1
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Ford ML, Cooley JM, Sripada V, Xu Z, Erickson JS, Bennett KP, Crawford DR. Eat4Genes: a bioinformatic rational gene targeting app and prototype model for improving human health. Front Nutr 2023; 10:1196520. [PMID: 37305078 PMCID: PMC10250663 DOI: 10.3389/fnut.2023.1196520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction and aims Dietary Rational Gene Targeting (DRGT) is a therapeutic dietary strategy that uses healthy dietary agents to modulate the expression of disease-causing genes back toward the normal. Here we use the DRGT approach to (1) identify human studies assessing gene expression after ingestion of healthy dietary agents with an emphasis on whole foods, and (2) use this data to construct an online dietary guide app prototype toward eventually aiding patients, healthcare providers, community and researchers in treating and preventing numerous health conditions. Methods We used the keywords "human", "gene expression" and separately, 51 different dietary agents with reported health benefits to search GEO, PubMed, Google Scholar, Clinical trials, Cochrane library, and EMBL-EBI databases for related studies. Studies meeting qualifying criteria were assessed for gene modulations. The R-Shiny platform was utilized to construct an interactive app called "Eat4Genes". Results Fifty-one human ingestion studies (37 whole food related) and 96 key risk genes were identified. Human gene expression studies were found for 18 of 41 searched whole foods or extracts. App construction included the option to select either specific conditions/diseases or genes followed by food guide suggestions, key target genes, data sources and links, dietary suggestion rankings, bar chart or bubble chart visualization, optional full report, and nutrient categories. We also present user scenarios from physician and researcher perspectives. Conclusion In conclusion, an interactive dietary guide app prototype has been constructed as a first step towards eventually translating our DRGT strategy into an innovative, low-cost, healthy, and readily translatable public resource to improve health.
Collapse
Affiliation(s)
- Morgan L. Ford
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica M. Cooley
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Zhengwen Xu
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John S. Erickson
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Kristin P. Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
4
|
Hazrati E, Gholami M, Farahani RH, Ghorban K, Ghayomzadeh M, Rouzbahani NH. The effect of IGF-1 plasma concentration on COVID-19 severity. Microb Pathog 2022; 164:105416. [PMID: 35092836 PMCID: PMC8789556 DOI: 10.1016/j.micpath.2022.105416] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The severity and fatality of Coronavirus disease 2019 (COVID-19) infection are not the same in the infected population. The host immune response and Immune-stimulating factors appear to play a role in COVID-19 infection outcome. insulin-like growth factor-1 (IGF-1) affects the immune system by controlling the endocrine system. Recently, the effect of IGF-1 levels on COVID-19 prognosis has been considered. OBJECTIVE To investigate the difference between circulating IGF-1 and inflammatory cytokines concentration among COVID-19 patients, infected patients admitted to the Intensive Care Unit (ICU) (n = 40; 35 ± 5 y) and patients with mild cases of COVID-19 (n = 40; 35 ± 5 y) were screened prior to participation in the study. There was no significant difference between the groups in terms of gender and preexisting inflammatory state. Collected samples were evaluated by ELISA for IGF-1 and IL-6. RESULTS The study outcomes included a significant decrease in IGF-1 and an increase in IL-6 serum concentration, as an inflammatory marker, for infected patients admitted to the Intensive Care Unit (ICU) (P ≤ 0.001). Finally, there was a significant increase in the IGF-1 and a decrease in the IL-6 serum concentration of hospitalized patients. DISCUSSION it appears that inflammatory cytokines (IL-6) serum concentration in the severe form of corona virus-based infections causes reduced defenses because of suppressed IGF-1. CONCLUSIONS Our findings show that lower IGF-1 concentrations are associated with a Severe form of COVID-19 disease. It seems, IGF-1 supplementation or anti-inflammatory treatment rescued the severe form of COVID-19 infection. Further studies are required to determine how to design COVID-19 therapeutic strategies targeting the IGF-1 pathway.
Collapse
Affiliation(s)
- Ebrahim Hazrati
- Department of Anesthesiology and Critical Care, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mohammad Gholami
- Department of Medical Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran; Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Ramin Hamidi Farahani
- Department of Infectious and Tropical Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran; Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Morteza Ghayomzadeh
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia, Australia.
| | - Negin Hosseini Rouzbahani
- Department of Medical Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran; Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Tang L, Xu M, Zhang L, Qu L, Liu X. Role of αVβ3 in Prostate Cancer: Metastasis Initiator and Important Therapeutic Target. Onco Targets Ther 2020; 13:7411-7422. [PMID: 32801764 PMCID: PMC7395689 DOI: 10.2147/ott.s258252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In prostate cancer, distant organ metastasis is the leading cause of patient death. Although the mechanism of malignant tumor metastasis is unclear, studies have confirmed that integrin αVβ3 plays an important role in this process. In prostate cancer, αVβ3 mediates adhesion, invasion, immune escape and neovascularization through interactions with different ligands. Among these ligands and in addition to proteins that are directly related to tumor invasion, other proteins that contain the RGD structure could also bind to αVβ3 and cause a number of biological effects. In this article, we summarized the ligand and downstream proteins related to αVβ3-mediated prostate cancer metastasis as well as some diagnostic and therapeutic measures targeting αVβ3.
Collapse
Affiliation(s)
- Lin Tang
- College of Mathematics and Computer Science, Chifeng University, Chifeng, The Inner Mongol Autonomous Region 024005, People's Republic of China
| | - Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China.,R&D Department, Seekgene Technology Co., Ltd, Beijing 100000, People's Republic of China
| | - Long Zhang
- Department of Hepatobiliary Surgery, Yidu Central Hospital, Weifang, Shandong 262500, People's Republic of China
| | - Lin Qu
- Department of Orthopaedic Surgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, Liaoning 114000, People's Republic of China
| | - Xiaoyan Liu
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, People's Republic of China
| |
Collapse
|