1
|
Hagag UI, Halfaya FM, Al-Muzafar HM, Al-Jameel SS, Amin KA, Abou El-Kheir W, Mahdi EA, Hassan GANR, Ahmed OM. Impacts of mesenchymal stem cells and hyaluronic acid on inflammatory indicators and antioxidant defense in experimental ankle osteoarthritis. World J Orthop 2024; 15:1056-1074. [PMID: 39600854 PMCID: PMC11586742 DOI: 10.5312/wjo.v15.i11.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND No effective treatment guarantees full recovery from osteoarthritis (OA), and few therapies have disadvantages. AIM To determine if bone marrow mesenchymal stem cells (BMMSCs) and hyaluronic acid (HA) treat ankle OA in Wistar rats. METHODS BMMSCs were characterized using flow cytometry with detection of surface markers [cluster of differentiation 90 (CD90), CD105, CD34, and CD45]. Fifty male Wistar rats were divided into five groups of 10 rats each: Group I, saline into the right tibiotarsal joint for 2 days; Group II, monosodium iodate (MIA) into the same joint; Groups III, MIA + BMMSCs; Group IV, MIA + HA; and Group V, MIA + BMMSCs + HA. BMMSCs (1 × 106 cells/rat), HA (75 µg/rat), and BMMSCs (1 × 106 cells/rat) alongside HA (75 µg/rat) were injected intra-articularly into the tibiotarsal joint of the right hind leg at the end of weeks 2, 3, and 4 after the MIA injection. RESULTS The elevated right hind leg circumference values in the paw and arthritis clinical score of osteoarthritic rats were significantly ameliorated at weeks 4, 5, and 6. Lipid peroxide significantly increased in the serum of osteoarthritic rats, whereas reduced serum glutathione and glutathione transferase levels were decreased. BMMSCs and HA significantly improved OA. The significantly elevated ankle matrix metalloproteinase 13 (MMP-13) mRNA and transforming growth factor beta 1 (TGF-β1) protein expression, and tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) serum levels in osteoarthritic rats were significantly downregulated by BMMSCs and HA. The effects of BMMSCs and HA on serum TNF-α and IL-17 were more potent than their combination. The lowered serum IL-4 levels in osteoarthritic rats were significantly upregulated by BMMSCs and HA. Additionally, BMMSCs and HA caused a steady decrease in joint injury and cartilage degradation. CONCLUSION BMMSCs and/or HA have anti-arthritic effects mediated by antioxidant and anti-inflammatory effects on MIA-induced OA. MMP-13 and TGF-β1 expression improves BMMSCs and/or HA effects on OA in Wistar rats.
Collapse
Affiliation(s)
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Beni-Suef University, Beni Suef 62111, Egypt
| | - Hessah Mohammed Al-Muzafar
- Department of Chemistry, College of Science, Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Suhailah Saud Al-Jameel
- Department of Chemistry, College of Science, Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry, Biochemistry, College of Science, Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Wael Abou El-Kheir
- Department of Immunology, Military Medical Academy, Cairo 11511, Al Qāhirah, Egypt
| | - Emad A Mahdi
- Department of Pathology, Beni-Suef University, Beni Suef 62111, Egypt
| | - Gamal Abdel-Nasser Ragab Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Osama Mohamed Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
2
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Khoramjouy M, Bayanati M, Noori S, Faizi M, Zarghi A. Effects of Ziziphus Jujuba Extract Alone and Combined with Boswellia Serrata Extract on Monosodium Iodoacetate Model of Osteoarthritis in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e134338. [PMID: 36896317 PMCID: PMC9990515 DOI: 10.5812/ijpr-134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Background As a chronic joint condition, osteoarthritis (OA) is a common problem among older people. Pain, aching, stiffness, swelling, decreased flexibility, reduced function, and disability are the symptoms of arthritis. Objectives In this study, we tested the extracts of Ziziphus jujuba (ZJE) and Boswellia serrata (BSE) to reduce OA symptoms as an alternative treatment. Methods NMRI mice were administered an intra-articular injection of monosodium iodoacetate (MIA; 1 mg/10 mL) in the left knee joint cavity for the induction of OA. Hydroalcoholic extracts of ZJE (250 and 500 mg/kg), BSE (100 and 200 mg/kg), and combined ZJE and BSE were orally administered daily for 21 days. Following behavioral tests, plasma samples were collected to detect inflammatory factors. To screen for general toxicity, acute oral toxicity was evaluated. Results Oral administration of all the hydroalcoholic extracts significantly increased the locomotor activity, pixel values of the foot-print area, paw withdrawal threshold, the latency of the withdrawal response to heat stimulation, and decreased the difference between pixel values of hind limbs compared to the vehicle group. Also, the elevated levels of IL-1β, IL-6, and TNF-α were reduced. As tested in this study, ZJE and BSE were practically nontoxic and had a high degree of safety. Conclusions This study demonstrated that the oral administration of ZJE and BSE slows the progression of OA through anti-nociceptive and anti-inflammatory properties. Oral co-administration of ZJE and BSE extracts can be used as herbal medicine to inhibit OA progression.
Collapse
Affiliation(s)
- Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Chemical Profiles and Antiobesity Effect of a Mixture of Astragalus membranaceus and Lithospermum erythrorhizon Extract in High Fat Diet Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9642427. [PMID: 35990844 PMCID: PMC9391103 DOI: 10.1155/2022/9642427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022]
Abstract
The present study aimed to evaluate the antiobesity potential and synergistic effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extracts, in HFD-induced obese mice. C57BL/6 mice were fed a normal diet (ND), high-fat diet (HFD), HFD + AM, HFD + LE or HFD + ALM16 (50, 100, and 200 mg/kg) daily for 5 weeks. Compared to the ND group, HFD-fed mice showed significant increases in body weight, food efficiency ratio, weights of white adipose tissues, adipocytes size, liver weight, and hepatic steatosis grade. However, ALM16 significantly reduced those increases induced by HFD. Moreover, as compared to the HFD group, the ALM16 group significantly ameliorated serum levels of lipid profiles (TG, TC, HDL, and LDL), adipokines (leptin and adiponectin), and liver damage markers (AST and ALT levels). Notably, ALM16 was more effective than AM or LE alone and had a similar or more potent effect than Garcinia cambogia extracts, as a positive control, at the same dose. These results demonstrate that ALM16 synergistically exerts anti-obesity effects based on complementary interactions between each component. Also, metabolic profiling between each extract and the ALM16 was confirmed by UPLC-QTOF/MS, and the difference was confirmed by relative quantification.
Collapse
|
5
|
Bao Z, Chen M, Li C, Shan Q, Wang Y, Yang W. Monosodium iodoacetate-induced subchondral bone microstructure and inflammatory changes in an animal model of osteoarthritis. Open Life Sci 2022; 17:781-793. [PMID: 35903181 PMCID: PMC9287849 DOI: 10.1515/biol-2022-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
The monosodium iodoacetate (MIA)-induced osteoarthritis (OA) may lead to cartilage degeneration and histopathological lesions. However, the correlation between inflammatory reaction and subchondral bone remodeling in a rodent osteoarthritic model is ambiguous. In this study, intra-articular injection of MIA was performed in 36 four-week-old specific pathogen-free male Wistar rats to induce OA. After 4 weeks of intervention, changes in intrinsic structural properties of the subchondral bones were measured, and the histological evaluation, as well as biochemical analysis, was conducted. We found that intra-articular injection of MIA increased chondrocyte apoptosis and promoted cartilage matrix degradation, such as cartilage surface defects and shallow or disappearing staining. MIA also induced inflammation, improved the expression of IL-1β, TNF-α, and matrix metalloproteinase, and decreased the expression of cartilage-specific proteins with the extension of modeling time. Meanwhile, the MIA also significantly accelerated the subchondral bone remodeling, as shown by the decreased subchondral bone density, thinning of trabeculae, disordered cartilage structure, and morphology. In conclusion, we have shown that MIA-induced rodent osteoarthritic model would cause decreased subchondral bone density, sparse trabecular bone, and other manifestations of osteoporosis accompanied by an inflammatory response, which would worsen with the progression of modeling time. Our results suggest that different phases of MIA-induced OA are associated with the changes in subchondral bone microstructure and the progression of local inflammation.
Collapse
Affiliation(s)
- Zheming Bao
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
- Orthopedics Department, 960th Hospital of PLA Joint Service Support Force, Jinan, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Chen Li
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Qing Shan
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Yichen Wang
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenshan Yang
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
6
|
Systemic, Intrathecal, and Intracerebroventricular Antihyperalgesic Effects of the Calcium Channel Blocker CTK 01512–2 Toxin in Persistent Pain Models. Mol Neurobiol 2022; 59:4436-4452. [DOI: 10.1007/s12035-022-02864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
7
|
Xu Y, Xue S, Zhang T, Jin X, Wang C, Lu H, Zhong Y, Chen H, Zhu L, Ma J, Sang W. Toddalolactone protects against osteoarthritis by ameliorating chondrocyte inflammation and suppressing osteoclastogenesis. Chin Med 2022; 17:18. [PMID: 35123541 PMCID: PMC8817519 DOI: 10.1186/s13020-022-00576-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoarthritis (OA) is widely recognized as the most common chronic joint disease accompanied by progressive cartilage and subchondral bone damage. Toddalolactone (TOD), a natural compound extracted from Toddalia asiatica (L.) Lam., has been widely used in the treatment of stroke, rheumatoid arthritis, and oedema. Nevertheless, what TOD acts as in the pathogenesis and progression of OA hasn’t been reported. In this investigation, we have aimed to determine how TOD affects OA in vitro and in vivo. Methods LPS (10 µg/ml) and IL-1β (10 ng/ml) were employed to induce chondrocyte inflammation or RANKL to induce osteoclast differentiation in bone marrow derived macrophages (BMMs). The effects of TOD on chondrocyte inflammation and osteoclast differentiation were evaluated. Anterior cruciate ligament transection (ACLT) was performed to develop an OA animal model and study the effects of TOD. Results We found that TOD inhibited the expression of inflammatory and catabolic mediators (IL-6, IL-8, TNF-α, MMP2, MMP9, and MMP13) in inflammatory chondrocytes in vitro. Furthermore, TOD was proven to inhibit RANKL-induced-osteoclastogenesis and inhibit the expression of osteoclast marker genes. Our data also confirmed that TOD suppressed the destruction of articular cartilage and osteoclastogenesis via inhibiting the activation of NF-κB and MAPK signalling pathways. In the ACLT mouse model, we found that TOD attenuated cartilage erosion and inhibited bone resorption. Conclusions These results showed that TOD can be adopted as a potential therapeutic agent for OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00576-w.
Collapse
|
8
|
Tanideh N, Borzooeian G, Lotfi M, Sani M, Irajie C, Ghaemmaghami P, Koohi-Hosseinabadi O, Tanideh R, Hashempour Sadeghian M, Borzooeian Z, Iraji A. Novel strategy of cartilage repairing via application of P. atlantica with stem cells and collagen. Artif Organs 2021; 45:1405-1421. [PMID: 34152615 DOI: 10.1111/aor.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is an inflammatory joint condition, still lacking effective treatments. Some factors consider as the main causes of OA, including biochemical, mechanical, and genetic factors. The growth of studies confirmed that modern medicine in combination with folk medicine regarding the arrival of reliable, efficient, and safe therapeutic products against OA. In the present study, the effects of various single and combinatorial treatments of knee articular cartilage, including stem cells, collagen, and P. atlantica hydroalcoholic leaves extract were investigated in a rat-induced OA model. On week 12 after OA confirmation, histopathology and radiography assessments were evaluated and the serum and synovial fluid levels of TAC, TNF-α, PEG2, MPO, MMP3, MMP13, and MDA were also measured. Combination therapy of OA-induced rats with hydroalcoholic extract of P. atlantic leaves, stem cells, and collagen considerably increased the efficacy of treatment as evidenced by increasing the TAC and lowering TNF-α, MPO, MMP3, and MMP13 compared to control group and even groups received single therapy. This is in agreement with a high amount of total phenolic compounds and antioxidant capacities of the hydroalcoholic extract of P. atlantic leaves. It is concluded that multifunctional agents targeting the pathophysiology of OA has exhibited significant therapeutic effects against OA.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Giti Borzooeian
- Department of Biology, Payam Noor University of Isfahan, Isfahan, Iran
| | - Mehrzad Lotfi
- Department of Radiology, Namazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Ghaemmaghami
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Pan L, Ding W, Li J, Gan K, Shen Y, Xu J, Zheng M. Aldehyde dehydrogenase 2 alleviates monosodium iodoacetate-induced oxidative stress, inflammation and apoptosis in chondrocytes via inhibiting aquaporin 4 expression. Biomed Eng Online 2021; 20:80. [PMID: 34362382 PMCID: PMC8349086 DOI: 10.1186/s12938-021-00917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a common cause of disability among the elderly. We aimed to explore the effects of aldehyde dehydrogenase (ALDH) 2 on the progression of KOA and identifying the potential mechanisms. METHODS First, ALDH2 expression in knee joint effusion of patients with KOA and the levels of oxidative stress-related markers were determined. After ALDH2 overexpression in monosodium iodoacetate (MIA)-treated SW1353 cells, cell viability was tested with CCK-8 assay. Subsequently, oxidative stress and inflammation-associated factors were measured. Meanwhile, cell apoptosis was assessed with TUNEL staining and expression of apoptosis-related proteins was detected by western blotting. To analyze the mechanism of ALDH2 in KOA, aquaporin 4 (AQP4) expression was determined using western blotting following ALDH2-upregulation. Subsequently, AQP4 was overexpressed to evaluate the changing of oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA with ALDH2 overexpression. RESULTS Results indicated that knee joint effusion with higher ALDH2 expression displayed lower oxidative stress. In addition, significantly upregulated ALDH2 expression was observed in MIA-treated SW1353 cells. ALDH2 overexpression oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA. Moreover, MIA-triggered elevated expression of AQP4, which was reduced by ALDH2 overexpression. By contrast, AQP4-upregulation abrogated the inhibitory effects of ALDH2 on oxidative stress, inflammation and apoptosis in MIA-induced SW1353 cells. CONCLUSIONS ALDH2 inactivates the expression of AQP4, by which mechanism the MIA-induced oxidative stress, inflammation and apoptosis injuries were alleviated, which provides a novel insight for understanding the mechanism of KOA and a promising target for the treatment of this disease.
Collapse
Affiliation(s)
- Lingxiao Pan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Wei Ding
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Jie Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Yandong Shen
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Junxiang Xu
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China
| | - Minzhe Zheng
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, No. 1111 Jiangnan Road, Ningbo, 315400, Zhejiang, China.
| |
Collapse
|
10
|
Valsamidou E, Gioxari A, Amerikanou C, Zoumpoulakis P, Skarpas G, Kaliora AC. Dietary Interventions with Polyphenols in Osteoarthritis: A Systematic Review Directed from the Preclinical Data to Randomized Clinical Studies. Nutrients 2021; 13:1420. [PMID: 33922527 PMCID: PMC8145539 DOI: 10.3390/nu13051420] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a major cause of limited functionality and thus a decrease in the quality of life of the inflicted. Given the fact that the existing pharmacological treatments lack disease-modifying properties and their use entails significant side effects, nutraceuticals with bioactive compounds constitute an interesting field of research. Polyphenols are plant-derived molecules with established anti-inflammatory and antioxidant properties that have been extensively evaluated in clinical settings and preclinical models in OA. As more knowledge is gained in the research field, an interesting approach in the management of OA is the additive and/or synergistic effects that polyphenols may have in an optimized supplement. Therefore, the aim of this review was to summarize the recent literature regarding the use of combined polyphenols in the management of OA. For that purpose, a PubMed literature survey was conducted with a focus on some preclinical osteoarthritis models and randomized clinical trials on patients with osteoarthritis from 2018 to 2021 which have evaluated the effect of combinations of polyphenol-rich extracts and purified polyphenol constituents. Data indicate that combined polyphenols may be promising for the treatment of osteoarthritis in the future, but more clinical trials with novel approaches in the identification of the in-between relationship of such constituents are needed.
Collapse
Affiliation(s)
- Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
| | - Aristea Gioxari
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Panagiotis Zoumpoulakis
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, Egaleo, 12243 Athens, Greece
| | - George Skarpas
- Hellenic Open University/Sports Injuries & Regenarative Medicine Orthopaedic Clinic at “MITERA” Hospital, Marousi, 15123 Attiki, Greece;
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| |
Collapse
|
11
|
Jeon SY, Yu SH, Lee BS, Kim HJ, Kim CG, Jang EJ, Lee JJ, Kim DS, Kim MR. Chondroprotective effect of Alpinia oxyphylla extract in experimentally induced cartilage degradation in rabbit articular cartilage explants. J Food Biochem 2021; 45:e13713. [PMID: 33818795 DOI: 10.1111/jfbc.13713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Alpinia oxyphylla is a widely used medicinal herb for diarrhea, gastralgia, tumors, hypertention, and cerebrovascular disorders. Here, we evaluated the chondroprotective effect of A. oxyphylla dried fruit ethanol extract (AOE) against cartilage degradation in rabbit articular cartilage explants. Treatment of interleukin-1α (IL-1α) and plasminogen increased degraded collagen release in culture supernatants, but pretreatment of AOE (50, 100, 200 µg/ml) inhibited the collagen release in dose-dependent manner. To examine the mechanism of action of AOE on chondroprotection, the level of matrix metalloproteinases-3 (MMP-3), matrix metalloproteinases-13 (MMP-13), tissue inhibitor of metalloprotease-1 (TIMP-1), and inflammatory mediators like prostaglandin E2 (PGE2 ) and nitric oxide (NO) was evaluated. AOE inhibited upregulation of MMP-3 and MMP-13 and downregulation of TIMP-1 and also reduced increase of PGE2 and NO level induced by exposure of IL-1α and plasminogen. These results indicate that AOE show chondroprotective effect through inhibiting collagen degradation via regulating MMPs, TIMP-1, and inflammatory mediators. PRACTICAL APPLICATIONS: Osteoarthritis (OA) is a one of the most common chronic disorders in elderly persons. Because the regenerative power of joint articular cartilage is very low, treatment of OA is difficult to expect complete recovery. Therefore, there is a need to develop a therapeutic agent that can safely and effectively inhibit the cartilage destruction. For the first time, we exhibited the inhibitory effect of AOE on collagen degradation through regulating MMPs and TIMP-1 in articular cartilage explants. These findings support AOE could be used as herbal therapeutic application for protecting articular cartilage to prevent OA.
Collapse
Affiliation(s)
- Se Yeong Jeon
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Su Hyun Yu
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Bo Su Lee
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Hyun Jin Kim
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Chang Geon Kim
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Eun-Ju Jang
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Jeong Jun Lee
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mi Ran Kim
- R&D Center, Naturetech Co., Ltd, Cheonan-Si, Republic of Korea
| |
Collapse
|
12
|
Pang KL, Chow YY, Leong LM, Law JX, Ghafar NA, Soelaiman IN, Chin KY. Establishing SW1353 Chondrocytes as a Cellular Model of Chondrolysis. Life (Basel) 2021; 11:272. [PMID: 33805920 PMCID: PMC8064306 DOI: 10.3390/life11040272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 01/16/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterised by chondrocyte cell death. An in vitro model of chondrocyte cell death may facilitate drug discovery in OA management. In this study, the cytotoxicity and mode of cell death of SW1353 chondrocytes treated with 24 h of OA inducers, including interleukin-1β (IL-1β), hydrogen peroxide (H2O2) and monosodium iodoacetate (MIA), were investigated. The microscopic features, oxidative (isoprostane) and inflammatory markers (tumour necrosis factor-alpha; TNF-α) for control and treated cells were compared. Our results showed that 24 h of H2O2 and MIA caused oxidative stress and a concentration-dependent reduction of SW1353 cell viability without TNF-α level upregulation. H2O2 primarily induced chondrocyte apoptosis with the detection of blebbing formation, cell shrinkage and cellular debris. MIA induced S-phase arrest on chondrocytes with a reduced number of attached cells but without significant cell death. On the other hand, 24 h of IL-1β did not affect the cell morphology and viability of SW1353 cells, with a significant increase in intracellular TNF-α levels without inducing oxidative stress. In conclusion, each OA inducer exerts differential effects on SW1353 chondrocyte cell fate. IL-1β is suitable in the inflammatory study but not for chondrocyte cell death. H2O2 and MIA are suitable for inducing chondrocyte cell death and growth arrest, respectively.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Yoke Yue Chow
- Department of Orthopaedic and Trauma Medicine, Deanery of Clinical Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Lek Mun Leong
- Prima Nexus Sdn. Bhd., Kuala Lumpur 50470, Malaysia;
- Department of Biomedical Science, Faculty of Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| |
Collapse
|
13
|
Herbal Composition LI73014F2 Alleviates Articular Cartilage Damage and Inflammatory Response in Monosodium Iodoacetate-Induced Osteoarthritis in Rats. Molecules 2020; 25:molecules25225467. [PMID: 33238379 PMCID: PMC7700416 DOI: 10.3390/molecules25225467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1β level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.
Collapse
|
14
|
Oliveira Silva M, Gregory JL, Ansari N, Stok KS. Molecular Signaling Interactions and Transport at the Osteochondral Interface: A Review. Front Cell Dev Biol 2020; 8:750. [PMID: 32974333 PMCID: PMC7466715 DOI: 10.3389/fcell.2020.00750] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Articular joints are comprised of different tissues, including cartilage and bone, with distinctive structural and mechanical properties. Joint homeostasis depends on mechanical and biological integrity of these components and signaling exchanges between them. Chondrocytes and osteocytes actively sense, integrate, and convert mechanical forces into biochemical signals in cartilage and bone, respectively. The osteochondral interface between the bone and cartilage allows these tissues to communicate with each other and exchange signaling and nutritional molecules, and by that ensure an integrated response to mechanical stimuli. It is currently not well known how molecules are transported between these tissues. Measuring molecular transport in vivo is highly desirable for tracking cartilage degeneration and osteoarthritis progression. Since transport of contrast agents, which are used for joint imaging, also depend on diffusion through the cartilage extracellular matrix, contrast agent enhanced imaging may provide a high resolution, non-invasive method for investigating molecular transport in the osteochondral unit. Only a few techniques have been developed to track molecular transport at the osteochondral interface, and there appear opportunities for development in this field. This review will describe current knowledge of the molecular interactions and transport in the osteochondral interface and discuss the potential of using contrast agents for investigating molecular transport and structural changes of the joint.
Collapse
Affiliation(s)
| | | | | | - Kathryn S. Stok
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Protective Effect of a Mixture of Astragalus membranaceus and Lithospermum erythrorhizon Extract against Hepatic Steatosis in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8370698. [PMID: 32256659 PMCID: PMC7106914 DOI: 10.1155/2020/8370698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.
Collapse
|