1
|
Wang X, Lin Z, Tang X, Xie M, Li T, Zhou J. Matrine induces cardiotoxicity by promoting ferroptosis through the Nrf2 antioxidant system in H9c2 cells. Toxicol Lett 2024; 397:11-22. [PMID: 38723914 DOI: 10.1016/j.toxlet.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Matrine (MT) has shown promising efficacy in various cancers and chronic hepatitis; however, its clinical application is limited because of its side effects. Our previous studies have indicated that MT can induce severe hepatotoxicity and nephrotoxicity. The current study aimed to investigate its cardiotoxicity and potential underlying mechanisms in H9c2 cells. Our results showed that MT induced H9c2 cell death and disrupted the cellular membrane integrity. Moreover, MT decreased glutathione (GSH) and cysteine (Cys) levels, and increased Fe2+, lipid peroxidation, reactive oxygen species (ROS), and MDA levels, ultimately leading to ferroptosis. Interestingly, these phenomena were alleviated by the ferroptosis inhibitor Fer-1, whereas MT-induced ferroptosis was exacerbated by the ferroptosis agonist RSL3. In addition, MT significantly reduced FTH, Nrf2, xCT, GPX4, and FSP1 protein levels and inhibited the transcriptional activity of Nrf2 while increasing TFR1 protein levels. Supplementation with Nrf2 agonist (Dimethyl fumarate, DMF) or selenium (Sodium selenite, SS) and CoQ10 alleviated MT-induced cytotoxic effects in H9c2 cells. These results suggest that ferroptosis, which is mediated by an imbalance in the Nrf2 antioxidant system, is involved in MT-induced cardiac toxicity.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Zixiong Lin
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Xinyi Tang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Ting Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| |
Collapse
|
2
|
Xu T, Chakraborty S, Wei D, Tran M, Rhea R, Wei B, Nguyen P, Gagea M, Cohen L, Liao Z, Yang P. Evaluation of the Protective Effect of Compound Kushen Injection Against Radiation- induced Pneumonitis in Mice. RESEARCH SQUARE 2024:rs.3.rs-3880937. [PMID: 38352564 PMCID: PMC10862984 DOI: 10.21203/rs.3.rs-3880937/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background Radiation-induced lung injury (RILI) via inflammation is a common adverse effect of thoracic radiation that negatively impacts patient quality of life and survival. Compound kushen injection (CKI), a botanical drug treatment, was examined for its ability to reduce RILI, and inflammatory responses and improve survival in mice exposed total lung irradiation (TLI). CKI's specific mechanisms of action were also evaluated. Methods C3H mice underwent TLI and were treated with CKI (2, 4, or 8 mL/kg) intraperitoneally once a day for 8 weeks. The effects of CKI on survival were estimated by Kaplan-Meier survival analysis and compared by log-rank test. RILI damage was evaluated by histopathology and micro-computed tomography (CT). Inflammatory cytokines and cyclooxygenase metabolites were examined by IHC staining, western blot, and ELISA. Results Pre-irradiation treatment with 4 or 8 mL/kg CKI starting 2 weeks before TLI or concurrent treatment with 8 mL/kg CKI were associated with a significantly longer survival compared with TLI vehicle-treated group ( P < 0.05). Micro-CT images evaluations showed that concurrent treatment with 8 mL/kg CKI was associated with significantly lower incidence of RILI ( P < 0.05). Histological evaluations revealed that concurrent TLI treatment of CKI (4 and 8 mL/kg) significantly reduced lung inflammation (p < 0.05). Mechanistic investigation showed that at 72 hours after radiation, TLI plus vehicle mice had significantly elevated serum IL6, IL17A, and TGF-β levels compared with non-irradiated, age-matched normal mice; in contrast, levels of these cytokines in mice that received TLI plus CKI treatment were lower than those in the TLI plus vehicle-treated mice ( P < 0.05) and similar to the nonirradiated mice. IHC staining showed that the CKI treatment led to a reduction of TGF-β positive cells in the lung tissues of TLI mice (P < 0.01). The concurrent CKI with TLI treatment group had a significant reduction in COX-2 activity and COX-2 metabolites compared with the TLI vehicle-treated group ( P < 0.05). Conclusions These data suggest that CKI treatment was associated with reduced radiation-induced inflammation in lung tissues, reduced RILI, and improved survival. Further investigation of CKI in human clinical trials as a potential radioprotector against RILI to improve patients' quality of life and survival is warranted.
Collapse
|
3
|
Shang W, Ye A, Tong YK. Sub-Cellular Dynamic Analysis of BGC823 Cells after Treatment with the Multi-Component Drug CKI Using Raman Spectroscopy. Int J Mol Sci 2023; 24:12750. [PMID: 37628931 PMCID: PMC10454546 DOI: 10.3390/ijms241612750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Multi-component drugs (MCDs) can induce various cellular changes covering multiple levels, from molecular and subcellular structure to cell morphology. A "non-invasive" method for comprehensively detecting the dynamic changes of cellular fine structure and chemical components on the subcellular level is highly desirable for MCD studies. In this study, the subcellular dynamic processes of gastric cancer BGC823 cells after treatment with a multi-component drug, Compound Kushen Injection (CKI), were investigated using a homemade, high-resolution, confocal Raman spectroscopy (RS) device combined with bright-field imaging. The Raman spectra of the nucleus, cytoplasm and intracellular vesicles (0.4-1 μm) were collected simultaneously for each cell treated with CKI at different times and doses. The RS measurements showed that CKI decreased the DNA signatures, which the drug is known to inhibit. Meanwhile, the CKI-induced subcellular dynamic changes in the appearance of numerous intracellular vesicles and the deconstruction of cytoplasm components were observed and discussed. The results demonstrated that high-resolution subcellular micro-Raman spectroscopy has potential for detecting fine cellular dynamic variation induced by drugs and the screening of MCDs in cancer therapy.
Collapse
Affiliation(s)
- Wenhao Shang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yu-Kai Tong
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Huang Z, Wu C, Zhou W, Lu S, Tan Y, Wu Z, You R, Stalin A, Guo F, Zhang J, Liu P, Wang W, Duan X, You L, Wu J. Compound Kushen Injection inhibits epithelial-mesenchymal transition of gastric carcinoma by regulating VCAM1 induced by the TNF signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154984. [PMID: 37487253 DOI: 10.1016/j.phymed.2023.154984] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Gastric carcinoma (GC) treatment needs to be developed rapidly. Compound Kushen Injection (CKI), a formula from traditional Chinese medicine, has been used clinically in combination with chemotherapy to treat GC with satisfactory results. However, the molecular mechanism by which CKI acts to cure GC is still unclear. METHODS In the present study, in vivo and in vitro experiments were used to assess the efficacy of CKI. Using ceRNA microarray and TMT technologies, the molecular mechanism of CKI was further investigated at the transcriptional and protein levels, and a bioinformatics approach was employed to investigate and functionally validate key CKI targets in GC. RESULTS When combined with cisplatin (DDP), CKI significantly increased its efficacy in preventing the proliferation and metastasis of GC cells and malignant-looking tumors in mice. High-throughput sequencing data and bioinformatics analysis showed that CKI regulated the TNF signaling pathway, epithelial-mesenchymal transition (EMT), with VCAM1 as a key target. The transcription factors CEBPB, JUN, RELA, NFKB1, the EMT mesenchymal-like cell markers N-cadherin and vimentin, as well as the expression of VCAM1 and its upstream signaling driver TNF, were all downregulated by CKI. In contrast, the expression of the EMT epithelial-like cell marker E-cadherin was upregulated. CONCLUSION CKI can effectively inhibit GC growth and metastasis, improve body's immunity, and protect normal tissues from damage. The molecular mechanism by which CKI inhibits metastasis of GC is by regulating VCAM1 induced by the TNF signaling pathway to inhibit EMT of GC. Our results provide an important clue to clarify precisely the multi-scale molecular mechanism of CKI in the treatment of GC.
Collapse
Affiliation(s)
- Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Zhou
- Department of pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingying Tan
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhishan Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongli You
- Shanxi Zhendong Pharmaceutical Co., Ltd., Shanxi 47100, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengying Guo
- School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengyun Liu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Shanxi Zhendong Pharmaceutical Co., Ltd., Shanxi 47100, China
| | - Xiaoxia Duan
- Beijing Zestbridge Medical Technology Co., Ltd., Beijing, 100176, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
5
|
Xu PL, Cheng CS, Jiao JY, Chen H, Chen Z, Li P. Matrine injection inhibits pancreatic cancer growth via modulating carbonic anhydrases- a network pharmacology-based study with in vitro validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114691. [PMID: 34597654 DOI: 10.1016/j.jep.2021.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Matrine injection is a complex mixture of plant bioactive substances extracted from Sophora flavescens Aiton and Smilax glabra Roxb. Since its approval by the Chinese Food and Drug Administration (CFDA) in 1995, Matrine injection has been clinically used as a complementary and alternative treatment for various cancers; however, the underlying mechanism of pancreatic cancer treatment is yet to be elucidated. AIM OF THE STUDY The present study explores the potential mechanism of matrine injection on pancreatic cancer through network pharmacology technique and in vitro experimental validation. MATERIALS AND METHODS Genes differentially expressed in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database (GSE101448). The potential active components of matrine injection were selected following a literature search, and target prediction was performed by the SwissTarget Prediction database. Overlapping genes associated with survival were screened by the Gene Expression Profiling Interactive Analysis (GEPIA) database. In vitro experimental validation was performed with cell counting kit-8 (CCK-8) assay, apoptosis detection, cell cycle analysis, immunoblotting, and co-immunoprecipitation of the identified proteins. RESULTS One thousand seven hundred genes differentially expressed among pancreatic tumor and non-tumor tissues were screened out. Sixteen active components and 226 predicted target genes were identified in matrine injection. A total of 25 potential target genes of matrine injection for the treatment of pancreatic cancer were obtained. Among them, the prognostic target genes carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) based on the GEPIA database are differently expressed in tumors compared to adjacent normal tissue. In vitro experiments, the results of CCK-8 assay, apoptosis and cell cycle analysis, immunoblotting, and co-immunoprecipitation showed that matrine injection inhibited Capan-1 and Mia paca-2 proliferation, arrested the cell cycle at the S phase, and induced apoptosis through up-regulated CA12 and down-regulated CA9. CONCLUSIONS In this study, bioinformatics and network pharmacology were applied to explore the treatment mechanism on pancreatic cancer with matrine injection. This study demonstrated that matrine injection inhibited proliferation, arrested the cell cycle, and induced apoptosis of pancreatic cancer cells. The mechanism may be related to the induction of CA12 over-expression, and CA9 reduced expression. As novel targets for pancreatic cancer treatment, Carbonic anhydrases require further study.
Collapse
Affiliation(s)
- Pan-Ling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
6
|
Sun J, Li M, Lin T, Wang D, Chen J, Zhang Y, Mu Q, Su H, Wu N, Liu A, Yu Y, Liu Y, Wang S, Yu X, Guo J, Yu W. Cell cycle arrest is an important mechanism of action of compound Kushen injection in the prevention of colorectal cancer. Sci Rep 2022; 12:4384. [PMID: 35288618 PMCID: PMC8921286 DOI: 10.1038/s41598-022-08336-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
Compound Kushen injection (CKI) is the most widely used traditional Chinese medicine preparation for the comprehensive treatment of colorectal cancer (CRC) in China, but its underlying molecular mechanisms of action are still unclear. The present study employed a network pharmacology approach, in which we constructed a "bioactive compound-target-pathway" network. Experimental RNA sequencing (RNA-Seq) analysis was performed to identify a key "bioactive compound-target-pathway" network for subsequent experimental validation. Cell cycle, proliferation, autophagy, and apoptosis assays and a model of azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in mice were employed to detect the biological effect of CKI on CRC. Real-time reverse-transcription polymerase chain reaction, Western blot, and immunohistochemistry were performed to verify the selected targets and pathways. We constructed a predicted network that included 82 bioactive compounds, 34 targets, and 33 pathways and further screened an anti-CRC CKI "biological compound (hesperetin 7-O-rutinoside, genistein 7-O-rutinoside, and trifolirhizin)-target (p53 and checkpoint kinase 1 [CHEK1])" network that targeted the "cell cycle pathway". Validation experiments showed that CKI effectively induced the cell-cycle arrest of CRC cells in vitro and suppressed the development of CRC in vivo by downregulating the expression of p53 and CHEK1. Our findings confirmed that inducing cell-cycle arrest by CKI is an important mechanism of its anti-CRC action, which provides a direct and scientific experimental basis for the clinical application of CKI.
Collapse
Affiliation(s)
- Jie Sun
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.,Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Jingyi Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Aiyu Liu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Shaojie Wang
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing, China.
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
7
|
ZHANG LH, ZHANG WY, XIONG JM, DUAN XM, HAI LN, ZHANG YL, ZHANG MM, QIN GF, ZHANG GW. Mechanisms of Compound Kushen Injection for the treatment of bladder cancer based on bioinformatics and network pharmacology with experimental validation. Chin J Nat Med 2022; 20:43-53. [DOI: 10.1016/s1875-5364(22)60144-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 01/18/2023]
|
8
|
A Rapid and Sensitive UHPLC-MS/MS Method for Determination of 2, 3, 8-Trimethylellagic, a Potent Active Compound from Sanguisorba officinalis L., and Its Application in the Pharmacokinetic Study within Thrombocytopenia Rats. J CHEM-NY 2021. [DOI: 10.1155/2021/3309434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the pharmacokinetics of 2, 3, 8-trimethylellagic (TMEA) in rats in vivo and determine the possible effects of the pathological conditions and compatibility, a rapid and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for quantitative determination was developed. TMEA and Artemetin (internal standard, IS) were separated on an Acquity Shim-pack GIST column with a total running time of 7 min using gradient elution at a flow rate of 0.3 mL/min. The intraday and interday relative standard deviations were <9.50%, and the relative error of accuracy was between −5.70% and 2.96%. The calibration curve of TMEA demonstrated good linearity with r2 = 0.9996, with the average recovery changing from 94.77% to 102.47% and the matrix effect from 93.16% to 100.15%. Compared with the normal group, the area under the plasma concentration-time curve from time 0 to the last time of quantifiable concentration (AUC(0 − t)), area under the plasma concentration-time curve from time 0 extrapolated to infinite time (AUC(0 − ∞)), and the maximum concentration (Cmax) of TMEA increased, whereas the time of maximum concentration (Tmax) and apparent clearance (CL/F) remarkably decreased in the TMEA group. With significantly reduced CL/F, AUC(0 − t), AUC(0 − ∞), and Cmax for TMEA were increased approximately one time after combining with 3, 7-Di-O-methylducheside A (DOMA). AUC(0 − t) and Cmax for TMEA in the 2, 3, 8-trimethylellagic-3, 8-dimethoxyellagic acid-2-oxyglucoside (TMEA-DMAG) group were significantly lower than that in the TMEA group with clearly prolonged Tmax and increased CL/F. These findings indicate that the changes in the pharmacokinetic parameters of TMEA may be caused by pathological and combination conditions.
Collapse
|
9
|
Zhang Z, Li JW, Zeng PH, Gao WH, Tian XF. Data Mining and Systems Pharmacology to Elucidate Effectiveness and Mechanisms of Chinese Medicine in Treating Primary Liver Cancer. Chin J Integr Med 2021; 28:636-643. [PMID: 34432201 DOI: 10.1007/s11655-021-3449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify specific Chinese medicines (CM) that may benefit patients with primary liver cancer (PLC), and to explore the mechanism of action of these medicines. METHODS In this retrospective, singlecenter study, prescription information from PLC patients was used in combination with Traditional Chinese Medicine Inheritance Supports System to identify the specific core drugs. A system pharmacology approach was employed to explore the mechanism of action of these medicines. RESULTS Taking CM more than 6 months was significantly associated with improved survival outcomes. In total, 77 putative targets and 116 bioactive ingredients of the core drugs were identified and included in the analysis (P<0.05). A total of 1,036 gene ontology terms were found to be enriched in PLC. A total of 75 pathways identified from Kyoto Encyclopedia of Genes and Genomes were also enriched in this disease, including fluid shear stress, interleukin-17 signaling, signaling between advanced glycan end products and their receptors, cellular senescence, tumor necrosis factor signaling, p53 signaling, cell cycle signaling, steroid hormone biosynthesis, T-helper 17 cell differentiation, and metabolism of xenobiotics by cytochrome. Docking studies suggested that the ingredients in the core drugs exert therapeutic effects in PLC by modulating c-Jun and interleukin-6. CONCLUSIONS Receiving CM for 6 months or more improves survival for the patients with PLC. The core drugs that really benefit for PLC patients likely regulates the tumor microenvironment and tumor itself.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun-Wei Li
- Department of Pharmacy, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province, 518020, China
| | - Pu-Hua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, China
| | - Wen-Hui Gao
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xue-Fei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
10
|
Li N, Xie L, Yang N, Sun G, Liu H, Bi C, Duan J, Yuan Y, Yu H, Xu Y, Li Y. Rapid classification and identification of chemical constituents in Epimedium koreanum Nakai by UPLC-Q-TOF-MS combined with data post-processing techniques. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:575-591. [PMID: 33167069 DOI: 10.1002/pca.3007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Epimedium koreanum Nakai (EKN), is a well-known Chinese herbal medicine for the treatment of osteoporosis, immunosuppression, tumours and cardiovascular diseases. Comprehensive component identification is essential for elucidation of its pharmacological mechanism and quality control. However, its complex chemical composition has caused certain difficulties in the analysis of this traditional Chinese medicine (TCM). Therefore, there is an urgent need to establish a method for rapid classification and identification of EKN chemical components. OBJECTIVE To establish a method for rapid classification and identification of the main components of flavonoids, organic acids and alkaloids in EKN. METHODS The samples were analysed by ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and data post-processing techniques. The UPLC system used a BEH C18 column to separate the total extract of EKN. The mobile phase consisted of 0.1% formic acid in water and acetonitrile, and the EKN extract was analysed by gradient elution at a flow rate of 0.4 mL/min. In both the positive and negative ion modes, the fragment information was obtained and compared with those of the characteristic fragmentations and neutral losses described in the literature to quickly identify the target compounds. RESULTS Finally, we successfully screened out 51 chemical components, including 40 flavonoids, nine organic acids, and two alkaloids. CONCLUSION The established method not only comprehensively analysed the chemical compositions of EKN, solved the difficult problems of analysis and identification of the complex chemical compositions of the TCM, but also further promoted the development of the application of chemical compositions of TCM.
Collapse
Affiliation(s)
- Ning Li
- Department of Clinical Laboratory, Tianjin Medical University, Tianjin, China
| | - Lijuan Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Na Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hui Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenghao Bi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Duan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Yuan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxin Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Yang Y, Sun M, Li W, Liu C, Jiang Z, Gu P, Li J, Wang W, You R, Ba Q, Li X, Wang H. Rebalancing TGF-β/Smad7 signaling via Compound kushen injection in hepatic stellate cells protects against liver fibrosis and hepatocarcinogenesis. Clin Transl Med 2021; 11:e410. [PMID: 34323416 PMCID: PMC8255064 DOI: 10.1002/ctm2.410] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Liver fibrosis and fibrosis-related hepatocarcinogenesis are a rising cause for morbidity and death worldwide. Although transforming growth factor-β (TGF-β) is a critical mediator of chronic liver fibrosis, targeting TGF-β isoforms and receptors lead to unacceptable side effect. This study was designed to explore the antifibrotic effect of Compound kushen injection (CKI), an approved traditional Chinese medicine formula, via a therapeutic strategy of rebalancing TGF-β/Smad7 signaling. METHODS A meta-analysis was performed to evaluate CKI intervention on viral hepatitis-induced fibrosis or cirrhosis in clinical randomized controlled trials (RCTs). Mice were given carbon tetrachloride (CCl4 ) injection or methionine-choline deficient (MCD) diet to induce liver fibrosis, followed by CKI treatment. We examined the expression of TGF-β/Smad signaling and typical fibrosis-related genes in hepatic stellate cells (HSCs) and fibrotic liver tissues by qRT-PCR, Western blotting, RNA-seq, immunofluorescence, and immunohistochemistry. RESULTS Based on meta-analysis results, CKI improved the liver function and relieved liver fibrosis among patients. In our preclinical studies by using two mouse models, CKI treatment demonstrated promising antifibrotic effects and postponed hepatocarcinogenesis with improved liver function and histopathologic features. Mechanistically, we found that CKI inhibited HSCs activation by stabilizing the interaction of Smad7/TGF-βR1 to rebalance Smad2/Smad3 signaling, and subsequently decreased the extracellular matrix formation. Importantly, Smad7 depletion abolished the antifibrotic effect of CKI in vivo and in vitro. Moreover, matrine, oxymatrine, sophocarpine, and oxysophocarpine were identified as material basis responsible for the antifibrosis effect of CKI. CONCLUSIONS Our results unveil the approach of CKI in rebalancing TGF-β/Smad7 signaling in HSCs to protect against hepatic fibrosis and hepatocarcinogenesis in both preclinical and clinical studies. Our study suggests that CKI can be a candidate for treatment of hepatic fibrosis and related oncogenesis.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mayu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Weida Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaobao Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheshun Jiang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Wang
- Beijing Zhendong Pharmaceutical Research Institute Co., Ltd.BeijingChina
| | - Rongli You
- Beijing Zhendong Pharmaceutical Research Institute Co., Ltd.BeijingChina
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
12
|
Jia S, Wu J, Zhou W, Liu X, Guo S, Zhang J, Liu S, Ni M, Meng Z, Liu X, Zhang X, Wang M. A network pharmacology-based strategy deciphers the multitarget pharmacological mechanism of Reduning injection in the treatment of influenza. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|