1
|
Boughanmi Y, Berenguer-Daizé C, Balzano M, Mosrati H, Moulard M, Mansuelle P, Fourquet P, Torre F, de Pomyers H, Gigmes D, Ouafik L, Mabrouk K. Antiproliferative Effects of Naja anchietae and Naja senegalensis Venom Peptides on Glioblastoma Cell Lines. Toxins (Basel) 2024; 16:433. [PMID: 39453209 PMCID: PMC11511367 DOI: 10.3390/toxins16100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the potential of natural bioactive peptides from animal venoms as targeted anti-cancer agents with reduced toxicity. Initially, we screened a broad collection of animal venoms for their antiproliferative activity against cancer cell lines. From this collection, we selected venoms from Naja anchietae and Naja senegalensis due to their promising activity. Utilizing reverse- phase high-performance liquid chromatography (RP HPLC), mass spectrometry (MALDI-TOF MS and MALDI-TOF TOF MSMS), and Edman degradation sequencing, we isolated and characterized three peptides named CTNanc1, CTNanc2, and CTNanc3 from Naja anchietae, and three others named CTNsen1, CTNsen2, and CTNsen3 from Naja senegalensis, each with a molecular weight of around 7 kDa. These purified peptides demonstrated inhibition of U87 glioblastoma cell proliferation, but not of U251 and T98G cells, in cell viability assays. To assess the impact of these treatments on cell viability, apoptosis, and necrosis, flow cytometry assays were conducted on U87 cells at 72 h. The results showed a decrease in cell viability and an increase in dead cells, suggesting that the treatments not only promote apoptosis, but may also lead to increased necrosis or late-stage apoptosis as the exposure time increases. These findings suggest that these peptides could be developed as leads for cancer therapy.
Collapse
Affiliation(s)
- Yasmine Boughanmi
- Aix Marseille University, Institut de Chimie Radicalaire UMR 7273, 13397 Marseille, France; (Y.B.); (H.M.); (D.G.)
- Latoxan, 26800 Portes-lès-Valence, France;
| | - Caroline Berenguer-Daizé
- Aix-Marseille University, INP—Institute of Neuropathophysiology—UMR 7051 CNRS, 13005 Marseille, France; (C.B.-D.); (L.O.)
| | - Marielle Balzano
- BioCytex 140 Chemin de l’Armée d’Afrique, 13010 Marseille, France; (M.B.); (M.M.)
| | - Hend Mosrati
- Aix Marseille University, Institut de Chimie Radicalaire UMR 7273, 13397 Marseille, France; (Y.B.); (H.M.); (D.G.)
| | - Maxime Moulard
- BioCytex 140 Chemin de l’Armée d’Afrique, 13010 Marseille, France; (M.B.); (M.M.)
| | - Pascal Mansuelle
- Proteomics Platform, Marseille Proteomics (MaP), Institut de Microbiologie de la Méditerranée (IMM), FR 3479, CNRS, 13009 Marseille, France;
| | - Patrick Fourquet
- Aix-Marseille University, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Proteomics, 13009 Marseille, France;
| | - Franck Torre
- Aix-Marseille University, Institut Méditerranéen de Biodiversité et d’Ecologie (IMBE), Avignon University, CNRS, IRD, 13397 Marseille, France;
| | | | - Didier Gigmes
- Aix Marseille University, Institut de Chimie Radicalaire UMR 7273, 13397 Marseille, France; (Y.B.); (H.M.); (D.G.)
| | - Lhoucine Ouafik
- Aix-Marseille University, INP—Institute of Neuropathophysiology—UMR 7051 CNRS, 13005 Marseille, France; (C.B.-D.); (L.O.)
| | - Kamel Mabrouk
- Aix Marseille University, Institut de Chimie Radicalaire UMR 7273, 13397 Marseille, France; (Y.B.); (H.M.); (D.G.)
| |
Collapse
|
2
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
3
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
4
|
Offor BC, Piater LA. Snake venom toxins: Potential anticancer therapeutics. J Appl Toxicol 2024; 44:666-685. [PMID: 37697914 DOI: 10.1002/jat.4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Snake venom contains a cocktail of compounds dominated by proteins and peptides, which make up the toxin. The toxin components of snake venom attack several targets in the human body including the neuromuscular system, kidney and blood coagulation system and cause pathologies. As such, the venom toxins can be managed and used for the treatment of these diseases. In this regard, Captopril used in the treatment of cardiovascular diseases was the first animal venom toxin-based drug approved by the US Food and Drug Administration and the European Medicines Agency. Cancers cause morbidity and mortality worldwide. Due to side effects associated with the current cancer treatments including chemotherapy, radiotherapy, immunotherapy, hormonal therapy and surgery, there is a need to improve the efficacy of current treatments and/or develop novel drugs from natural sources including animal toxin-based drugs. There is a long history of earlier and ongoing studies implicating snake venom toxins as potential anticancer therapies. Here, we review the role of crude snake venoms and toxins including phospholipase A2, L-amino acid oxidase, C-type lectin and disintegrin as potential anticancer agents tested in cancer cell lines and animal tumour models in comparison to normal cell lines. Some of the anti-tumour activities of snake venom toxins include induction of cytotoxicity, apoptosis, cell cycle arrest and inhibition of metastasis, angiogenesis and tumour growth. We thus propose the advancement of multidisciplinary approaches to more pre-clinical and clinical studies for enhanced bioavailability and targeted delivery of snake venom toxin-based anticancer drugs.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
5
|
Erlista GP, Ahmed N, Swasono RT, Raharjo S, Raharjo TJ. Proteome of monocled cobra ( Naja kaouthia) venom and potent anti breast cancer peptide from trypsin hydrolyzate of the venom protein. Saudi Pharm J 2023; 31:1115-1124. [PMID: 37293380 PMCID: PMC10244474 DOI: 10.1016/j.jsps.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/01/2023] [Indexed: 06/10/2023] Open
Abstract
Anticancer peptide is one of the target in the development of new anticancer drug. Bioactive peptide can be originated from isolated free peptide or produced by hydrolysis of protein. Protein is the main component of Naja kaouthia venom, and due to the toxicity of the venom, it can be assessed as the source of anticancer peptides. This study aims to characterize the venom protein and to identify peptides from the snake venom of N. kaouthia as anticancer. Proteome analysis was employed trypsin hydrolysis of N. kaouthia venom protein completed with HRMS analysis protein database query. Preparative tryptic hydrolysis of the protein followed by reverse-phased fractionation and anti breast cancer activity testing were performed to identify the potent anticancer from the hydrolysate. Proteomic analysis by high-resolution mass spectrometry revealed that there are 20 enzymatic and non-enzymatic proteins in N. kaouthia venom. The 25% methanol peptide fraction had the most active anticancer activity against MCF-7 breast cancer cells and showed promising selectivity (selectivity index = 12.87). Amino acid sequences of eight peptides were identified as potentially providing anticancer compounds. Molecular docking analysis showed that WWSDHR and IWDTIEK peptides gave specific interactions and better binding affinity energy with values of -9.3 kcal/mol and -8.4 kcal/mol, respectively. This study revealed peptides from the snake venom of N. kaouthia became a potent source of new anticancer agents.
Collapse
Affiliation(s)
- Garnis Putri Erlista
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Naseer Ahmed
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Slamet Raharjo
- Department Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Tri Joko Raharjo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Montoya-Gómez A, Rivera Franco N, Montealegre-Sanchez LI, Solano-Redondo LM, Castillo A, Mosquera-Escudero M, Jiménez-Charris E. Pllans-II Induces Cell Death in Cervical Cancer Squamous Epithelial Cells via Unfolded Protein Accumulation and Endoplasmic Reticulum Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196491. [PMID: 36235027 PMCID: PMC9573087 DOI: 10.3390/molecules27196491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Due to the lack of chemotherapeutic drugs that selectively affect cervical cancer cells, natural sources such as snake venom are currently being investigated for molecules with antitumor potential. Pllans–II, a phospholipase A2 type–Asp49 from Porthidium lansbergii lansbergii snake venom, induced cell death in a cervical cancer cell line—Ca Ski—related to dysfunction in the ability to resolve endoplasmic reticulum stress, evidenced by sub–expression of genes such as PERK, ERO1 PDIs, HSP70, and CHOP. Western blot analysis validated the last two genes′ sub–expression at the protein level. In addition, Pllans–II presented a dose–dependent cytotoxic effect on cancer cells and an insignificant effect on healthy endothelial cells (HUVEC). Additionally, Pllans–II inhibited cancer cells′ adhesion and migration capacity, induced cell cycle arrest in the G2/M phase, and induced apoptosis stimulated possibly by the extrinsic route. These results demonstrate for the first time that Pllans–II has an antitumor effect on a squamous epithelial cervical cancer cell line and represents a possible biotechnological tool for designing a prominent antitumor agent.
Collapse
Affiliation(s)
- Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia
- Correspondence: (A.M.-G.); (E.J.-C.); Tel.: +57-322-272-5307 (A.M.-G.); +57-318-272-4867 (E.J.-C.)
| | - Nelson Rivera Franco
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia
| | | | | | - Andrés Castillo
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia
| | | | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia
- Correspondence: (A.M.-G.); (E.J.-C.); Tel.: +57-322-272-5307 (A.M.-G.); +57-318-272-4867 (E.J.-C.)
| |
Collapse
|
7
|
Bhargava S, Kumari K, Sarin RK, Singh R. Comparative Snake Venom Analysis for Facilitating Wildlife Forensics: A Pilot Study. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8644993. [PMID: 35694612 PMCID: PMC9187493 DOI: 10.1155/2022/8644993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Confirm and authentic identification of species is required for the implementation of wildlife laws in cases of illegal trafficking of snake venoms. Illegally trafficked snake venom might be misidentified with other drugs of abuse, and sometimes, the species of venom-yielding snake cannot be verified. Snake venoms from medically important snake species, Naja naja and Daboia russelii, were procured from Irula Snake Catcher's Society, Tamil Nadu, India. Comparative analyses of both venoms were carried out using SDS-PAGE, LC-MS/MS, ICP-MS, and mtDNA analysis. The protein concentration of Naja naja and Daboia russelii venoms was 76.1% and 83.9%, respectively. SDS analysis showed a distinct banding pattern of both venoms. LC-MS/MS results showed proteins and toxins from 12 to 14 protein families in Naja naja and Daboia russelii venoms. Elemental analysis using ICP-MS showed a different profile of some elements in both venoms. mtDNA analysis of venoms using universal primers against Cyt b gene showed homology with sequence of Naja naja and Daboia russelii genes. The study proposed a template of various conventional and advanced molecular and instrumental techniques with their pros and cons. The template can be used by forensic science laboratories for detection, screening, and confirmatory analysis of suspected venoms of snakes. Clubbing of various techniques can be used to confirm the identification of species of snake from which the alleged venom was milked. The results can be helpful in framing charge-sheets against accused of illegal venom trafficking and can also be used to verify the purity and quality of commercially available snake venoms.
Collapse
Affiliation(s)
- Saurabh Bhargava
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- School of Advanced Sciences & Languages, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Kiran Kumari
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- Forensic Science Department, Lovely Professional University, Phagwara (144001), Punjab, India
| | | | - Rajvinder Singh
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
8
|
Chong HP, Tan KY, Liu BS, Sung WC, Tan CH. Cytotoxicity of Venoms and Cytotoxins from Asiatic Cobras (Naja kaouthia, Naja sumatrana, Naja atra) and Neutralization by Antivenoms from Thailand, Vietnam, and Taiwan. Toxins (Basel) 2022; 14:toxins14050334. [PMID: 35622581 PMCID: PMC9144634 DOI: 10.3390/toxins14050334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Envenoming by cobras (Naja spp.) often results in extensive local tissue necrosis when optimal treatment with antivenom is not available. This study investigated the cytotoxicity of venoms and purified cytotoxins from the Monocled Cobra (Naja kaouthia), Taiwan Cobra (Naja atra), and Equatorial Spitting Cobra (Naja sumatrana) in a mouse fibroblast cell line, followed by neutralization of the cytotoxicity by three regional antivenoms: the Thai Naja kaouthia monovalent antivenom (NkMAV), Vietnamese snake antivenom (SAV) and Taiwanese Neuro bivalent antivenom (NBAV). The cytotoxins of N. atra (NA-CTX) and N. sumatrana (NS-CTX) were identified as P-type cytotoxins, whereas that of N. kaouthia (NK-CTX) is S-type. All venoms and purified cytotoxins demonstrated varying concentration-dependent cytotoxicity in the following trend: highest for N. atra, followed by N. sumatrana and N. kaouthia. The antivenoms moderately neutralized the cytotoxicity of N. kaouthia venom but were weak against N. atra and N. sumatrana venom cytotoxicity. The neutralization potencies of the antivenoms against the cytotoxins were varied and generally low across NA-CTX, NS-CTX, and NK-CTX, possibly attributed to limited antigenicity of CTXs and/or different formulation of antivenom products. The study underscores the need for antivenom improvement and/or new therapies in treating local tissue toxicity caused by cobra envenomings.
Collapse
Affiliation(s)
- Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bing-Sin Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: (W.-C.S.); (C.H.T.)
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (W.-C.S.); (C.H.T.)
| |
Collapse
|
9
|
Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs. Pharmaceutics 2022; 14:pharmaceutics14040874. [PMID: 35456708 PMCID: PMC9025323 DOI: 10.3390/pharmaceutics14040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Natural products have historically played an important role as a source of therapeutic drugs for various diseases, and the development of medicinal natural products is still a field with high potential. Although diverse drugs have been developed for incurable diseases for several decades, discovering safe and efficient anticancer drugs remains a formidable challenge. Reptiles, as one source of Asian traditional medicines, are known to possess anticancer properties and have been used for a long time without a clarified scientific background. Recently, it has been reported that extracts, crude peptides, sera, and venom isolated from reptiles could effectively inhibit the survival and proliferation of various cancer cells. In this article, we summarize recent studies applying ingredients derived from reptiles in cancer therapy and discuss the difficulties and prospective development of natural product research.
Collapse
|
10
|
葛 钰, 卢 林, 田 澍, 肖 雨, 谢 尚, 王 琪, 支 慧. [Agkistrodon halys venom antitumor component-I inhibits vasculogenic mimicry in triple-negative breast cancer cells in vitro by down-regulating MMP2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:438-442. [PMID: 35426810 PMCID: PMC9010989 DOI: 10.12122/j.issn.1673-4254.2022.03.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of agkistrodon halys venom antitumor component-I (AHVAC-I) on vasculogenic mimicry (VM) formation in triple-negative breast cancer MDA-MB-231 cells and explore its possible mechanism. METHODS CCK8 assay was used to determine the optimal concentration of AHVAC-I for cell treatment based on its halfinhibitory concentration (IC50). MDA-MB-231 cells were treated with different concentrations of AHVAC-I or 5-Fu, and the changes in vasomimetic capacity of the cells were examined using Matrigel assay. The expression levels of matrix metalloproteinase-2 (MMP2) and MMP9 in the treated cells were detected using quantitative PCR and Western blotting. RESULTS Compared with the control treatment with culture medium, treatment with 5, 10 and 20 μg/mL AHVAC-I significantly reduced vasomimetic ability of MDA-MB-231 cells in a dose-dependent manner (P < 0.01). MMP2 supplementation obviously restored the vasomimetic ability of the cells inhibited by AHVAC-I. CONCLUSION AHVAC-I inhibits VM formation in triplenegative breast cancer cells in vitro by down-regulating MMP2 production.
Collapse
Affiliation(s)
- 钰 葛
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| | - 林明 卢
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| | - 澍雨 田
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| | - 雨 肖
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| | - 尚富 谢
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| | - 琪 王
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| | - 慧 支
- />皖南医学院病理解剖教研室,安徽 芜湖 241002Department of Pathology, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
11
|
Kalita B, Saviola AJ, Mukherjee AK. From venom to drugs: a review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov Today 2021; 26:993-1005. [DOI: 10.1016/j.drudis.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
|
12
|
Attarde SS, Pandit SV. In Vivo Toxicity Profile of NN-32 and Nanogold Conjugated GNP-NN-32 from Indian Spectacled Cobra Venom. Curr Pharm Biotechnol 2021; 21:1479-1488. [PMID: 32427082 DOI: 10.2174/1389201021666200519101221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND NN-32 toxin, which was obtained from Naja naja venom and showed cytotoxicity on cancer cell lines. As the toxicity of NN-32 is the main hurdle in the process of drug development; hence, we have conjugated NN-32 toxin with gold nanoparticles (GNP-NN-32) in order to decrease the toxicity of NN-32 without reducing its efficacy, GNP-NN-32 alleviated the toxicity of NN-32 in in vitro studies during the course of earlier studies. In continuation, we are evaluating in vivo toxicity profile of NN-32 and GNP-NN-32 in the present study. OBJECTIVE To study in vivo toxicity profile of NN-32 and nanogold conjugated GNP-NN-32 from Naja naja venom. MATERIALS AND METHODS We have carried out in vivo acute toxicity study to determine LD50 dose of GNP-NN-32, in vivo sub-chronic toxicity for 30 days, haematology, serum biochemical parameters and histopathology study on various mice tissues and in vitro cellular and tissue toxicity studies. RESULTS The LD50 dose of GNP-NN-32 was found to be 2.58 mg/kg (i.p.) in Swiss male albino mice. In vivo sub-chronic toxicity showed significantly reduced toxicity of GNP-NN-32 as compared to NN-32 alone. DISCUSSION In vitro cellular toxicity studies on human lymphocyte and mouse peritoneal macrophage showed significant inhibition of cells by NN-32 alone. CONCLUSION Conjugated GNP-NN-32 toxin showed less in vivo toxicity as compared to pure NN-32.
Collapse
Affiliation(s)
- Saurabh S Attarde
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sangeeta V Pandit
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
13
|
Chong HP, Tan KY, Tan CH. Cytotoxicity of Snake Venoms and Cytotoxins From Two Southeast Asian Cobras ( Naja sumatrana, Naja kaouthia): Exploration of Anticancer Potential, Selectivity, and Cell Death Mechanism. Front Mol Biosci 2020; 7:583587. [PMID: 33263003 PMCID: PMC7686564 DOI: 10.3389/fmolb.2020.583587] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023] Open
Abstract
Venoms of cobras (Naja spp.) contain high abundances of cytotoxins, which contribute to tissue necrosis in cobra envenomation. The tissue-necrotizing activity of cobra cytotoxins, nevertheless, indicates anticancer potentials. This study set to explore the anticancer properties of the venoms and cytotoxins from Naja sumatrana (equatorial spitting cobra) and Naja kaouthia (monocled cobra), two highly venomous species in Southeast Asia. The cytotoxicity, selectivity, and cell death mechanisms of their venoms and cytotoxins (NS-CTX from N. sumatrana: NS-CTX; N. kaouthia: NK-CTX) were elucidated in human lung (A549), prostate (PC-3), and breast (MCF-7) cancer cell lines. Cytotoxins were purified through a sequential fractionation approach using cation-exchange chromatography, followed by C18 reverse-phase high-performance liquid chromatography (HPLC) to homogeneity validated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (LCMS/MS). The cobra venoms and their respective cytotoxins exhibited concentration-dependent growth inhibitory effects in all cell lines tested, with the cytotoxins being more potent compared to the corresponding whole venoms. NS-CTX and NK-CTX are, respectively, P-type and S-type isoforms of cytotoxin, based on the amino acid sequences as per LCMS/MS analysis. Both cytotoxins exhibited differential cytotoxic effects in the cell lines tested, with NS-CTX (P-type cytotoxin) being significantly more potent in inhibiting the growth of the cancer cells. Both cytotoxins demonstrated promising selectivity only for the A549 lung cancer cell line (selectivity index = 2.17 and 2.26, respectively) but not in prostate (PC-3) and breast (MCF-7) cancer cell lines (selectivity index < 1). Flow cytometry revealed that the A549 lung cancer cells treated with NS-CTX and NK-CTX underwent necrosis predominantly. Meanwhile, the cytotoxins induced mainly caspase-independent late apoptosis in the prostate (PC-3) and breast (MCF-7) cancer cells lines but lacked selectivity. The findings revealed the limitations and challenges that could be faced during the development of new cancer therapy from cobra cytotoxins, notwithstanding their potent anticancer effects. Further studies should aim to overcome these impediments to unleash the anticancer potentials of the cytotoxins.
Collapse
Affiliation(s)
- Ho Phin Chong
- Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Teoh SQ, Yap MKK. Naja sumatrana venom cytotoxin, sumaCTX exhibits concentration-dependent cytotoxicity via caspase-activated mitochondrial-mediated apoptosis without transitioning to necrosis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1799408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shun Qi Teoh
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
15
|
Attarde SS, Pandit SV. Anticancer potential of nanogold conjugated toxin GNP-NN-32 from Naja naja venom. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190047. [PMID: 32180805 PMCID: PMC7059613 DOI: 10.1590/1678-9199-jvatitd-2019-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Cancer is the second most common fatal disease in the world, behind cardiovascular disorders in the first place. It accounts for around 0.3 million deaths per year in India due to the lack of proper diagnostic facilities, prevention and treatment. Current therapeutic methods do not provide adequate protection and affect normal cells along with cancerous ones. Thus, there is a need for some alternative therapeutic strategy, preferably from natural products, which have been traditionally used for treatment of various diseases in the country. Methods: In this study, we have conjugated purified NN-32 toxin from Naja naja venom with gold nanoparticles and its anticancer potential was evaluated against human breast cancer cell lines. UV-Vis spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy and zeta potential analysis were the techniques used for characterization of GNP-NN-32. Results: GNP-NN-32 showed dose- and time-dependent cytotoxicity against breast cancer cell lines (MCF-7 and MDA-MB-231). NN-32 and GNP-NN-32 induced apoptosis in both breast cancer cell lines. The results of CFSE cell proliferation study revealed that NN-32 and GNP-NN-32 arrested cell division in both MCF-7 and MDA-MB-231 cell lines resulting in inhibition of proliferation of these cancer cells. Conclusion: GNP-NN-32 showed an anticancer potential against human breast cancer cell lines. Analysis of detailed chemical characterization along with its cytotoxic property might help to perceive a new dimension of the anti-cancer potential of GNP-NN-32 that will enhance its biomedical function in near future.
Collapse
Affiliation(s)
- Saurabh S Attarde
- Evolutionary Venomics Laboratory, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sangeeta V Pandit
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
16
|
Tran TV, Siniavin AE, Hoang AN, Le MTT, Pham CD, Phung TV, Nguyen KC, Ziganshin RH, Tsetlin VI, Weng CF, Utkin YN. Phospholipase A 2 from krait Bungarus fasciatus venom induces human cancer cell death in vitro. PeerJ 2019; 7:e8055. [PMID: 31824756 PMCID: PMC6896944 DOI: 10.7717/peerj.8055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background Snake venoms are the complex mixtures of different compounds manifesting a wide array of biological activities. The venoms of kraits (genus Bungarus, family Elapidae) induce mainly neurological symptoms; however, these venoms show a cytotoxicity against cancer cells as well. This study was conducted to identify in Bungarus fasciatus venom an active compound(s) exerting cytotoxic effects toward MCF7 human breast cancer cells and A549 human lung cancer cells. Methods The crude venom of B. fasciatus was separated by gel-filtration on Superdex HR 75 column and reversed phase HPLC on C18 column. The fractions obtained were screened for cytotoxic effect against MCF7, A549, and HK2 cell lines using colorimetric assay with the tetrazolium dye MTT- 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The primary structure of active protein was established by ultra high resolution LC-MS/MS. The molecular mechanism of the isolated protein action on MCF7 cells was elucidated by flow cytometry. Results MTT cell viability assays of cancer cells incubated with fractions isolated from B. fasciatus venom revealed a protein with molecular mass of about 13 kDa possessing significant cytotoxicity. This protein manifested the dose and time dependent cytotoxicity for MCF7 and A549 cell lines while showed no toxic effect on human normal kidney HK2 cells. In MCF7, flow cytometry analysis revealed a decrease in the proportion of Ki-67 positive cells. As Ki-67 protein is a cellular marker for proliferation, its decline indicates the reduction in the proliferation of MCF7 cells treated with the protein. Flow cytometry analysis of MCF7 cells stained with propidium iodide and Annexin V conjugated with allophycocyanin showed that a probable mechanism of cell death is apoptosis. Mass spectrometric studies showed that the cytotoxic protein was phospholipase A2. The amino acid sequence of this enzyme earlier was deduced from cloned cDNA, and in this work it was isolated from the venom as a protein for the first time. It is also the first krait phospholipase A2 manifesting the cytotoxicity for cancer cells.
Collapse
Affiliation(s)
- Thien V Tran
- Tra Vinh University, Tra Vinh City, Vietnam.,Graduate University of Science and Technology VAST, Hanoi, Vietnam
| | - Andrei E Siniavin
- Laboratory of Molecular Toxinology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Anh N Hoang
- Graduate University of Science and Technology VAST, Hanoi, Vietnam.,Institute of Applied Materials Science VAST, Ho Chi Minh City, Vietnam
| | - My T T Le
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Chuong D Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung V Phung
- Center for Research and Technology Transfer VAST, Ho Chi Minh City, Vietnam
| | - Khoa C Nguyen
- Graduate University of Science and Technology VAST, Hanoi, Vietnam.,Institute of Applied Materials Science VAST, Ho Chi Minh City, Vietnam
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Yuri N Utkin
- Laboratory of Molecular Toxinology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| |
Collapse
|
17
|
Jiménez–Charris E, Lopes DS, Gimenes SNC, Teixeira SC, Montealegre–Sánchez L, Solano–Redondo L, Fierro–Pérez L, Rodrigues Ávila VDM. Antitumor potential of Pllans–II, an acidic Asp49–PLA2 from Porthidium lansbergii lansbergii snake venom on human cervical carcinoma HeLa cells. Int J Biol Macromol 2019; 122:1053-1061. [DOI: 10.1016/j.ijbiomac.2018.09.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
18
|
Xu J, Zhang G, Tong Y, Yuan J, Li Y, Song G. Corilagin induces apoptosis, autophagy and ROS generation in gastric cancer cells in vitro. Int J Mol Med 2018; 43:967-979. [PMID: 30569134 PMCID: PMC6317684 DOI: 10.3892/ijmm.2018.4031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023] Open
Abstract
Corilagin, a unique component of the tannin family, has been identified in several medicinal plants. In previous literature, corilagin exhibited a marked anticancer property in a variety of human cancer cells. However, the biological effects of corilagin on gastric cancer and the mechanisms involved remain to be fully elucidated. In the present study, it was reported that corilagin induced inhibition of cell growth in SGC7901 and BGC823 cells in a concentration-dependent manner. It was found that corilagin exhibited less toxicity towards normal GES-1 cells. Furthermore, the study showed that corilagin induced the apoptosis of gastric cancer cells mainly via activating caspase-8, -9, -3 and poly ADP-ribose polymerase proteins. Simultaneously, it was verified that corilagin triggered autophagy in gastric cancer cells and the inhibition of autophagy improved the activity of corilagin on cell growth suppression. In addition, corilagin significantly increased intracellular reactive oxygen species production, which is important in inhibiting the growth of gastric cancer cells. Finally, it was shown that necroptosis cannot be induced by corilagin-incubation in SGC7901 and BGC823 cell lines. Consequently, these findings indicate that corilagin may be developed as a potential therapeutic drug for gastric cancer.
Collapse
Affiliation(s)
- Jiajia Xu
- Fisheries College, Jimei University, Xiamen, Fujian 361021, P.R. China
| | - Gongye Zhang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yinping Tong
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jiahui Yuan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yuanyue Li
- Fisheries College, Jimei University, Xiamen, Fujian 361021, P.R. China
| | - Gang Song
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
19
|
Li B, Lyu P, Xi X, Ge L, Mahadevappa R, Shaw C, Kwok HF. Triggering of cancer cell cycle arrest by a novel scorpion venom-derived peptide-Gonearrestide. J Cell Mol Med 2018; 22:4460-4473. [PMID: 29993185 PMCID: PMC6111814 DOI: 10.1111/jcmm.13745] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, a novel scorpion venom-derived peptide named Gonearrestide was identified in an in-house constructed scorpion venom library through a combination of high-throughput NGS transcriptome and MS/MS proteome platform. In total, 238 novel peptides were discovered from two scorpion species; and 22 peptides were selected for further study after a battery of functional prediction analysis. Following a series of bioinformatics analysis alongside with in vitro biological functional screenings, Gonearrestide was found to be a highly potent anticancer peptide which acts on a broad spectrum of human cancer cells while causing few if any observed cytotoxic effects on epithelial cells and erythrocytes. We further investigated the precise anticancer mechanism of Gonearrestide by focusing on its effects on the colorectal cancer cell line, HCT116. NGS RNA sequencing was employed to obtain full gene expression profiles in HCT116 cells, cultured in the presence and absence of Gonearrestide, to dissect signalling pathway differences. Taken together the in vitro, in vivo and ex vivo validation studies, it was proven that Gonearrestide could inhibit the growth of primary colon cancer cells and solid tumours by triggering cell cycle arrest in G1 phase through inhibition of cyclin-dependent kinases 4 (CDK4) and up-regulate the expression of cell cycle regulators/inhibitors-cyclin D3, p27, and p21. Furthermore, prediction of signalling pathways and potential binding sites used by Gonearrestide are also presented in this study.
Collapse
Affiliation(s)
- Bin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau, Macao
| | - Peng Lyu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, Macao
| | - Xinping Xi
- Faculty of Health Sciences, University of Macau, Taipa, Macau, Macao.,School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Taipa, Macau, Macao.,School of Pharmacy, Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, Qixia District, Nanjing, China
| | | | - Chris Shaw
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Taipa, Macau, Macao
| |
Collapse
|