1
|
Ningning Y, Ying X, Xiang L, Yue S, Zhongda W, Ruoyu J, Hanwen S, Weiwei T, Yafeng Z, Junjie M, Xiaolan C. Danggui-Shaoyao San alleviates cognitive impairment via enhancing HIF-1α/EPO axis in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118306. [PMID: 38723920 DOI: 10.1016/j.jep.2024.118306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Invigorating blood circulation to remove blood stasis is a primary strategy in TCM for treating vascular dementia (VaD). Danggui-Shaoyao San (DSS), as a traditional prescription for neuroprotective activity, has been proved to be effective in VaD treatment. However, its precise molecular mechanisms remain incompletely understood. AIM OF THE STUDY The specific mechanism underlying the therapeutic effects of DSS on VaD was explored by employing network pharmacology as well as in vivo and in viro experiment validation. MATERIALS AND METHODS We downloaded components of DSS from the BATMAN-TCM database for target prediction. The intersection between the components of DSS and targets, PPI network, as well as GO and KEGG enrichment analysis were then performed. Subsequently, the potential mechanism of DSS predicted by network pharmacology was assessed and validated through VaD rat model induced by 2VO operation and CoCl2-treated PC12 cells. Briefly, the DSS extract were first quantified by HPLC. Secondly, the effect of DSS on VaD was studied using MWM test, HE staining and TUNEL assay. Finally, the molecular mechanism of DSS against VaD was validated by Western blot and RT-QPCR experiments. RESULTS Through network analysis, 137 active ingredients were obtained from DSS, and 67 potential targets associated with DSS and VaD were identified. GO and KEGG analysis indicated that the action of DSS on VaD primarily involves hypoxic terms and HIF-1 pathway. In vivo validation, cognitive impairment and neuron mortality were markedly ameliorated by DSS. Additionally, DSS significantly reduced the expression of proteins related to synaptic plasticity and neuron apoptosis including PSD-95, SYP, Caspase-3 and BCL-2. Mechanistically, we confirmed DSS positively modulated the expression of HIF-1α and its downstream proteins including EPO, p-EPOR, STAT5, EPOR, and AKT1 in the hippocampus of VaD rats as well as CoCl2-induced PC12 cells. HIF-1 inhibitor YC-1 significantly diminished the protection of DSS on CoCl2-induced PC12 cell damage, with decreased HIF-1α, EPO, EPOR expression. CONCLUSION Our results initially demonstrated DSS could exert neuroprotective effects in VaD. The pharmacological mechanism of DSS may be related to its positive regulation on HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Yuan Ningning
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Ying
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Xiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Su Yue
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wang Zhongda
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Ruoyu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi Hanwen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Weiwei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang Yafeng
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Ma Junjie
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Xiaolan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
She Y, Chen Z, Zhang L, Wang Y. MiR-181a-5p knockdown ameliorates sevoflurane anesthesia-induced neuron injury via regulation of the DDX3X/Wnt/β-catenin signaling axis. Exp Brain Res 2024; 242:571-583. [PMID: 38218948 DOI: 10.1007/s00221-023-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 01/15/2024]
Abstract
Sevoflurane is one of the most widely used inhaled anesthetics. MicroRNAs (miRNAs) have been demonstrated to affect sevoflurane anesthesia-induced neuron damage. The purpose of this study was to investigate the role and mechanism of miR-181a-5p in sevoflurane-induced hippocampal neuronal injury. Primary hippocampal neurons were identified using microscopy and immunofluorescence. The viability and apoptosis of sevoflurane anesthesia-induced neurons were detected by cell counting kit-8 (CCK-8) assay and terminal-deoxynucleoitidyl transferase-mediated nick end-labeling (TUNEL) staining assay, respectively. The levels of apoptosis- and oxidative stress-related proteins as well as the markers in the Wnt/β-catenin signaling pathway were examined by immunoblotting. Enzyme-linked immuno-sorbent assays were performed to examine the levels of inflammatory cytokines. Luciferase reporter assay was conducted to validate the combination between miR-181a-5p and DEAD-box helicase 3, X-linked (DDX3X). Sevoflurane exposure led to significantly inhibited hippocampal neuron viability and elevated miR-181a-5p expression. Knockdown of miR-181a-5p alleviated sevoflurane-induced neuron injury by reducing cell apoptosis, inflammatory response, and oxidative stress. Additionally, DDX3X was targeted and negatively regulated by miR-181a-5p. Moreover, miR-181a-5p inhibitor activated the Wnt/β-catenin pathway via DDX3X in sevoflurane-treated cells. Rescue experiments revealed that DDX3X knockdown or overexpression of Wnt antagonist Dickkopf-1 (DKK1) reversed the suppressive effects of miR-181a-5p inhibitor on cell apoptosis, inflammatory response, and oxidative stress in sevoflurane-treated neuronal cells. MiR-181a-5p ameliorated sevoflurane-triggered neuron injury by regulating the DDX3X/Wnt/β-catenin axis, suggesting the potential of miR-181a-5p as a novel and promising therapeutic target for the treatment of sevoflurane-evoked neurotoxicity.
Collapse
Affiliation(s)
- Yuqi She
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Zhijun Chen
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China.
| | - Li Zhang
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| |
Collapse
|
3
|
Qin L, Kamash P, Yang Y, Ding Y, Ren C. A narrative review of potential neural repair poststroke: Decoction of Chinese angelica and peony in regulating microglia polarization through the neurosteroid pathway. Brain Circ 2024; 10:5-10. [PMID: 38655444 PMCID: PMC11034443 DOI: 10.4103/bc.bc_45_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 04/26/2024] Open
Abstract
Ischemic stroke is a major global health crisis, characterized by high morbidity and mortality rates. Although there have been significant advancements in treating the acute phase of this condition, there remains a pressing need for effective treatments that can facilitate the recovery of neurological functions. Danggui-Shaoyao-San (DSS), also known as the Decoction of Chinese Angelica and Peony, is a traditional Chinese herbal formula. It has demonstrated promising results in the regulation of microglial polarization and modulation of neurosteroid receptor expression, which may make it a potent strategy for promoting the recovery of neurological functions. Microglia, which plays a crucial role in neuroplasticity and functional reconstruction poststroke, is regulated by neurosteroids. This review posits that DSS could facilitate the recovery of neuronal function poststroke by influencing microglial polarization through the neurosteroid receptor pathway. We will further discuss the potential mechanisms by which DSS could enhance neural function in stroke, including the regulation of microglial activation, neurosteroid regulation, and other potential mechanisms.
Collapse
Affiliation(s)
- Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peter Kamash
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang FG, Sun Y, Cao J, Shen XR, Liu FW, Song SS, Hou XQ, Yin L. Effects of Danggui-Shaoyao-San on central neuroendocrine and pharmacokinetics in female ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2023:116609. [PMID: 37150422 DOI: 10.1016/j.jep.2023.116609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to have estrogen-like effects and therapeutic effects on the symptoms of Alzheimer's disease (AD). AIM OF THE STUDY To explore whether the central oxytocin and neuroendocrine system is involved in the modulating effects of DSS on the cognition and neuropsychiatric hebaviors in female AD rats, and to investigate the pharmacokinetics of paeoniflorin and ferulic acid in female AD rats with DSS treatment. MATERIAL AND METHODS DSS (1.2, 3.2, 8.6g/kg/day) was orally administered to ovariectomized (OVX) rats, and saline was orally administered to sham operation rats as control group. The Morris water maze test, novel object recognition test, and passive avoidance test were conducted for evaluation of learning and memory abilities, while elevated plus maze test and forced swim test were performed to assess anxiety- and depressive-like behaviors. ELISA kits were used to detect the levels of estrogen (E), estrogen receptor α (ERα), oxytocin (OT), oxytocin receptor (OTR), acetylcholine (Ach), acetylcholin esterase (AchE), and choline acetyl transferase (ChAT) in the cortex. The concentrations of Ach, glutamate (Glu), γ-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) in the hippocampus were assessed by HPLC-MS. The changes of neuronal morphology in the hippocampus were observed by Nissl staining. The pharmacokinetics of paeoniflorin and ferulic acid in OVX rats with DSS treatment were studied by HPLC. RESULTS In the Morris water maze test, novel object recognition test, and passive avoidance test, OVX rats showed cognitive impairment. In the elevated plus maze test and forced swim test, the anxiety- and depressive-like behaviors of OVX rats were significant as compared to the control group. Treatment of DSS significantly imporved the cognitive deficits, and ameliorated anxiety- and depressive-like behaviors of OVX rats. The expression of E, ERα, OT, OTR, AchE and ChAT in the cortex of model group were significantly decreased, and DSS significantly reversed these changes. The concentrations of Ach, Glu, GABA, 5-HT and NE in the hippocampus of OVX rats were significantly decreased, whereas DSS significantly increased the levels of Ach, Glu, GABA, 5-HT and NE. There was no significant difference in the concentration of DA in the hippocampus among groups. Degenerating neurons in the hippocampal CA3 region were observed in OVX rats, and the number of neurons was decreased. DSS treatment reduced the degenerating neurons, and incresed the number of neurons. The MRT (0 - ∞), AUC (0 - ∞), Cmax and t1/2z values of paeoniflorin, and the AUC 0-∞ and Cmax value of ferulic acid were higher in DSS-treated OVX rats than those in the DSS-treated control rats. CONCLUSIONS DSS improves the learning and memory ability, and attenuates anxiety- and depressive-like behaviors of OVX rats. The mechanism may be through increasing estrogen, reducing cholinergic damage, and modulating neurotransmitters. The increase in absorption and elimination time of paeoniflorin and ferulic acid in OVX rats may enhance the efficacy of DSS.
Collapse
Affiliation(s)
- Fu-Guang Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China
| | - Juan Cao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China
| | - Xu-Ri Shen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China
| | - Fu-Wang Liu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China
| | - Shuang-Shuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China
| | - Xue-Qin Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, PR China.
| | - Lei Yin
- The Second Affiliated Hospital of Shandong First Medical University, 271000, PR China.
| |
Collapse
|
5
|
Adu-Nti F, Gao X, Wu JM, Li J, Iqbal J, Ahmad R, Ma XM. Osthole Ameliorates Estrogen Deficiency-Induced Cognitive Impairment in Female Mice. Front Pharmacol 2021; 12:641909. [PMID: 34025413 PMCID: PMC8134730 DOI: 10.3389/fphar.2021.641909] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of endogenous estrogen and dysregulation of the estrogen receptor signaling pathways are associated with an increase in risk for cognitive deficit and depression in women after menopause. Estrogen therapy for menopause increases the risk of breast and ovarian cancers, and stroke. Therefore, it is critical to find an alternate treatment for menopausal women. Osthole (OST), a coumarin, has been reported to have neuroprotective effects. This study examined whether OST improves ovariectomy (OVX)-induced cognitive impairment, and alleviates anxiety- and depression-like behaviors induced by OVX in mice. Adult female C57BL/6J mice were ovariectomized and then treated with OST at a dose of 30 mg/kg for 14 days. At the end of the treatment period, behavioral tests were used to evaluate spatial learning and memory, recognition memory, anxiety- and depression-like behaviors. A cohort of the mice were sacrificed after 14 days of OST treatment and their hippocampi were collected for measurement of the proteins of interest using western blot. OVX-induced alteration in the levels of proteins was accompanied by cognitive deficit, anxiety- and depression-like behaviors. OST treatment improved cognitive deficit, alleviated anxiety- and depression-like behaviors induced by OVX, and reversed OVX-induced alterations in the levels of synaptic proteins and ERα, BDNF, TrKB, p-CREB, p-Akt and Rac1 in the hippocampus. Therefore, reversal of OVX-induced decrease in the levels of hippocampal proteins by OST might contribute to the effects of OST on improving cognitive deficit and alleviating anxiety- and depression-like behaviors induced by OVX.
Collapse
Affiliation(s)
- Frank Adu-Nti
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Gao
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jia-Min Wu
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Li
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Javed Iqbal
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Riaz Ahmad
- Department of Neuroscience, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
6
|
Wyse AT, Siebert C, Bobermin LD, Dos Santos TM, Quincozes-Santos A. Changes in Inflammatory Response, Redox Status and Na +, K +-ATPase Activity in Primary Astrocyte Cultures from Female Wistar Rats Subject to Ovariectomy. Neurotox Res 2019; 37:445-454. [PMID: 31773642 DOI: 10.1007/s12640-019-00128-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022]
Abstract
Astrocytes are dynamic glial cells that maintain brain homeostasis, particularly metabolic functions, inflammatory response, and antioxidant defense. Since menopause may be associated with brain dysfunction, in the present study, we evaluated anti- and proinflammatory cytokine release in cortical and hippocampal astrocyte cultures obtained from adult female Wistar rats subjected to ovariectomy, a known experimental model of menopause. We also tested some parameters of metabolic functionality (Na+, K+-ATPase activity) and cellular redox status, such as antioxidant enzyme defenses (superoxide dismutase and catalase) and the intracellular production of reactive oxygen species in this experimental model. Female adult Wistar rats (180 days-age) were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomy (submitted to surgery to removal of the ovaries). Thirty days after ovariectomy or sham surgery, we prepared astrocyte cultures from control and ovariectomy surgery animals. Ovariectomized rats presented an increase in pro-inflammatory cytokines (tumor necrosis factor α, interleukins 1β, 6, and 18) and a decrease in interleukin 10 release, an anti-inflammatory cytokine, in cortical and hippocampal astrocytes, when compared to those obtained from sham group (control). In addition, Na+,K+-ATPase activity decreased in hippocampal astrocytes, but not in cortical astrocyte cultures. In contrast, antioxidant enzymes did not alter in cortical astrocyte cultures, but increased in hippocampal astrocytes. In summary, our findings suggest that ovariectomy is able to induce an inflammatory response in vivo, which could be detected in in vitro astrocytes after approximately 4 weeks.
Collapse
Affiliation(s)
- Angela Ts Wyse
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Cassiana Siebert
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa D Bobermin
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago M Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas-Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Neurotoxicidade e Glioproteção, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Zhang S, Hu J, Fan W, Liu B, Wen L, Wang G, Gong M, Yang C, Zhang D. Aberrant Cerebral Activity in Early Postmenopausal Women: A Resting-State Functional Magnetic Resonance Imaging Study. Front Cell Neurosci 2018; 12:454. [PMID: 30534056 PMCID: PMC6275219 DOI: 10.3389/fncel.2018.00454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Early postmenopausal women frequently suffer from cognitive impairments and emotional disorders, such as lack of attention, poor memory, deficits in executive function and depression. However, the underlying mechanisms of these impairments remain unclear. Method: Forty-three early postmenopausal women and forty-four age-matched premenopausal controls underwent serum sex hormone analysis, neuropsychological testing and resting-state functional magnetic resonance imaging (rs-fMRI). Degree centrality (DC) analysis was performed to confirm the peak points of the functionally abnormal brain areas as the centers of the seeds. Subsequently, the functional connectivity (FC) between these abnormal seeds and other voxels across the whole brain was calculated. Finally, the sex hormone levels, neuroimaging indices and neuropsychological data were combined to detect potential correlations. Results: Compared with the premenopausal controls, the early postmenopausal women exhibited significantly higher serum follicle-stimulating hormone (FSH) levels, more severe climacteric and depressive symptoms, worse sleep quality and more extensive cognitive impairments. Concurrently, the neuroimaging results showed elevated DC values in the left amygdala (AMYG.L), reduced DC values in the left middle occipital gyrus (MOG.L) and right middle occipital gyrus (MOG.R). When we used the AMYG.L as the seed point, FC with the left insula (INS.L), bilateral prefrontal cortex (PFC) and right superior frontal gyrus (SFG.R) was increased; these regions are related to depressive states, poor sleep quality and decreased executive function. When bilateral MOG were used as the seed points, FC with left inferior parietal gyrus (IPG.L), this area closely associated with impaired memory, was decreased. Conclusion: These results illuminated the regional and network-level brain dysfunction in early postmenopausal women, which might provide information on the underlying mechanisms of the different cognitive impairments and emotional alterations observed in this group.
Collapse
Affiliation(s)
- Si Zhang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Junhao Hu
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Weijie Fan
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Bo Liu
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Li Wen
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Guangxian Wang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Chunyan Yang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hosptial, Third Military Medical University, Chongqing, China
| |
Collapse
|