1
|
Tian F, Yi X, Yang F, Chen Y, Zhu W, Liu P, Li S. Research progress on the treatment of diabetic nephropathy with leech and its active ingredients. Front Endocrinol (Lausanne) 2024; 15:1296843. [PMID: 38344666 PMCID: PMC10853373 DOI: 10.3389/fendo.2024.1296843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Diabetic nephropathy (DN) is a major microvascular complication of diabetes and a common cause of chronic kidney disease. There is currently a lack of effective treatments for DN, and the prognosis for patients remains poor. Hirudin, one of the primary active components derived from leeches, demonstrates anti-coagulant, anti-fibrotic, anti-thrombotic, and anti-inflammatory properties, exhibiting significant protective effects on the kidneys. In recent years, there has been a surge of interest in studying the potential benefits of hirudin, especially in its role in the management of DN. This article delves into the mechanisms by which hirudin contributes to the treatment of DN and its clinical efficacy.
Collapse
Affiliation(s)
- Feng Tian
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiang Yi
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Feifei Yang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Shuju Li
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
2
|
Jiang P, Yao C, Guo DA. Traditional Chinese medicine for the treatment of immune-related nephropathy: A review. Acta Pharm Sin B 2024; 14:38-66. [PMID: 38239236 PMCID: PMC10793104 DOI: 10.1016/j.apsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024] Open
Abstract
Immune-related nephropathy (IRN) refers to immune-response-mediated glomerulonephritis and is the main cause of end-stage renal failure. The pathogenesis of IRN is not fully understood; therefore, treatment is challenging. Traditional Chinese medicines (TCMs) have potent clinical effects in the treatment of the IRN conditions immunoglobulin A nephropathy, lupus nephropathy, and diabetic nephropathy. The underlying mechanisms mainly include its inhibition of inflammation; improvements to renal interstitial fibrosis, oxidative stress, autophagy, apoptosis; and regulation of immunity. In this review, we summarize the clinical symptoms of the three IRN subtypes and the use of TCM prescriptions, herbs, and bioactive compounds in treating IRN, as well as the potential mechanisms, intending to provide a reference for the future study of TCM as IRN treatments.
Collapse
Affiliation(s)
- Pu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Paul P, Chacko L, Dua TK, Chakraborty P, Paul U, Phulchand V, Jha NK, Jha SK, Kandimalla R, Dewanjee S. Nanomedicines for the management of diabetic nephropathy: present progress and prospects. Front Endocrinol (Lausanne) 2023; 14:1236686. [PMID: 38027185 PMCID: PMC10656621 DOI: 10.3389/fendo.2023.1236686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular consequence of diabetes mellitus (DM), posing an encumbrance to public health worldwide. Control over the onset and progress of DN depend heavily on early detection and effective treatment. DN is a major contributor to end-stage renal disease, and a complete cure is yet to be achieved with currently available options. Though some therapeutic molecules have exhibited promise in treating DN complications, their poor solubility profile, low bioavailability, poor permeation, high therapeutic dose and associated toxicity, and low patient compliance apprehend their clinical usefulness. Recent research has indicated nano-systems as potential theranostic platforms displaying futuristic promise in the diagnosis and treatment of DN. Early and accurate diagnosis, site-specific delivery and retention by virtue of ligand conjugation, and improved pharmacokinetic profile are amongst the major advantages of nano-platforms, defining their superiority. Thus, the emergence of nanoparticles has offered fresh approaches to the possible diagnostic and therapeutic strategies regarding DN. The present review corroborates an updated overview of different types of nanocarriers regarding potential approaches for the diagnosis and therapy of DN.
Collapse
Affiliation(s)
- Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, Rockville, MD, United States
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Udita Paul
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Vishwakarma Vishal Phulchand
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh K. Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, Indian Institute of Technology, Council of Scientific & Industrial Research (CSIR), Hyderabad, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Xia X, Li M, Wei R, Li J, Lei Y, Zhang M. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia. Neuropathology 2023; 43:362-372. [PMID: 36918198 DOI: 10.1111/neup.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
Cerebral ischemia starts with cerebral blood flow interruption that causes severely limited oxygen and glucose supply, eliciting a cascade of pathological events, such as excitotoxicity, oxidative stress, calcium dysregulation, and inflammatory response, which could ultimately result in neuronal death. Hirudin has beneficial effects in ischemic stroke and possesses antioxidant and anti-inflammatory properties. Therefore, we investigated the biological functions of hirudin and its related mechanisms in cerebral ischemia. The ischemia-like conditions were induced by transient middle cerebral artery occlusion (MCAO). To investigate hirudin roles, intracerebroventricular injection of 10 U hirudin was given to the rats. Cognitive and motor functions were examined by beam walking and Morris water maze tests. 2,3,5-triphenyl tetrazolium chloride-stained brain sections were used to measure infarct volume. Oxidative stress was determined by assessment of oxidative stress markers. The proliferated cells were labeled by BrdU and Nestin double staining. Western blotting was performed to measure protein levels. Hirudin administration improved cognitive and motor deficits post-ischemia. Hirudin reduced brain infarction and neurological damage in MCAO-subjected rats. Hirudin alleviated oxidative stress and enhanced neurogenesis in ischemic rats. Hirudin facilitated the promotion of phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and serine-threonine kinase. In sum, hirudin alleviates cognitive deficits by attenuating oxidative stress and promoting hippocampal neurogenesis through the regulation of ERK1/2 and serine-threonine kinase in MCAO-subjected rats.
Collapse
Affiliation(s)
- Xianfeng Xia
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Li
- Department of Neurology, Baoji Third People's Hospital, Baoji, China
| | - Renxian Wei
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Lei
- Department of Traditional Chinese Medicine, Zhucheng Street Hospital, Wuhan, China
| | - Meikui Zhang
- Department of Traditional Chinese Medicine, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
5
|
Li Y, Zhang L, Xiong W, Gao X, Xiong Y, Sun W. A Molecular Mechanism Study to Reveal Hirudin's Downregulation to PI3K/AKT Signaling Pathway through Decreasing PDGFR β in Renal Fibrosis Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5481552. [PMID: 36119923 PMCID: PMC9473867 DOI: 10.1155/2022/5481552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) is identified as a widespread chronic progressive disease jeopardizing public health which characterized by gradually loss of renal function. However, there is no efficient therapy to prevail over this disease. Our study was attempting to reveal hirudin's regulation to renal fibrosis as well as the molecular mechanism. We built renal fibrosis models on both cell and animal levels, which were subsequently given with hirudin disposal; then, we performed the transwell assay to estimate the cells' migration and had our detection to relevant proteins with western blot and immunofluorescence. Finally, we commenced both the identification and the determination to the hirudin targeted proteins and its downstream signaling pathways with the methods of network pharmacology. And the results turned out that when it was compared with the model group, the group with hirudin addition came with the suppression in the migration of renal tubular epithelial cells NRK-52E and with a conspicuous decline in the expressions of fibronectin, N-cadherin, vimentin, TGF-β, and snail. After that, we predicted that there were 17 hirudin target points mainly involving in the PI3K-AKT signaling pathway. Our outcomes of the animal level demonstrated that the conditions of interstitial fibrosis, severe tubular dilatation or atrophy, inflammatory cell infiltration, and massive accumulation of interstitial collagen in the model group were withdrawn after the addition of hirudin. In addition, p-PDGFRβ, p-PI3K, and p-AKT protein expressions were significantly reduced, and the PI3K/AKT pathway was downregulated after hirudin treatment in the model group of NRK-52E cells and animals. Therefore, we had our conclusion that hirudin is capable of suppressing the PI3K-AKT signaling pathway as well as the EMT by decreasing PDGFRβ phosphorylation.
Collapse
Affiliation(s)
- Ying Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhang
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Weijian Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Xuan Gao
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yanying Xiong
- Department of Nephrology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Wei Sun
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine (Affiliated Hospital of Nanjing University of Chinese Medicine), 210029, China
| |
Collapse
|
6
|
Cheng X, Yan H, Pang S, Ya M, Qiu F, Qin P, Zeng C, Lu Y. Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Front Chem 2022; 10:963004. [PMID: 36003616 PMCID: PMC9393238 DOI: 10.3389/fchem.2022.963004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although medicinal natural products and their derivatives have shown promising effects in disease therapies, they usually suffer the drawbacks in low solubility and stability in the physiological environment, low delivery efficiency, side effects due to multi-targeting, and low site-specific distribution in the lesion. In this review, targeted delivery was well-guided by liposomal formulation in the aspects of preparation of functional liposomes, liposomal medicinal natural products, combined therapies, and image-guided therapy. This review is believed to provide useful guidance to enhance the targeted therapy of medicinal natural products and their derivatives.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Hui Yan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Songhao Pang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Mingjun Ya
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Feng Qiu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Pinzhu Qin
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Chao Zeng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Yongna Lu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| |
Collapse
|
7
|
Liu M, Luo G, Dong L, Mazhar M, Wang L, He W, Liu Y, Wu Q, Zhou H, Yang S. Network Pharmacology and In Vitro Experimental Verification Reveal the Mechanism of the Hirudin in Suppressing Myocardial Hypertrophy. Front Pharmacol 2022; 13:914518. [PMID: 35784743 PMCID: PMC9240481 DOI: 10.3389/fphar.2022.914518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Myocardial hypertrophy is a complex pathological process, which is a common manifestation during the development of various cardiovascular diseases. Hirudin has been shown to have therapeutic effects on a variety of cardiovascular diseases, however, its therapeutic effect on myocardial hypertrophy is still unknown, and its chemical and pharmacological characteristics remain to be elucidated. Methods: In this study, the network pharmacology method was used to characterize the mechanism of hirudin on myocardial hypertrophy. The potential protein targets of hirudin and myocardial hypertrophy were both obtained from the Genecards database, and potential pathways associated with genes were identified by Gene Ontology and pathway enrichment analysis, and the data were displayed in a visual manner. Subsequently, the potential mechanism of action of hirudin on myocardial hypertrophy predicted by network pharmacology analysis was verified by molecular docking, and finally, the main findings were further verified by in vitro experiments by molecular biology techniques. Based on the results obtained from the study of H9c2 cell line, the inhibitory effect of hirudin on myocardial hypertrophy was further proved in the primary rat cardiomyocytes. Results: A total of 250 targets of hirudin, and 5,376 targets related to myocardial hypertrophy after deduplication were collected. The drug-disease network showed the relationship between hirudin, myocardial hypertrophy, and the targets. Further, systematic analysis from the PPI network indicated that blood coagulation, vesicle lumen, and signaling receptor activator activity may be the potential mechanisms of hirudin in the treatment of myocardial hypertrophy, and the PI3K/AKT signaling pathway may be the most relevant to the therapeutic effect of hirudin. Then, three therapeutic targets that were highly related to myocardial hypertrophy were extracted. Hirudin can be highly bound to STAT3, IL-6, and MAPK1 and found by molecular docking, which may be the basis for its inhibitory effect on myocardial hypertrophy. In addition, in vitro experiments showed that hirudin could inhibit AngII-induced hypertrophy and death of H9c2 cells, and significantly reduce the mRNA and protein expression levels of STAT3, MAPK1, and IL-6. The above conclusions were verified in primary rat cardiomyocytes. Conclusion: Hirudin can be used to treat myocardial hypertrophy through a complex mechanism. The application of network pharmacology and experimental validation can promote the application of hirudin in cardiovascular diseases and the interpretation and understanding of molecular biological mechanisms.
Collapse
Affiliation(s)
- Mengnan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Gang Luo
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Dong
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenlu He
- Sino-Portugal TCM International Cooperation Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Qibiao Wu, ; Hua Zhou, ; Sijin Yang,
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Qibiao Wu, ; Hua Zhou, ; Sijin Yang,
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Qibiao Wu, ; Hua Zhou, ; Sijin Yang,
| |
Collapse
|
8
|
Long C, Lin Q, Mo J, Xiao Y, Xie Y. Hirudin attenuates puromycin aminonucleoside‐induced glomerular podocyte injury by inhibiting MAPK‐mediated endoplasmic reticulum stress. Drug Dev Res 2022; 83:1047-1056. [PMID: 35277865 DOI: 10.1002/ddr.21932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chunli Long
- College of Basic Medicine Guangxi University of Traditional Chinese Medicine Nanning China
| | - Qiang Lin
- Department of Nephrology The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Nanning China
| | - Junlin Mo
- College of Graduate school Guangxi University of Traditional Chinese Medicine Nanning China
| | - Yangping Xiao
- College of Graduate school Guangxi University of Traditional Chinese Medicine Nanning China
| | - Yongxiang Xie
- Department of Nephrology The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine Nanning China
| |
Collapse
|
9
|
Yang X, Han X, Wen Q, Qiu X, Deng H, Chen Q. Protective Effect of Keluoxin against Diabetic Nephropathy in Type 2 Diabetic Mellitus Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8455709. [PMID: 34712350 PMCID: PMC8548109 DOI: 10.1155/2021/8455709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a chronic kidney disease that develops in patients with diabetes mellitus (DM). Renal dysfunction and persistent proteinuria are the main clinical features of DN. Podocyte injury is an important cause of persistent proteinuria and diabetic kidney disease (DKD) progression. Traditional Chinese patent medicines can improve renal function by enhancing autophagy and promoting apoptosis. Keluoxin is a Chinese patent medicine that has the effect of invigorating qi and nourishing yin, activating blood, and eliminating blood stasis. Therefore, we hypothesized that Keluoxin may have a protective effect against diabetic nephropathy in rats with type 2 DM. Rats induced with diabetes through streptozocin (STZ) injection and a high-fat and high-sugar diet were treated with Keluoxin (0.63 g/kg/day) for 8 weeks, and renal function, biochemical indicators, and histopathological changes in renal tissues were observed. Immunofluorescence staining and western blot analysis were used to detect the expression of autophagy-related proteins. The results showed that Keluoxin reduced blood glucose and lipid levels, improved renal function, and alleviated renal histopathological changes in rats with DN. The therapeutic effect was similar to that of Irbesartan (15.6 mg/kg/day). It is inferred that the mechanism works through reducing the obstruction of downstream pathways of autophagy by improving the lysosomal degradation function and alleviating podocyte injury. This study demonstrates that Keluoxin could regulate autophagy in podocytes, alleviate kidney injury in rats with DN, and have a protective effect on renal function; its mechanism can thus be a potential therapy for DN.
Collapse
Affiliation(s)
- Xiaomei Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xuke Han
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qing Wen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xianliang Qiu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Huan Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
10
|
Junren C, Xiaofang X, Huiqiong Z, Gangmin L, Yanpeng Y, Xiaoyu C, Yuqing G, Yanan L, Yue Z, Fu P, Cheng P. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives - A Review. Front Pharmacol 2021; 12:660757. [PMID: 33935784 PMCID: PMC8085555 DOI: 10.3389/fphar.2021.660757] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Hirudin, an acidic polypeptide secreted by the salivary glands of Hirudo medicinalis (also known as "Shuizhi" in traditional Chinese medicine), is the strongest natural specific inhibitor of thrombin found so far. Hirudin has been demonstrated to possess potent anti-thrombotic effect in previous studies. Recently, increasing researches have focused on the anti-thrombotic activity of the derivatives of hirudin, mainly because these derivatives have stronger antithrombotic activity and lower bleeding risk. Additionally, various bioactivities of hirudin have been reported as well, including wound repair effect, anti-fibrosis effect, effect on diabetic complications, anti-tumor effect, anti-hyperuricemia effect, effect on cerebral hemorrhage, and others. Therefore, by collecting and summarizing publications from the recent two decades, the pharmacological activities, pharmacokinetics, novel preparations and derivatives, as well as toxicity of hirudin were systematically reviewed in this paper. In addition, the clinical application, the underlying mechanisms of pharmacological effects, the dose-effect relationship, and the development potential in new drug research of hirudin were discussed on the purpose of providing new ideas for application of hirudin in treating related diseases.
Collapse
Affiliation(s)
- Chen Junren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xie Xiaofang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Huiqiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Gangmin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Yanpeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cao Xiaoyu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gao Yuqing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Yanan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China.,West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Peng Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Yang R, Liu C, Li Q, Wang W, Wu B, Chen A, Wang B, Li W, Chen J. Artificial intelligence based identification of the functional role of hirudin in diabetic erectile dysfunction treatment. Pharmacol Res 2021; 163:105244. [PMID: 33053440 DOI: 10.1016/j.phrs.2020.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022]
Abstract
Diabetic erectile dysfunction (DED) hugely affected the patients' sexual life quality. However, there are no satisfactory therapeutic methods and intervention targets for this subtype of erectile dysfunction (ED). Inspired by the clinical practice of traditional Chinese medicine (TCM), we found that hirudin, the main active ingredient in the leech, could ameliorate the ED symptoms of the DED mouse model. To further reveal the underlying mechanism of hirudin, we designed a novel strategy to discover potential targets based on the diagnostic system of TCM, and found that myeloperoxidase (MPO) was a promising target of hirudin. Hirudin directly interacts with MPO and inhibits its activity, thus further decreases the content of oxidized low-density lipoprotein (ox-LDL) in serum. Our results demonstrated that the hirudin could ameliorate the symptoms of DED, and revealed the underlying mechanism of hirudin in regulating the activity of MPO.
Collapse
Affiliation(s)
- Ruocong Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianqian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Weilu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Bingbing Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aiping Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianxin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
12
|
Chen J, Shi W, Xu Y, Zhang H, Chen B. Hirudin prevents vascular endothelial cell apoptosis and permeability enhancement induced by the serum from rat with chronic renal failure through inhibiting RhoA/ROCK signaling pathway. Drug Dev Res 2020; 82:553-561. [PMID: 33345328 DOI: 10.1002/ddr.21773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022]
Abstract
Endothelial cells injury and activation contribute to arteriovenous fistula (AVF) stenosis. Hirudin (Hiru) can inhibit the activity of thrombin, which was reported to enhance endothelial cell permeability and promote vascular inflammatory responses. RhoA/ROCK signaling pathway is also important in regulating vascular endothelial permeability. This study aimed to investigate the role of Hiru on the viability and permeability of human umbilical vein endothelial cells (HUVECs) following stimulation of serum from rat with chronic renal failure (CRF) and illustrated the effects of Hiru on RhoA/ROCK signaling. Wistar rats were randomly divided into control group and CRF group. Serum from each group was collected to stimulate HUVECs. Proliferation capability was estimated with Cell Count Kit-8 (CCK-8) assay. Transwell assay was performed to determine permeability. Cell apoptosis was examined using Tunel staining. Telomere length and telomerase activity were determined by qPCR. Moreover, the expression of RhoA, ROCK1 and ROCK2 was estimated via western blot. Results showed that the serum from CRF rat significantly inhibited cell viability while enhanced cell permeability and apoptosis. Different concentrations of Hiru prevented the above effects caused by CRF serum. Additionally, Hiru recovered the CRF serum-induced decreased telomere length and telomerase activity. Hiru also inhibited the protein expression of RhoA, ROCK1 and ROCK2, which were activated by CRF serum. Moreover, the ROCK inhibitor, Y27632, exhibited similar effects with Hiru. In conclusion, Hiru-restored HUVECs cell viability, telomere length and telomerase activity, suppressed permeability and apoptosis in the presence of CRF serum might depend on inactivating the RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Wenbin Shi
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Yan Xu
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Huaming Zhang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Bo Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| |
Collapse
|
13
|
Effects of Hirudin on High Glucose-Induced Oxidative Stress and Inflammatory Pathway in Rat Dorsal Root Ganglion Neurons. Chin J Integr Med 2020; 26:197-204. [DOI: 10.1007/s11655-019-2712-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 01/24/2023]
|