1
|
Berhe KT, Gesesew HA, Ward PR. Traditional healing practices, factors influencing to access the practices and its complementary effect on mental health in sub-Saharan Africa: a systematic review. BMJ Open 2024; 14:e083004. [PMID: 39322598 PMCID: PMC11429370 DOI: 10.1136/bmjopen-2023-083004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVES In areas with limited and unaffordable biomedical mental health services, such as sub-Saharan Africa (SSA), traditional healers are an incredibly well-used source of mental healthcare. This systematic review synthesises the available evidence on traditional healing practices, factors to access it and its effectiveness in improving people's mental health in SSA. DESIGN Systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach. DATA SOURCES PubMed, MEDLINE, CINAHL and Scopus studies published before 1 December 2022. ELIGIBILITY CRITERIA Qualitative and quantitative studies reported traditional healing practices to treat mental health problems in SSA countries published in English before 1 December 2022. DATA EXTRACTION AND SYNTHESIS Data were extracted using Covidence software, thematically analysed and reported using tables and narrative reports. The methodological quality of the included papers was evaluated using Joanna Briggs Institute quality appraisal tools. RESULTS In total, 51 studies were included for analysis. Traditional healing practices included faith-based (spiritual or religious) healing, diviner healing practices and herbal therapies as complementary to other traditional healing types. Objectively measured studies stated that people's mental health improved through collaborative care of traditional healing and biomedical care services. In addition, other subjectively measured studies revealed the effect of traditional healing in improving the mental health status of people. Human rights abuses occur as a result of some traditional practices, including physical abuse, chaining of the patient and restriction of food or fasting or starving patients. Individual, social, traditional healers, biomedical healthcare providers and health system-related factors were identified to accessing traditional healing services. CONCLUSION Although there is no conclusive, high-level evidence to support the effectiveness of traditional healing alone in improving mental health status. Moreover, the included studies in this review indicated that traditional healing and biomedical services collaborative care improve people's mental health. PROSPERO REGISTRATION NUMBER CRD42023392905.
Collapse
Affiliation(s)
- Kenfe Tesfay Berhe
- Public Health, Mekelle University College of Health Sciences, Mekelle, Tigray, Ethiopia
- Research Centre for Public Health, Equity and Human Flourishing, Torrens University Australia, Adelaide, South Australia, Australia
| | - Hailay Abrha Gesesew
- Research Centre for Public Health, Equity and Human Flourishing, Torrens University Australia, Adelaide, South Australia, Australia
- Tigray Health Research Institute, Mekele, Ethiopia
| | - Paul R Ward
- Research Centre for Public Health, Equity and Human Flourishing, Torrens University Australia, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Zhou S, Li J, Ling X, Dong S, Zhang Z, Li M. Conessine inhibits enveloped viruses replication through up-regulating cholesterol level. Virus Res 2023; 338:199234. [PMID: 37802295 PMCID: PMC10590996 DOI: 10.1016/j.virusres.2023.199234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Dengue virus (DENV) is one of the most prevalent arthropod-borne diseases. It may cause dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), while no effective vaccines and drugs are available. Our study demonstrated that conessine exhibits broad antiviral activity against several enveloped viruses, including DENV, vesicular stomatitis virus, and herpes simplex virus. In addition, conessine has no direct destructive effect on the integrity or infectivity of virions. Both pre-treatment and post-treatment with conessine significantly reduce DENV replication. Pre-treatment with conessine disrupts the endocytosis of enveloped viruses, while post-treatment disturbs DENV RNA replication or translation at an early stage. Through screening differentially expressed genes by transcriptome sequencing, we found that conessine may affect cholesterol biosynthesis, metabolism or homeostasis. Finally, we confirmed that conessine inhibits virus replication through up-regulating cholesterol levels. Our work suggests that conessine could be developed as a prophylactic and therapeutic treatment for infectious diseases caused by enveloped viruses.
Collapse
Affiliation(s)
- Shili Zhou
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Xiaomei Ling
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Shirui Dong
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Zhen Zhang
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Ming Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
3
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Saha R, Gupta M, Majumdar R, Saha S, Kar PK. Anthelmintic efficacy of Holarrhena pubescens against Raillietina spp. of domestic fowl through ultrastructural, histochemical, biochemical and GLCM analysis. PLoS One 2023; 18:e0282033. [PMID: 37708168 PMCID: PMC10501554 DOI: 10.1371/journal.pone.0282033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023] Open
Abstract
Globally, traditional knowledge systems are a powerhouse of information which can revolutionise the world, if decoded accurately and logically. Plant-based ethno-traditional and folklore curatives/medicines has a firm basis in the psyche of the common masses of West Bengal and Holarrhena pubescens is a representative example of it. This article communication on depicting the anthelmintic efficacy of ethanolic extract and Ethyl acetate fraction of the stem bark of Holarrhena pubescens against the cestode Raillietina spp. through efficacy studies, ultra-structural observations, histochemical and biochemical analysis on some tegumental enzymes i.e., Acid Phosphatase (AcPase), Alkaline Phosphatase (AlkPase), Adenosine Triphosphatase (ATPase) and 5'-Nucleotidase (5'-Nu) along with Gray Level Co-occurrence Matrix (GLCM) analysis of histochemical study. Praziquantel was used as the reference drug. Investigations revealed 10mg/ml dosage of crude extract was the most efficacious dose and amongst the fractions the ethyl acetate fraction showed the most anthelmintic property. Ultrastructural studies through Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) clearly depicted the damage in head, sucker, proglottids, proximal and distal cytoplasm (DC), microtriches (MT), basal lamina (BL), nuclear membrane (NM), and, nucleolus (NL) in the treated worms. Histochemical studies revealed decrease in staining intensity for all the tegumental enzymes in the treated worms compared to control. The GLCM analysis strongly supported the result of histochemical studies. Biochemical studies revealed marked reduction in enzyme activity in the treated worms with maximum reduction in the activity of 5'- Nu (77.8%) followed by ATPase (63.17%).
Collapse
Affiliation(s)
- Rachita Saha
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Manjil Gupta
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Rima Majumdar
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Subrata Saha
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pradip Kumar Kar
- Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| |
Collapse
|
5
|
Habib Adam M, Tandon N, Singh I, Tandon R. The Phytochemical Tactics for Battling Antibiotic Resistance in Microbes: Secondary Metabolites and Nano Antibiotics Methods. Chem Biodivers 2023; 20:e202300453. [PMID: 37535351 DOI: 10.1002/cbdv.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
One of the most serious threats to human health is antibiotic resistance, which has left the world without effective antibiotics. While continuous research and inventions for new antibiotics are going on, especially those with new modes of action, it is unlikely that this alone would be sufficient to win the battle. Furthermore, it is also important to investigate additional approaches. One such strategy for improving the efficacy of existing antibiotics is the discovery of adjuvants. This review has collected data from various studies on the current crisis and approaches for combating multi-drug resistance in microbial pathogens using phytochemicals. In addition, the nano antibiotic approaches, are discussed, highlighting the high potentials of essential oils, alkaloids, phenolic compounds, and nano antibiotics in combating antibiotic resistance.
Collapse
Affiliation(s)
- Mujahid Habib Adam
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Nitin Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, India
| | - Runjhun Tandon
- Department of Chemistry, School of Physical Sciences, Lovely Professional University, 144411, Phagwara, India
| |
Collapse
|
6
|
Bansal R, Sahoo SA, Barvkar VT, Srivastava AK, Mukherjee PK. Trichoderma virens exerts herbicidal effect on Arabidopsis thaliana via modulation of amino acid metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111702. [PMID: 37030329 DOI: 10.1016/j.plantsci.2023.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Trichoderma virens is a plant beneficial fungus well-known for its biocontrol, herbicidal and growth promotion activity. Earlier, we identified HAS (HA-synthase, a terpene cyclase) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to be involved in the production of multiple non-volatiles and non-volatile+volatile metabolites, respectively. The present study delineates the function of HAS and GAPDH in regulating herbicidal activity, using the model plant Arabidopsis thaliana. Under axenic conditions, rosette-biomass of seedlings co-cultivated with ΔHAS (HASR) and ΔGAPDH (GAPDHR) was higher than WT-Trichoderma (WTR) as well as non-colonized control (NoTR), even though the root colonization ability was reduced. However, HASR biomass was still higher than those of GAPDHR, indicating that blocking volatiles will not provide any additional contribution over non-volatile metabolites for Trichoderma-induced herbicidal activity. LC-MS analysis revealed that loss of herbicidal activity of ΔHAS/ΔGAPDH was associated with an increase in the levels of amino acids, which coincided with reduced expression levels of amino-acid catabolism and anabolism related genes in HASR/GAPDHR. RNAi-mediated suppression of an oxidoreductase gene, VDN5, specifically prevented viridin-to-viridiol conversion. Additionally, vdn5 mimics ΔHAS, in terms of amino-acid metabolism gene expression and partially abolishes the herbicidal property of WT-Trichoderma. Thus, the study provides mechanistic frame-work for better utilization of Trichoderma virens for biocontrol purposes, balancing between plant growth promotion and herbicidal activity.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Sripati Abhiram Sahoo
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, India
| | | | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - Prasun Kumar Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
7
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
8
|
Abd Karim HA, Ismail NH, Osman CP. Steroidal Alkaloids From the Apocynaceae Family: Their Isolation and Biological Activity. Nat Prod Commun 2022; 17:1934578X2211412. [DOI: 10.1177/1934578x221141265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Steroidal alkaloids are derived from the steroid skeleton with one or two nitrogen atoms. They are widely distributed in tropical and subtropical regions and possess a range of biological activities. The structures of steroidal alkaloids are comparable to those of anabolic steroids, steroidal hormones, and corticosteroids, making them a valuable source for drug discovery. Taxonomically, steroidal alkaloids are limited in distribution to certain plant families, predominantly the Apocynaceae, Buxaceae, Solanaceae, and Liliaceae. This review highlights the steroidal alkaloids from the Apocynaceae family and their biological activities. The articles published from 1919 to 2021 were included in this review. A total of 163 steroidal alkaloids and 12 biological activities were reported from plant species belonging to the Apocynaceae family in this period. Of the 410 genera in the Apocynaceae, only 10 contain steroidal alkaloids. Although some alkaloids from the Apocynaceae family were also reported in the Buxaceae family, especially tetracyclic triterpenes with a pregnane side chain, most steroidal alkaloids can only be found in several genera of the Apocynaceae family.
Collapse
Affiliation(s)
- Hidayatul Atiqah Abd Karim
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor Kampus, Bandar Puncak Alam, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor Kampus, Bandar Puncak Alam, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Che Puteh Osman
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor Kampus, Bandar Puncak Alam, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia
| |
Collapse
|
9
|
Potentiation of Antibiotic Action and Efflux Pump Inhibitory Effect on Staphylococcus aureus Strains by Solasodine. Antibiotics (Basel) 2022; 11:antibiotics11101309. [PMID: 36289967 PMCID: PMC9598803 DOI: 10.3390/antibiotics11101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
A worrisome fact is the increase in microbial resistance, which has as its main cause the indiscriminate use of antibiotics. Scientific studies have investigated bioactive compounds such as steroidal sapogenins, in the perspective of new beneficial alternatives for the control of bacterial resistance. Therefore, the objective of this work was to verify the antibacterial activity as well as the modifying action of antibiotics associated with solasodine and its ability to inhibit the efflux pump mechanism in strains of Staphylococcus aureus. Tests were performed to verify the minimum inhibitory concentration (MIC). In addition, the action-modifying potential of antibiotics and the inhibitory capacity of the efflux pump NorA and MepA through synergistic effects on the antibiotic and ethidium bromide were evaluated. Solasodine showed significant results for the standard bacteria with an MIC of 512 μg/mL, and when associated with the antibiotics gentamicin and nofloxacin for the multidrug-resistant bacteria S. aureus 10, Escherichia coli 06, and Pseudomonas aeruginosa 24, it showed a 50% reduction in MIC. The association of solasodine with the antibiotic ciprofloxacin against S. aureus K2068 (MepA) showed synergism, with a reduction in the MIC of the antibiotic from 64 μg/mL to 40 μg/mL, and also a reduction in the MIC when the antibiotic was used in conjunction with the efflux pump inhibitors. Solasodine may be acting on the mechanism of action of the antibiotic, as it has shown a potentiating effect when associated with antibiotics, inducing a reduction in the MIC against Gram-positive and Gram-negative bacteria. Therefore, this study demonstrated significant results for the potentiating action of solasodine when associated with antibiotics of clinical importance.
Collapse
|
10
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
11
|
Discovery of Natural Veterinary Herbal Medicine Products in Commercial Cow Milk by Using Nontargeted Profiling on LC–ESI–TOF Platform. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3663315. [PMID: 34447454 PMCID: PMC8384518 DOI: 10.1155/2021/3663315] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Najwan Jubair
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
13
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Huang P, Wang Z, Cai K, Wei L, Chu Y, Guo M, Fan E. Targeting Bacterial Membrane Proteins to Explore the Beneficial Effects of Natural Products: New Antibiotics against Drug Resistance. Curr Med Chem 2021; 29:2109-2126. [PMID: 34126882 DOI: 10.2174/0929867328666210614121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is currently a world health crisis that urges the development of new antibacterial substances. To this end, natural products, including flavonoids, alkaloids, terpenoids, steroids, peptides and organic acids that play a vital role in the development of medicines and thus constitute a rich source in clinical practices, provide an important source of drugs directly or for the screen of lead compounds for new antibiotic development. Because membrane proteins, which comprise more than 60% of the current clinical drug targets, play crucial roles in signal transduction, transport, bacterial pathogenicity and drug resistance, as well as immunogenicity, it is our aim to summarize those natural products with different structures that target bacterial membrane proteins, such as efflux pumps and enzymes, to provide an overview for the development of new antibiotics to deal with antibiotic resistance.
Collapse
Affiliation(s)
- Piying Huang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kun Cai
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liangwan Wei
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yindi Chu
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel) 2021; 10:antibiotics10030318. [PMID: 33808601 PMCID: PMC8003525 DOI: 10.3390/antibiotics10030318] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are nitrogen-containing heterocyclic compounds typically isolated from plants. They represent one of the most important types of natural products because of their large number and structural diversity and complexity. Based on their chemical core structures, alkaloids are classified as isoquinolines, quinolines, indoles, piperidine alkaloids, etc. In-depth analyses of alkaloids have revealed their antibacterial activities. To date, due to the widespread use of antibiotics, the problem of drug-resistant bacterial infections has been gradually increasing, which severely affects the clinical efficacy of antibacterial therapies and patient safety. Therefore, significant research efforts are focused on alkaloids because they represent a potentially new type of natural antibiotic with a wide antibacterial spectrum, rare adverse reactions, and a low tendency to produce drug resistance. Their main antibacterial mechanisms include inhibition of bacterial cell wall synthesis, change in cell membrane permeability, inhibition of bacterial metabolism, and inhibition of nucleic acid and protein synthesis. This article reviews recent reports about the chemical structures and the antibacterial activities and mechanisms of alkaloids. The purpose is to solve the problem of bacterial resistance and to provide a certain theoretical basis and research ideas for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Xing Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China;
| | - Bing Gao
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Correspondence: (B.G.); (M.L.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Correspondence: (B.G.); (M.L.)
| |
Collapse
|
16
|
Indigenous Medicinal Plants as Biofilm Inhibitors for the Mitigation of Antimicrobial Resistance. Adv Pharmacol Pharm Sci 2020; 2020:8821905. [PMID: 33163963 PMCID: PMC7604581 DOI: 10.1155/2020/8821905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
The majority of indigenes in the rural areas of Ghana use herbal medicines for their primary health care. In this study, an ethnobotanical survey was undertaken to document medicinal plants used by traditional healers in the Ejisu-Juaben district in the Ashanti region of Ghana to treat infections and to further investigate the antibiofilm formation properties of selected plants in resisting pathogenic bacteria. Seventy medicinal plants used by traditional practitioners for the treatment of skin infections and wounds were documented from the ethnobotanical survey. Forty out of the seventy plants were collected and their methanol extracts evaluated for antimicrobial activity by the agar diffusion assay. Extracts that showed antibacterial activity were tested for biofilm inhibitory activity, and the most active plant was subsequently purified to obtain the active constituents. Biofilm formation was significantly mitigated by petroleum ether, ethyl acetate, and methanol extracts of Holarrhena floribunda stem bark. Bioassay-guided fractionation of an alkaloidal extract prepared from the methanol fraction led to the isolation of three steroidal alkaloids, namely, holonamine, holadienine, and conessine. The isolated compounds demonstrated varying degrees of biofilm formation inhibitory properties. The current study reveals that screening of indigenous medicinal plants could unravel potential leads to salvage the declining efficacy of conventional antibiotics. Holarrhena floribunda stem bark extract has strong biofilm formation inhibition properties, which could be attributed to the presence of steroidal alkaloids.
Collapse
|
17
|
Jewboonchu J, Saetang J, Saeloh D, Siriyong T, Rungrotmongkol T, Voravuthikunchai SP, Tipmanee V. Atomistic insight and modeled elucidation of conessine towards Pseudomonas aeruginosa efflux pump. J Biomol Struct Dyn 2020; 40:1480-1489. [PMID: 33025857 DOI: 10.1080/07391102.2020.1828169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug-resistant Pseudomonas aeruginosa efflux pump extrudes antibiotics from cells for survival. Efflux pump inhibitor (EPI) thus becomes an interesting alternative to handle the drug-resistant bacteria. Conessine, a natural steroidal alkaloid from Holarrhena antidysenterica, previously exhibited efflux pump inhibitory potential. Our molecular docking and molecular dynamics (MD) studies provided atomistic information as well as the interaction of conessine with bacterial MexB efflux pump in phospholipid bilayer membrane to further the previous experimental report. Herein, the binding site and proposed mode of action of conessine were identified compared to known/commercial EPIs such as PAβN or designed-synthetic P9D. Our results explained conessine binding mode of action as an effective agent against the MexB efflux pump. The MD simulation also suggested that conessine was able to affect glycine loop (G-loop) flexibility, and the reduced G-loop flexibility due to conessine could hinder an antibiotics extrusion. In addition, our study suggested the conessine core structure buried in a hydrophobic region in the efflux pump similar to other known EPIs. Our finding could cope as a key for the design and development of the conessine derivative as novel EPI against P. aeruginosa.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juntamanee Jewboonchu
- EZ-Mol-Design Laboratory and Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jirakrit Saetang
- EZ-Mol-Design Laboratory and Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Dennapa Saeloh
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Thanyaluck Siriyong
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, and Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Natural Product Research Center of Excellence, and Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Varomyalin Tipmanee
- EZ-Mol-Design Laboratory and Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
18
|
Metabolic Diversity and Therapeutic Potential of Holarrhena pubescens: An Important Ethnomedicinal Plant. Biomolecules 2020; 10:biom10091341. [PMID: 32962166 PMCID: PMC7565871 DOI: 10.3390/biom10091341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Holarrhena pubescens is an important medicinal plant of the Apocynaceae family that is widely distributed over the Indian subcontinent. The plant is extensively used in Ayurveda and other traditional medicinal systems without obvious adverse effects. Beside notable progress in the biological and phytochemical evaluation of this plant over the past few years, comprehensive reviews of H. pubescens are limited in scope. It has economic importance due to the extensive use of seeds as an antidiabetic. Furthermore, the plant is extensively reported in traditional uses among the natives of Asia and Africa, while scientifical validation for various ailments has not been studied either in vitro or in vivo. This review aims to summarize information on the pharmacology, traditional uses, active constituents, safety and toxicity of H. pubescens. Chemical analysis of H. pubescens extracts revealed the presence of several bioactive compounds, such as conessine, isoconnessine, conessimine, conimine, conessidine, conkurchicine, holarrhimine, conarrhimine, mokluangin A-D and antidysentericine. Overall, this review covers the ethnopharmacology, phytochemical composition, and pharmacological potential of H. pubescens, with a critical discussion of its toxicity, biological activities (in vitro and in vivo), the mechanism of action, as well as suggestions for further basic and clinical research.
Collapse
|
19
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|