hand, complementary and alternative medicines (CAMs) have been used for the treatment of numerous diseases with little side effects. In this regard, Bacopa monnieri extracts have been extensively used to treat neurological disorders because of their neuroprotective roles. The plant extract is used as a memory enhancer and a brain tonic. Bacopaside II is a major component of Bacopa monnieri; thus, we studied its inhibitory effects and binding affinity towards the MARK4. Bacopaside II show a considerable binding affinity for MARK4 (K = 107 M-1) and inhibited kinase activity with an IC50 value of 5.4 μM. To get atomistic insights into the binding mechanism, we performed Molecular dynamics (MD) simulation studies for 100 ns. Bacopaside II binds strongly to the active site pocket residues of MARK4 and a number of hydrogen bonds remain stable throughout the MD trajectory. Our findings provide the basis for the therapeutic implication of Bacopaside and its derivatives in MARK4-related neurodegenerative diseases, especially AD and neuroinflammation.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Khabeer Azhar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Hera Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110026, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
4
|
Zhang J, Hu Y, Wang H, Hou J, Xiao W, Wen X, Wang T, Long P, Jiang H, Wang Z, Liu H, Chen X. Advances in research on the protective mechanisms of traditional Chinese medicine (TCM) in myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:931-948. [PMID: 35587352 PMCID: PMC9132412 DOI: 10.1080/13880209.2022.2063342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Developing effective drugs to treat myocardial ischaemia-reperfusion (MI/R) injury is imperative. Traditional Chinese medicines (TCMs) have had considerable success in the treatment of cardiovascular diseases. Elucidating the mechanisms by which TCMs improve MI/R injury can supplement the literature on MI/R prevention and treatment. OBJECTIVE To summarise TCMs and their main protective mechanisms against MI/R injury reported over the past 40 years. METHODS Relevant literature published between 1980 and 2020 in Chinese and English was retrieved from the Web of Science, PubMed, SpringerLink, PubMed Central, Scopus, and Chinese National Knowledge Infrastructure (CNKI) databases. Search terms included 'medicinal plants', 'myocardial ischaemia reperfusion injury', 'Chinese medicine prescriptions', 'mechanisms', 'prevention', 'treatment' and 'protection'. For inclusion in the analysis, medicinal plants had to be searchable in the China Medical Information Platform and Plant Database. RESULTS We found 71 medicinal species (from 40 families) that have been used to prevent MI/R injury, of which Compositae species (8 species) and Leguminosae species (7 species) made up the majority. Most of the effects associated with these plants are described as antioxidant and anti-inflammatory. Furthermore, we summarised 18 kinds of Chinese compound prescriptions, including the compound Danshen tablet and Baoxin pill, which mainly reduce oxidative stress and regulate mitochondrial energy metabolism. DISCUSSION AND CONCLUSIONS We summarised TCMs that protect against MI/R injury and their pharmacological mechanisms. This in-depth explanation of the roles of TCMs in MI/R injury protection provides a theoretical basis for the research and development of TCM-based treatment drugs.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yonghe Hu
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Han Wang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wenjing Xiao
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology, The First People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pan Long
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hezhong Jiang
- Faculty of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Banerjee S, Anand U, Ghosh S, Ray D, Ray P, Nandy S, Deshmukh GD, Tripathi V, Dey A. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders. Phytother Res 2021; 35:5668-5679. [PMID: 34254371 DOI: 10.1002/ptr.7203] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
From ancient history, complementary and alternative medicines have played a significant role as holistic therapeutic treatments of various human diseases including cancer, diabetes, neurological diseases, and skin problems. One Indian medicinal plant (herb), Bacopa monnieri has been used in many parts of the world as such medicine, particularly for the treatment of various neurological disorders. It is well known as a potent "tonic for the human brain," which serves as a memory enhancer. Multiple studies proved that this herb contains a plethora of potential bioactive, phytochemical compounds with synergistic properties. The main purpose of the present review is to shed light on the use of Bacopa monnieri and its active principles (bacosides) in the management of neurological disorders. Furthermore, the signaling pathways modulated by bacosides have been critically discussed in this review. Moreover, we have critically summarized the present knowledge of this perennial creeping herb based upon the literature mining from different scientific engines.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suchhanda Ghosh
- Department of Botany, Shri Shikshayatan College, Kolkata, India
| | - Durga Ray
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Ganpat Dewaji Deshmukh
- Department of Zoology, Rashtrapita Mahatma Gandhi Arts & Science College, Nagbhid, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
6
|
Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Sci Rep 2021; 11:596. [PMID: 33436817 PMCID: PMC7803732 DOI: 10.1038/s41598-020-80045-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Bacopa monnieri (Linn.) Wettst. has been used in traditional medicine as a drug to enhance and improve memory. In this regard, this study aims to provide B. monnieri's efficacy as a neuroprotective drug and as a nootropic against various neurological diseases. Literatures were collected, following Prisma guidelines, from databases, including Scopus, PubMed, Google Scholar, and Science Direct and were scrutinized using a quality scoring system. Means, standard deviations and 'n' numbers were extracted from the metrics and analyzed. Jamovi computer software for Mac was used to carry out the meta-analysis. The selected studies suggested that the plant extracts were able to show some improvements in healthy subjects which were determined in Auditory Verbal Learning Task, digit span-reverse test, inspection time task and working memory, even though it was not significant, as no two studies found statistically significant changes in the same two tests. B. monnieri was able to express modest improvements in subjects with memory loss, wherein only a few of the neuropsychological tests showed statistical significance. B. monnieri in a cocktail with other plant extracts were able to significantly reduce the effects of Alzheimer's disease, and depression which cannot be solely credited as the effect of B. monnieri. Although in one study B. monnieri was able to potentiate the beneficial effects of citalopram; on the whole, currently, there are only limited studies to establish the memory-enhancing and neuroprotective effects of B. monnieri. More studies have to be done in the future by comparing the effect with standard drugs, in order to establish these effects clinically in the plant and corroborate the preclinical data.
Collapse
Affiliation(s)
- James M. Brimson
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sirikalaya Brimson
- grid.7922.e0000 0001 0244 7875Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Mani Iyer Prasanth
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Premrutai Thitilertdecha
- grid.10223.320000 0004 1937 0490Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
7
|
Cao L, Gao Y, Zhu J, Zhang J, Dong M, Mao Y. Protective action of the ginsenoside Rh3 in a rat myocardial ischemia-reperfusion injury model by inhibition of apoptosis induced via p38 mitogen-activated protein kinase/caspase-3 signaling. J Int Med Res 2020; 48:300060520969090. [PMID: 33284724 PMCID: PMC7724424 DOI: 10.1177/0300060520969090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/06/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To investigate the protective effects of the ginsenoside Rh3 on rats subjected to myocardial ischemia-reperfusion (MIR) via its impact on caspase-3 and the p38 mitogen-activated protein kinase (MAPK) pathway. METHODS Fifteen male Sprague-Dawley rats were randomly categorized into the MIR group (MY group, n = 5), sham surgery group (SS group, n = 5), and ginsenoside Rh3 group (GR group, n = 5). RESULTS The MY group exhibited the largest myocardial infarctions compared with the GR and SS groups. The GR group exhibited significantly higher cell viability of cardiomyocytes and significantly decreased apoptosis compared with the MY group. Fibrils of infarcted tissue in the GR group were disordered but less swollen, with a more organized fibril orientation than those in the MY group. The GR group showed reduced p-p38 MAPK protein and caspase-3 mRNA expression levels compared with the MY and SS groups. CONCLUSIONS Rh3 significantly improved myocardial necrosis and caspase-3 levels in myocardial tissues by suppressing the p38 MAPK pathway, thereby inhibiting caspase-3 involvement in apoptosis. Thus, Rh3 was effective in inhibiting the escalated apoptotic pathway in myocardial infarction and can potentially serve as a useful therapeutic agent to rescue myocardial infarction.
Collapse
Affiliation(s)
- Liexiang Cao
- Emergency Center, The First People’s Hospital of Wenling,
Wenling, Zhejiang, China
| | - Yi Gao
- Department of Anesthesiology, The First People’s Hospital of
Wenling, Wenling, Zhejiang, China
| | - Jinqiang Zhu
- Emergency Center, The First People’s Hospital of Wenling,
Wenling, Zhejiang, China
| | - Jinbo Zhang
- Emergency Center, The First People’s Hospital of Wenling,
Wenling, Zhejiang, China
| | - Meiping Dong
- Emergency Center, The First People’s Hospital of Wenling,
Wenling, Zhejiang, China
| | - Yi Mao
- Emergency Center, The First People’s Hospital of Wenling,
Wenling, Zhejiang, China
| |
Collapse
|
8
|
Ozlu H, Cakir Gundogdu A, Elmazoglu Z, Take Kaplanoglu G, Oktar L, Karasu C. Bacopa Monnieri Protects the Directly Affected Organ as Well as Distant Organs Against I/R Injury by Modulating Anti-Inflammatory and Anti-Nitrosative Pathways in A Rat Model for Infra-Renal Aortic Occlusion. J INVEST SURG 2020; 34:935-946. [PMID: 32003261 DOI: 10.1080/08941939.2020.1716118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the protective effect and underlying mechanisms of B. monnieri, a medicinal plant, on kidney and skeletal muscle injury induced by infra-renal abdominal aorta clamping for 2-hours (ischemia) and following removal of the clamp (reperfusion, 2-hours). METHODS Rats were divided into four groups (n = 6): (I) animals given only saline (sham-control); (II) animals given B. monnieri extract for 10-days (300 mg/kg/day) (Bacopa-treated sham); (III) animals subjected to ischemia/reperfusion (I/R); (IV) animals given B. monnieri extract and then subjected to I/R. Kidneys and lower extremity muscles were examined for GPx, CAT, iNOS, 3-NT, IL-1β and TNF-α. Apoptosis and injury were evaluated by TUNEL and H&E staining, respectively. RESULTS I/R resulted in TUNEL positive cells, periarterial edema and glomerular capillary dilatation, decreased GPx activity, unchanged CAT, iNOS, 3-NT, IL-1β and TNF-α in kidney. B. monnieri minimized renal remote reperfusion injury, and Group IV showed a lower degree of renal histopathology score when compared to the others. B. monnieri mitigated muscle I/R injury, decreased muscle hypertrophy, myofibril abnormalities and apoptosis. Muscle 3-NT and cytokine levels were increased by I/R, and B. monnieri inhibited iNOS and 3-NT both in sham-control and I/R groups. Muscle GPx unaffected by I/R or B. monnieri, but CAT was inhibited only in B. monnieri-treated I/R group. Muscle iNOS, 3-NT, IL-1β, TNF-α levels and CAT activity of B. monnieri-treated I/R rats were lower than those in sham-control or Bacopa-treated sham. CONCLUSIONS B. monnieri can protect the directly affected organ as well as distant organs against I/R injury by modulating anti-inflammatory and anti-nitrosative pathways.
Collapse
Affiliation(s)
- Hilal Ozlu
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Cakir Gundogdu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Zubeyir Elmazoglu
- Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Levent Oktar
- Department of Cardiovascular Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response & Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Kamkaew N, Paracha TU, Ingkaninan K, Waranuch N, Chootip K. Vasodilatory Effects and Mechanisms of Action of Bacopa monnieri Active Compounds on Rat Mesenteric Arteries. Molecules 2019; 24:E2243. [PMID: 31208086 PMCID: PMC6630913 DOI: 10.3390/molecules24122243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
B. monnieri extract (BME) is an abundant source of bioactive compounds, including saponins and flavonoids known to produce vasodilation. However, it is unclear which components are the more effective vasodilators. The aim of this research was to investigate the vasorelaxant effects and mechanisms of action of saponins and flavonoids on rat isolated mesenteric arteries using the organ bath technique. The vasorelaxant mechanisms, including endothelial nitric oxide synthase (eNOS) pathway and calcium flux were examined. Saponins (bacoside A and bacopaside I), and flavonoids (luteolin and apigenin) at 0.1-100 µM caused vasorelaxation in a concentration-dependent manner. Luteolin and apigenin produced vasorelaxation in endothelial intact vessels with more efficacy (Emax 99.4 ± 0.7 and 95.3 ± 2.6%) and potency (EC50 4.35 ± 1.31 and 8.93 ± 3.33 µM) than bacoside A and bacopaside I (Emax 83.6 ± 2.9 and 79.9 ± 8.2%; EC50 10.8 ± 5.9 and 14.6 ± 5.4 µM). Pretreatment of endothelial intact rings, with L-NAME (100 µM); an eNOS inhibitor, or removal of the endothelium reduced the relaxant effects of all compounds. In K+-depolarised vessels suspended in Ca2+-free solution, these active compounds inhibited CaCl2-induced contraction in endothelial denuded arterial rings. Moreover, the active compounds attenuated transient contractions induced by 10 µM phenylephrine in Ca2+-free medium containing EGTA (1 mM). Thus, relaxant effects occurred in both endothelial intact and denuded vessels which signify actions through both endothelium and vascular smooth muscle cells. In conclusion, the flavonoids have about twice the potency of saponins as vasodilators. However, in the BME, there is ~20 × the amount of vaso-reactive saponins and thus are more effective.
Collapse
Affiliation(s)
- Natakorn Kamkaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Tamkeen Urooj Paracha
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Neti Waranuch
- Cosmetics and Natural Products Research Center, Department of Pharmaceutical Technology and Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
10
|
Bacopa monnieri abrogates alcohol abstinence-induced anxiety-like behavior by regulating biochemical and Gabra1, Gabra4, Gabra5 gene expression of GABAA receptor signaling pathway in rats. Biomed Pharmacother 2019; 111:1417-1428. [DOI: 10.1016/j.biopha.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
|
11
|
Protective Effects of Galium verum L. Extract against Cardiac Ischemia/Reperfusion Injury in Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4235405. [PMID: 30863479 PMCID: PMC6378796 DOI: 10.1155/2019/4235405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Galium verum L. (G. verum, lady's bedstraw) is a perennial herbaceous plant, belonging to the Rubiaceae family. It has been widely used throughout history due to multiple therapeutic properties. However, the effects of this plant species on functional recovery of the heart after ischemia have still not been fully clarified. Therefore, the aim of our study was to examine the effects of methanol extract of G. verum on myocardial ischemia/reperfusion (I/R) injury in spontaneously hypertensive rats (SHR), with a special emphasis on the role of oxidative stress. Rats involved in the research were divided randomly into two groups: control (spontaneously hypertensive rats (SHR)) and G. verum group, including SHR rats treated with the G. verum extract (500 mg/kg body weight per os) for 4 weeks. At the end of the treatment, in vivo cardiac function was assessed by echocardiography. Rats were sacrificed and blood samples were taken for spectrophotometric determination of systemic redox state. Hearts from all rats were isolated and retrogradely perfused according to the Langendorff technique. After a stabilization period, hearts were subjected to 20-minute ischemia, followed by 30-minute reperfusion. Levels of prooxidants were spectrophotometrically measured in coronary venous effluent, while antioxidant enzymes activity was assessed in heart tissue. Cell morphology was evaluated by hematoxylin and eosin (HE) staining. 4-week treatment with G. verum extract alleviated left ventricular hypertrophy and considerably improved in vivo cardiac function. Furthermore, G. verum extract preserved cardiac contractility, systolic function, and coronary vasodilatory response after ischemia. Moreover, it alleviated I/R-induced structural damage of the heart. Additionally, G. verum extract led to a drop in the generation of most of the measured prooxidants, thus mitigating cardiac oxidative damage. Promising potential of G. verum in the present study may be a basis for further researches which would fully clarify the mechanisms through which this plant species triggers cardioprotection.
Collapse
|
12
|
Abad C, Castaño-Ruiz M, Clavo B, Urso S. Daño por isquemia-reperfusión miocárdico en cirugía cardiaca con circulación extracorpórea. Aspectos bioquímicos. CIRUGIA CARDIOVASCULAR 2018. [DOI: 10.1016/j.circv.2017.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|