1
|
Zhao W, Mo M, Yu J, Cheng S, Long G, Luo Z, Liang W, Yan C, Luo H, Sun B. A novel α,β-unsaturated ketone inhibits leukemia cell growth as PARP1 inhibitor. Med Oncol 2024; 41:113. [PMID: 38602586 DOI: 10.1007/s12032-024-02324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 04/12/2024]
Abstract
Leukemia is a malignant disease of the hematopoietic system, in which clonal leukemia cells accumulate and inhibit normal hematopoiesis in the bone marrow and other hematopoietic tissues as a result of uncontrolled proliferation and impaired apoptosis, among other mechanisms. In this study, the anti-leukemic effect of a compound (SGP-17-S) extracted from Chloranthus multistachys, a plant with anti-inflammatory, antibacterial and anti-tumor effects, was evaluated. The effect of SGP-17-S on the viability of leukemic cell was demonstrated by MTT assay, cell cycle, and apoptosis were assessed by flow cytometry using PI staining and Annexin V/PI double staining. Combinations of network pharmacology and cellular thermal shift assay (CETSA) with western blot were used to validate agents that act on leukemia targets. The results showed that SGP-17-S inhibited the growth of leukemia cells in a time- and dose-dependent manner. SGP-17-S blocked HEL cells in the G2 phase, induced apoptosis, decreased Bcl-2 and caspase-8 protein expression, and increased Bax and caspase-3 expression. In addition, CETSA revealed that PARP1 is an important target gene for the inhibition of HEL cell growth, and SGP-17-S exerted its action on leukemia cells by targeting PARP1. Therefore, this study might provide new solutions and ideas for the treatment of leukemia.
Collapse
Affiliation(s)
- Weijia Zhao
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Min Mo
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China
| | - Guiping Long
- GuiZhou KingMed Center for Clinical Laboratory Co., Ltd, Guiyang, 550014, China
| | - Zhiqiong Luo
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Wei Liang
- Department of Pharmacy, An Shun City People's Hospital, Anshun, 561000, China
| | - Chen Yan
- Department of Pharmacy, An Shun City People's Hospital, Anshun, 561000, China.
| | - Heng Luo
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China.
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, 550014, China.
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Le TT, Trang NT, Pham VTT, Quang DN, Phuong Hoa LT. Bioactivities of β-mangostin and its new glycoside derivatives synthesized by enzymatic reactions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230676. [PMID: 37593716 PMCID: PMC10427817 DOI: 10.1098/rsos.230676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Beta-mangostin is a xanthone commonly found in the genus Garcinia. Unlike α-mangostin, to date, there have only been a few studies on the biological activity and derivatization of β-mangostin. In this study, two novel glycosylated derivatives of β-mangostin were successfully synthesized via a one-pot enzymatic reaction. These derivatives were characterized as β-mangostin 6-O-β-d-glucopyranoside and β-mangostin 6-O-β-d-2-deoxyglucopyranoside by TOF ESI/MS and 1H and 13C NMR analyses. Beta-mangostin showed cytotoxicity against KB, MCF7, A549 and HepG2 cancer cell lines, with IC50 values ranging from 15.42 to 21.13 µM. The acetylcholinesterase and α-glucosidase inhibitory activities of β-mangostin were determined with IC50 values of 2.17 and 27.61 µM, respectively. A strong anti-microbial activity of β-mangostin against Gram-positive strains (Bacillus subtilis, Lactobacillus fermentum and Staphylococcus aureus) was observed, with IC50 values of 0.16, 0.18 and 1.24 µg ml-1, respectively. Beta-mangostin showed weaker activity against Gram-negative strains (Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa) as well as Candida albicans fungus, with IC50 and MIC values greater than the tested concentration (greater than 32 µg ml-1). The new derivatives of β-mangostin showed weaker activities than those of β-mangostin, demonstrating the important role of the hydroxyl group at C-6 of β-mangostin in its bioactivity.
Collapse
Affiliation(s)
- Tuoi Thi Le
- Faculty of Biology, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Nguyen Thu Trang
- Faculty of Biology, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Van Thuy Thi Pham
- Institute of Microbiology and Biotechnology, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Dang Ngoc Quang
- Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| | - Le Thi Phuong Hoa
- Faculty of Biology, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Subtype Classification, Immune Infiltration, and Prognosis Analysis of Lung Adenocarcinoma Based on Pyroptosis-Related Genes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1371315. [PMID: 36277882 PMCID: PMC9581708 DOI: 10.1155/2022/1371315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022]
Abstract
The effect of pyroptosis-related genes (PRGs) on the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Thus, this study is aimed at evaluating the prognostic value of PRGs in patients with LUAD and to elucidate their role in the TME and their effect on immunotherapy. Transcriptomic and clinical data were obtained from the Cancer Genome Atlas and the Gene Expression Omnibus databases (GSE3141, GSE31210). Patients with LUAD were classified using consistent clustering, and the differences in the TME for each type were determined using the ESTIMATE and CIBERSORT algorithms. PRGs were screened using univariate regression analysis, and a prognostic risk model was constructed using LASSO regression analysis. The tumor mutational burden and the tumor immune dysfunction and exclusion algorithms were used to predict therapeutic sensitivity in LUAD patients. Then, we evaluated the potential therapeutic interventions using the GDSC database. LUAD patients in cluster 2 had significantly shorter overall survival and progression-free survival rates, lower immune scores, and higher infiltration of T follicular helper cells than those in cluster 1. We used five PRGs to classify patients with LUAD into different risks groups and found that the high-risk group is sensitive to immunotherapy; however, its immune-related pathways were inhibited, which may be related to tumor metabolic reprogramming. Lastly, we identified several potential therapeutic drugs for application in low-risk patients who were less sensitive to immunotherapy. Overall, our findings showed that PRGs can be used to predict prognosis and may aid in the development of personalized therapeutic strategies in LUAD patients.
Collapse
|
4
|
Omer FAA, Hashim NBM, Ibrahim MY, Dehghan F, Yahayu M, Karimian H, Salim LZA, Mohan S. Beta-mangostin from Cratoxylum arborescens activates the intrinsic apoptosis pathway through reactive oxygen species with downregulation of the HSP70 gene in the HL60 cells associated with a G0/G1 cell-cycle arrest. Tumour Biol 2017; 39:1010428317731451. [DOI: 10.1177/1010428317731451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Xanthones are phytochemical compounds found in a number of fruits and vegetables. Characteristically, they are noted to be made of diverse properties based on their biological, biochemical, and pharmacological actions. Accordingly, the apoptosis mechanisms induced by beta-mangostin, a xanthone compound isolated from Cratoxylum arborescens in the human promyelocytic leukemia cell line (HL60) in vitro, were examined in this study. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was done to estimate the cytotoxicity effect of β-mangostin on the HL60 cell line. Acridine orange/propidium iodide and Hoechst 33342 dyes and Annexin V tests were conducted to detect the apoptosis features. Caspase-3 and caspase-9 activities; reactive oxygen species; real-time polymerase chain reaction for Bcl-2, Bax, caspase-3, and caspase-9 Hsp70 genes; and western blot for p53, cytochrome c, and pro- and cleavage-caspase-3 and caspase-9 were assessed to examine the apoptosis mechanism. Cell-cycle analysis conducted revealed that β-mangostin inhibited the growth of HL60 at 58 µM in 24 h. The administration of β-mangostin with HL60 caused cell morphological changes related to apoptosis which increased the number of early and late apoptotic cells. The β-mangostin-catalyzed apoptosis action through caspase-3, caspase-7, and caspase-9 activation overproduced reactive oxygen species which downregulated the expression of antiapoptotic genes Bcl-2 and HSP70. Conversely, the expression of the apoptotic genes Bax, caspase-3, and caspase-9 were upregulated. Meanwhile, at the protein level, β-mangostin activated the formation of cleaved caspase-3 and caspase-9 and also upregulated the p53. β-mangostin arrested the cell cycle at the G0/G1 phase. Overall, the results for β-mangostin showed an antiproliferative effect in HL60 via stopping the cell cycle at the G0/G1 phase and prompted the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
| | - Najihah Binti Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Center for Natural Products Research and Drug Discovery, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamed Yousif Ibrahim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Firouzeh Dehghan
- Department of Exercise Science, Sports Center, University of Malaya, Kuala Lumpur, Malaysia
| | - Maizatulakmal Yahayu
- Department of Bioproduct Research and Innovation, Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Syam Mohan
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|