1
|
Shimazu K, Ookoshi K, Fukumitsu S, Kagami H, Mitsuhata C, Nomura R, Aida K. Effects of Oleanolic Acid Derived from Wine Pomace on Periodontopathic Bacterial Growth in Healthy Individuals: A Randomized Placebo-Controlled Study. Dent J (Basel) 2024; 12:133. [PMID: 38786531 PMCID: PMC11119493 DOI: 10.3390/dj12050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal disease is caused by oral pathogenic bacteria and is associated with systemic disease and frailty. Therefore, its prevention is crucial in extending healthy life expectancy. This study aimed to evaluate the effect of orally administered oleanolic acid, extracted from wine pomace, on periodontopathic bacterial growth in healthy individuals. In this randomized, placebo-controlled, double-blind, parallel-group comparison study, 84 healthy adults were assigned to a placebo (n = 29), low-dose (n = 29, 9 mg oleanolic acid), or high-dose (n = 26, 27 mg oleanolic acid) groups. The number of oral bacteria in their saliva, collected before and 5 h after administration, was determined using the polymerase chain reaction-invader technique. The proportion of periodontopathic bacteria among the total oral bacteria in the saliva was calculated. Oleanolic acid significantly decreased the proportion of Porphyromonas gingivalis among the total oral bacteria in a dose-dependent manner (p = 0.005 (low-dose) and p = 0.003 (high-dose) vs. placebo, Williams' test). Moreover, high-dose oleanolic acid decreased the proportion of Tannerella forsythia (p = 0.064 vs. placebo, Williams' test). Periodontopathic bacteria are closely associated with the development and progression of periodontal disease; thus, the continuous daily intake of oleanolic acid derived from pomace may be helpful in maintaining a healthy oral microbiome by controlling the proportion of periodontopathic bacteria.
Collapse
Affiliation(s)
- Kyoko Shimazu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Kouta Ookoshi
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Satoshi Fukumitsu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | | | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Kazuhiko Aida
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| |
Collapse
|
2
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
3
|
Diarra A, Agossa K, Youl ENH. The Potential of Cochlospermum tinctorium, Flueggea virosa, and Waltheria indica Traditional Plants From Burkina Faso in Treating Periodontitis: A Systematic Review. Cureus 2024; 16:e52471. [PMID: 38371022 PMCID: PMC10873538 DOI: 10.7759/cureus.52471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Periodontitis is a chronic, infectious, and inflammatory oral disease with a high prevalence in developing countries, where limited access to modern dental care curtails its treatment. This review is dedicated to examining three indigenous botanical species frequently recommended by traditional therapists for the treatment of periodontal disease, namely, Cochlospermum tinctorium, Flueggea virosa, and Waltheria indica, with the aim of elucidating their chemical constituents and pharmacological properties that may support their empirical use. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines extension for scoping reviews. An electronic search was conducted in three databases (PubMed, Science Direct, and Google Scholar) up to July 2022. Out of 700 articles initially identified, only 11 were deemed eligible for inclusion; a substantial majority (80%) of these comprised in vitro studies. Among the trio of botanicals considered, Waltheria indica emerged as the most extensively investigated (65% of the studies). The administration of these plants was predominantly in the form of decoctions or macerations, with extraction methods employing alcoholic agents (ethanolic and methanolic), hydroalcoholic solutions, or aqueous solvents. The selected plants exhibited notable richness in polyphenolic compounds, particularly flavonoids, and demonstrated anti-inflammatory effects, as indicated in 60% of the studies, along with antibacterial properties (against Streptococcus aureus and Helicobacter pylori). None of the studies reported antibacterial activity against periodontal pathogens. The pharmacological properties of these plants may hold promise for the management of oral inflammatory and infectious conditions. Nevertheless, further comprehensive investigations are imperative to establish their safety and efficacy for periodontitis treatment before conclusive recommendations can be formulated.
Collapse
Affiliation(s)
- Abdoulaziz Diarra
- Periodontology, Training and Research Unit in Health Sciences (UFR/SDS) University of Ouaga I, Pr. Joseph Ki-Zerbo, Ouagadougou, BFA
| | - Kevimy Agossa
- Periodontology, Lille University Hospital, Lille, FRA
| | - Estelle Noëla Hoho Youl
- Pharmacology, Training and Research Unit in Health Sciences (UFR/SDS) University of Ouaga I, Pr. Joseph Ki-Zerbo, Ouagadougou, BFA
| |
Collapse
|
4
|
Leal IDC, Rabelo CS, de Melo MAS, Silva PGDB, Costa FWG, Passos VF. Polyphenols for Preventing Dental Erosion in Pre-clinical Studies with in situ Designs and Simulated Acid Attack. PLANTA MEDICA 2023; 89:1034-1044. [PMID: 37230482 DOI: 10.1055/a-2100-3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dental erosion is a chemical process characterized by acid dissolution of dental hard tissue, and its etiology is multifactorial. Dietary polyphenols can be a strategy for dental erosion management, collaborating to preserve dental tissues through resistance to biodegradation. This study describes a comprehensive review to interpret the effects of polyphenols on dental erosion of pre-clinical models with in situ designs and simulated acid attacks on enamel and dentin samples. We aim to evaluate evidence about Polyphenols' effects in the type of dental substrate, parameters of erosive cycling chosen in the in situ models, and the possible mechanisms involved. An evidence-based literature review was conducted using appropriate search strategies developed for main electronic databases (PubMed, Scopus, Web of Science, LILACS, EMBASE, LIVIVO, CINAHL, and DOSS) and gray literature (Google Scholar). The Joanna Briggs Institute checklist was used to evaluate the quality of the evidence. From a total of 1900 articles, 8 were selected for evidence synthesis, including 224 specimens treated with polyphenols and 224 control samples. Considering the studies included in this review, we could observe that polyphenols tend to promote a reduction in erosive and abrasive wear compared to control groups. However, as the few studies included have a high risk of bias with different methodologies and the estimated effect size is low, this conclusion should not be extrapolated to clinical reality.
Collapse
Affiliation(s)
- Isabelly de Carvalho Leal
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Cibele Sales Rabelo
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Mary Anne Sampaio de Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, United States
| | | | - Fábio Wildson Gurgel Costa
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Vanara Florêncio Passos
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
5
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Current Infections of the Orofacial Region: Treatment, Diagnosis, and Epidemiology. Life (Basel) 2023; 13:life13020269. [PMID: 36836626 PMCID: PMC9966653 DOI: 10.3390/life13020269] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Undoubtedly, diagnosing and managing infections is one of the most challenging issues for orofacial clinicians. As a result of the diversity of symptoms, complicated behavior, and sometimes confusing nature of these conditions, it has become increasingly difficult to diagnose and treat them. It also highlights the need to gain a deeper insight into the orofacial microbiome as we try to improve our understanding of it. In addition to changes in patients' lifestyles, such as changes in diet, smoking habits, sexual practices, immunosuppressive conditions, and occupational exposures, there have been changes in patients' lifestyles that complicate the issue. Recent years have seen the development of new infection treatments due to the increased knowledge about the biology and physiology of infections. This review aimed to provide a comprehensive overview of the types of infections in the mouth, including the types that viruses, fungi, or bacteria may cause. It is important to note that we searched the published literature in the Scopus, Medline, Google Scholar, and Cochran databases from 2010 to 2021 using the following keywords: "Orofacial/Oral Infections," "Viral/Fungal/Bacterial Infections", "Oral Microbiota" And "Oral Microflora" without limiting our search to languages and study designs. According to the evidence, the most common infections in the clinic include herpes simplex virus, human papillomavirus, Candida albicans, Aspergillus, Actinomycosis, and Streptococcus mutans. The purpose of this study is to review the new findings on characteristics, epidemiology, risk factors, clinical manifestations, diagnosis, and new treatment for these types of infectious diseases.
Collapse
|
7
|
Neculae E, Gosav EM, Valasciuc E, Dima N, Floria M, Tanase DM. The Oral Microbiota in Valvular Heart Disease: Current Knowledge and Future Directions. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010182. [PMID: 36676130 PMCID: PMC9862471 DOI: 10.3390/life13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Oral microbiota formation begins from birth, and everything from genetic components to the environment, alongside the host's behavior (such as diet, smoking, oral hygiene, and even physical activity), contributes to oral microbiota structure. Even though recent studies have focused on the gut microbiota's role in systemic diseases, the oral microbiome represents the second largest community of microorganisms, making it a new promising therapeutic target. Periodontitis and dental caries are considered the two main consequences of oral bacterial imbalance. Studies have shown that oral dysbiosis effects are not limited locally. Due to technological advancement, research identified oral bacterial species in heart valves. This evidence links oral dysbiosis with the development of valvular heart disease (VHD). This review focuses on describing the mechanism behind prolonged local inflammation and dysbiosis, that can induce bacteriemia by direct or immune-mediated mechanisms and finally VHD. Additionally, we highlight emerging therapies based on controlling oral dysbiosis, periodontal disease, and inflammation with immunological and systemic effects, that exert beneficial effects in VHD management.
Collapse
Affiliation(s)
- Ecaterina Neculae
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
8
|
Novel Dental Restorative Solutions for Natural Teeth and Implants. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120772. [PMID: 36550979 PMCID: PMC9774112 DOI: 10.3390/bioengineering9120772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The long-term survival of restorations in the oral cavity has always been one of the most significant challenges in modern dental practice [...].
Collapse
|
9
|
Phascinating Phages. Microorganisms 2022; 10:microorganisms10071365. [PMID: 35889083 PMCID: PMC9320029 DOI: 10.3390/microorganisms10071365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Treatment of infections caused by bacteria has become more complex due to the increasing number of bacterial strains that are resistant to conventional antimicrobial therapy. A highly promising alternative appears to be bacteriophage (phage) therapy, in which natural predators of bacteria, bacteriophages, play a role. Although these viruses were first discovered in 1917, the development of phage therapy was impacted by the discovery of antibiotics, which spread more quickly and effectively in medical practice. Despite this, phage therapy has a long history in Eastern Europe; however, Western countries are currently striving to reintroduce phage therapy as a tool in the fight against diseases caused by drug-resistant bacteria. This review describes phage biology, bacterial and phage competition mechanisms, and the benefits and drawbacks of phage therapy. The results of various laboratory experiments, and clinical cases where phage therapy was administered, are described.
Collapse
|
10
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
11
|
Tahmaz H, Yüksel Küskü D. Does u.v. light affect the total phenolic compound, anthocyanin, antioxidant capacity, and sensory profiles in wines? Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hande Tahmaz
- Department of Horticulture Faculty of Agriculture Ankara University Ankara 06110 Turkey
| | - Damla Yüksel Küskü
- Landscape and Ornamental Plants Vocational High School Bilecik Seyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
12
|
Nitrite-Free Implications on Consumer Acceptance and the Behavior of Pathogens in Cured Pork Loins. Foods 2022; 11:foods11060796. [PMID: 35327219 PMCID: PMC8948880 DOI: 10.3390/foods11060796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Cured pork loins are valued products due to their particular sensory characteristics. These products are usually prepared with nitrite to guarantee adequate color and pathogen control. The use of nitrite in meat products has been criticized due to its potential contribution to carcinogenic N-nitroso-compound formation. The present work aimed to evaluate the effect of eliminating nitrite from the manufacturing of cured loins made with wine- and water-based marinades on the color evaluation of consumers and on the behavior of Clostridium sporogenes, Listeria monocytogenes, and Salmonella. The use of nitrite in processing cured loins resulted in a color considered adequate by more than 50% of the consumers. When nitrite was not used, the color was described mainly as weak. The hedonic evaluation of cured loins did not reflect the color evaluation. The samples with a weak and an adequate color had similar hedonic evaluations. The present work did not allow us to infer the potential interest in injecting S. xylosus into meat to prepare cured loins. The use of nitrite did not affect the survival of Cl. sporogenes, L. monocytogenes, or Salmonella. The reduction in the aw was the primary determinant influencing pathogen survival. The production of nitrite-free cured loins seems possible once the control of pathogens can be achieved. However, the product will have a weaker color. Consumers appreciate sensory aspects other than color, which, combined with the positive impact of the “additive-free” claim, can support the possibility of producing cured loins without nitrite.
Collapse
|
13
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
14
|
Pellerin G, Bazinet L, Grenier D. Effect of cranberry juice deacidification on its antibacterial activity against periodontal pathogens and its anti-inflammatory properties in an oral epithelial cell model. Food Funct 2021; 12:10470-10483. [PMID: 34554173 DOI: 10.1039/d1fo01552d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cranberries are widely recognized as a functional food that can promote oral health. However, the high concentration of organic acids in cranberry juice can cause tooth enamel erosion. Electrodialysis with bipolar membrane (EDBM) is a process used for the deacidification of cranberry juice. The present study investigated whether the removal of organic acids (0%, 19%, 42%, 60%, and 79%) from cranberry juice by EDBM affects its antibacterial activity against major periodontopathogens as well as its anti-inflammatory properties in an oral epithelial cell model. A deacidification rate ≥60% attenuated the bactericidal effect against planktonic and biofilm-embedded Aggregatibacter actinomycetemcomitans but had no impact on Porphyromonas gingivalis and Fusobacterium nucleatum. Cranberry juice increased the adherence of A. actinomycetemcomitans and P. gingivalis to oral epithelial cells, but reduced the adherence of F. nucleatum by half regardless of the deacidification rate. F. nucleatum produced more hydrogen sulfide when it was exposed to deacidified cranberry juice with a deacidification rate ≥42% compared to the raw beverage. Interestingly, the removal of organic acids from cranberry juice lowered the cytotoxicity of the beverage for oral epithelial cells. Deacidification attenuated the anti-inflammatory effect of cranberry juice in an in vitro oral epithelial cell model. The secretion of IL-6 by lipopolysaccharide (LPS)-stimulated oral epithelial cells exposed to cranberry juice increased proportionally with the deacidification rate. No such effect was observed with respect to the production of IL-8. This study provided evidence that organic acids, just like phenolic compounds, might contribute to the health benefits of cranberry juice against periodontitis.
Collapse
Affiliation(s)
- Geneviève Pellerin
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Sciences, Université Laval, Quebec City, QC, Canada G1V 0A6.,Laboratoire de Transformation Alimentaire et Procédés Électro-Membranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec City, QC, Canada G1V 0A6.
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF) and Department of Food Sciences, Université Laval, Quebec City, QC, Canada G1V 0A6.,Laboratoire de Transformation Alimentaire et Procédés Électro-Membranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Université Laval, Quebec City, QC, Canada G1V 0A6.
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada G1V 0A6.
| |
Collapse
|
15
|
Antiviral Activity of Vitis vinifera Leaf Extract against SARS-CoV-2 and HSV-1. Viruses 2021; 13:v13071263. [PMID: 34209556 PMCID: PMC8310055 DOI: 10.3390/v13071263] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Vitis vinifera represents an important and renowned source of compounds with significant biological activity. Wines and winery bioproducts, such as grape pomace, skins, and seeds, are rich in bioactive compounds against a wide range of human pathogens, including bacteria, fungi, and viruses. However, little is known about the biological properties of vine leaves. The aim of this study was the evaluation of phenolic composition and antiviral activity of Vitis vinifera leaf extract against two human viruses: the Herpes simplex virus type 1 (HSV-1) and the pandemic and currently widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). About 40 phenolic compounds were identified in the extract by HPLC-MS/MS analysis: most of them were quercetin derivatives, others included derivatives of luteolin, kaempferol, apigenin, isorhamnetin, myricetin, chrysoeriol, biochanin, isookanin, and scutellarein. Leaf extract was able to inhibit both HSV-1 and SARS-CoV-2 replication in the early stages of infection by directly blocking the proteins enriched on the viral surface, at a very low concentration of 10 μg/mL. These results are very promising and highlight how natural extracts could be used in the design of antiviral drugs and the development of future vaccines.
Collapse
|
16
|
Sánchez MC, Alonso-Español A, Ribeiro-Vidal H, Alonso B, Herrera D, Sanz M. Relevance of Biofilm Models in Periodontal Research: From Static to Dynamic Systems. Microorganisms 2021; 9:428. [PMID: 33669562 PMCID: PMC7922797 DOI: 10.3390/microorganisms9020428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.
Collapse
Affiliation(s)
- María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Bettina Alonso
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| |
Collapse
|
17
|
Moreno-Arribas MV, Bartolomé B, Peñalvo JL, Pérez-Matute P, Motilva MJ. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients 2020; 12:E3082. [PMID: 33050383 PMCID: PMC7600228 DOI: 10.3390/nu12103082] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to the most common form of dementia in elderly people. Modifiable dietary and lifestyle factors could either accelerate or ameliorate the aging process and the risk of developing AD and other age-related morbidities. Emerging evidence also reports a potential link between oral and gut microbiota alterations and AD. Dietary polyphenols, in particular wine polyphenols, are a major diver of oral and gut microbiota composition and function. Consequently, wine polyphenols health effects, mediated as a function of the individual's oral and gut microbiome are considered one of the recent greatest challenges in the field of neurodegenerative diseases as a promising strategy to prevent or slow down AD progression. This review highlights current knowledge on the link of oral and intestinal microbiome and the interaction between wine polyphenols and microbiota in the context of AD. Furthermore, the extent to which mechanisms bacteria and polyphenols and its microbial metabolites exert their action on communication pathways between the brain and the microbiota, as well as the impact of the molecular mediators to these interactions on AD patients, are described.
Collapse
Affiliation(s)
- M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - José L. Peñalvo
- Institute of Tropical Medicine, Unit Noncommunicable Diseases, Natl Str 155, B-2000 Antwerp, Belgium;
| | | | - Maria José Motilva
- Institute of Grapevine and Wine Sciences (ICVV), CSIC-University of La Rioja-Government of La Rioja, Autovía del Camino de Santiago LO-20 Exit 13, 26007 Logroño, Spain;
| |
Collapse
|
18
|
Ribeiro-Vidal H, Sánchez MC, Alonso-Español A, Figuero E, Ciudad MJ, Collado L, Herrera D, Sanz M. Antimicrobial Activity of EPA and DHA against Oral Pathogenic Bacteria Using an In Vitro Multi-Species Subgingival Biofilm Model. Nutrients 2020; 12:nu12092812. [PMID: 32937742 PMCID: PMC7551721 DOI: 10.3390/nu12092812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
In search for natural products with antimicrobial properties for use in the prevention and treatment of periodontitis, the purpose of this investigation was to evaluate the antimicrobial activity of two omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), using an in vitro multi-species subgingival biofilm model including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The antimicrobial activities of EPA and DHA extracts (100 µM) and the respective controls were assessed on 72 h biofilms by their submersion onto discs for 60 s. Antimicrobial activity was evaluated by quantitative polymerase chain reaction (qPCR), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). ANOVA with Bonferroni correction was used to evaluate the antimicrobial activity of each of the fatty acids. Both DHA and EPA significantly reduced (p < 0.001 in all cases) the bacterial strains used in this biofilm model. The results with CLSM were consistent with those reported with qPCR. Structural damage was evidenced by SEM in some of the observed bacteria. It was concluded that both DHA and EPA have significant antimicrobial activity against the six bacterial species included in this biofilm model.
Collapse
Affiliation(s)
- Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Maria José Ciudad
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - Luís Collado
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
- Correspondence: ; Tel.: +34-913-942-021
| |
Collapse
|
19
|
Polyphenols in Dental Applications. Bioengineering (Basel) 2020; 7:bioengineering7030072. [PMID: 32645860 PMCID: PMC7552636 DOI: 10.3390/bioengineering7030072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: polyphenols are a broad class of molecules extracted from plants and have a large repertoire of biological activities. Biomimetic inspiration from the effects of tea or red wine on the surface of cups or glass lead to the emergence of versatile surface chemistry with polyphenols. Owing to their hydrogen bonding abilities, coordination chemistry with metallic cations and redox properties, polyphenols are able to interact, covalently or not, with a large repertoire of chemical moieties, and can hence be used to modify the surface chemistry of almost all classes of materials. (2) Methods: the use of polyphenols to modify the surface properties of dental materials, mostly enamel and dentin, to afford them with better adhesion to resins and improved biological properties, such as antimicrobial activity, started more than 20 years ago, but no general overview has been written to our knowledge. (3) Results: the present review is aimed to show that molecules from all the major classes of polyphenolics allow for low coast improvements of dental materials and engineering of dental tissues.
Collapse
|
20
|
Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants (Basel) 2020; 9:antiox9060502. [PMID: 32521718 PMCID: PMC7346141 DOI: 10.3390/antiox9060502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Oral health is considered an important factor of general health and it contributes to the quality of life. Despite the raising awareness of preventive measures, the prevalence of oral health conditions continues to increase. In this context, a growing interest in investigating natural resources like Vitis vinifera (V. vinifera) phenolic compounds (PhCs) as oral health promoters has emerged. This paper aims to review the evidence about the bioactivities of V. vinifera by-products in oral health. Up to date, a high number of studies have thoroughly reported the antimicrobial and antiplaque activity of V. vinifera extracts against S. mutans or in multi-species biofilms. Moreover, the bioactive compounds from V. vinifera by-products have been shown to modulate the periodontal inflammatory response and the underlying oxidative stress imbalance induced by the pathogenic bacteria. Considering these beneficial effects, the utility of V. vinifera by-products in the maintaining of oral health and the necessary steps towards the development of oral care products were emphasized. In conclusion, the high potential of V. vinifera by-products could be valorized in the development of oral hygiene products with multi-target actions in the prevention and progression of several oral conditions.
Collapse
|
21
|
|
22
|
The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers (Basel) 2020; 12:cancers12061406. [PMID: 32486066 PMCID: PMC7352899 DOI: 10.3390/cancers12061406] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the leading cause of cancer-related deaths. Recently, several studies have demonstrated that gut microbiota can alter CRC susceptibility and progression by modulating mechanisms such as inflammation and DNA damage, and by producing metabolites involved in tumor progression or suppression. Dysbiosis of gut microbiota has been observed in patients with CRC, with a decrease in commensal bacterial species (butyrate-producing bacteria) and an enrichment of detrimental bacterial populations (pro-inflammatory opportunistic pathogens). CRC is characterized by altered production of bacterial metabolites directly involved in cancer metabolism including short-chain fatty acids and polyamines. Emerging evidence suggests that diet has an important impact on the risk of CRC development. The intake of high-fiber diets and the supplementation of diet with polyunsaturated fatty acids, polyphenols and probiotics, which are known to regulate gut microbiota, could be not only a potential mechanism for the reduction of CRC risk in a primary prevention setting, but may also be important to enhance the response to cancer therapy when used as adjuvant to conventional treatment for CRC. Therefore, a personalized modulation of the pattern of gut microbiome by diet may be a promising approach to prevent the development and progression of CRC and to improve the efficacy of antitumoral therapy.
Collapse
|
23
|
Cueva C, Silva M, Pinillos I, Bartolomé B, Moreno-Arribas MV. Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients 2020; 12:E625. [PMID: 32120799 PMCID: PMC7146370 DOI: 10.3390/nu12030625] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed type of cancer worldwide. Dietary features play an important role in its development, and the involvement of human microbial communities in this pathology has also recently been recognized. Individuals with CRC display alterations in gut bacterial composition and a notably higher abundance of putative oral bacteria in colonic tumors. Many experimental studies and preclinical evidence propose that dietary polyphenols have a relevant role in CRC development and progression, mainly attributed to their immunomodulatory activities. Furthermore, polyphenols can modulate oral and gut microbiota, and in turn, intestinal microbes catabolize polyphenols to release metabolites that are often more active and better absorbed than the original phenolic compounds. The current study aimed to review and summarize current knowledge on the role of microbiota and the interactions between dietary polyphenols and microbiota in relation to CRC development. We have highlighted the mechanisms by which dietary polyphenols and/or their microbial metabolites exert their action on the pathogenesis and prevention of CRC as modulators of the composition and/or activity of oral and intestinal microbiota, including novel screening biomarkers and possible nutritional therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (C.C.); (M.S.); (I.P.); (B.B.)
| |
Collapse
|
24
|
Sánchez MC, Ribeiro-Vidal H, Bartolomé B, Figuero E, Moreno-Arribas MV, Sanz M, Herrera D. New Evidences of Antibacterial Effects of Cranberry Against Periodontal Pathogens. Foods 2020; 9:E246. [PMID: 32102416 PMCID: PMC7074180 DOI: 10.3390/foods9020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
The worrying rise in antibiotic resistances emphasizes the need to seek new approaches for treating and preventing periodontal diseases. The purpose of this study was to evaluate the antibacterial and anti-biofilm activity of cranberry in a validated in vitro biofilm model. After chemical characterization of a selected phenolic-rich cranberry extract, its values for minimum inhibitory concentration and minimum bactericidal concentration were calculated for the six bacteria forming the biofilm (Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans). Antibacterial activity of the cranberry extract in the formed biofilm was evaluated by assessing the reduction in bacteria viability, using quantitative polymerase chain reaction (qPCR) combined with propidium monoazide (PMA), and by confocal laser scanning microscopy (CLSM), and anti-biofilm activity by studying the inhibition of the incorporation of different bacteria species in biofilms formed in the presence of the cranberry extract, using qPCR and CLSM. In planktonic state, bacteria viability was significantly reduced by cranberry (p < 0.05). When growing in biofilms, a significant effect was observed against initial and early colonizers (S. oralis (p ≤ 0.017), A. naeslundii (p = 0.006) and V. parvula (p = 0.010)) after 30 or 60 s of exposure, while no significant effects were detected against periodontal pathogens (F. nucleatum, P. gingivalis or A. actinomycetemcomitans (p > 0.05)). Conversely, cranberry significantly (p < 0.001 in all cases) interfered with the incorporation of five of the six bacteria species during the development of 6 h-biofilms, including P. gingivalis, A. actinomycetemcomitans, and F. nucleatum. It was concluded that cranberry had a moderate antibacterial effect against periodontal pathogens in biofilms, but relevant anti-biofilm properties, by affecting bacteria adhesion in the first 6 h of development of biofilms.
Collapse
Affiliation(s)
- María C. Sánchez
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain; (B.B.); (M.V.M.-A.)
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain; (B.B.); (M.V.M.-A.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| |
Collapse
|