1
|
Jiang DZ, Yu DP, Zeng M, Liu WB, Li DL, Liu KY. Optimization of ultrasonic-assisted extraction of total flavonoids from Oxalis corniculata by a hybrid response surface methodology-artificial neural network-genetic algorithm (RSM-ANN-GA) approach, coupled with an assessment of antioxidant activities. RSC Adv 2024; 14:39069-39080. [PMID: 39659600 PMCID: PMC11629873 DOI: 10.1039/d4ra05077k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
The objective of this research endeavor is to refine the ultrasonic-assisted extraction technique for total flavonoids from Oxalis corniculata (TFO), utilizing a synergistic approach combining response surface methodology (RSM) and artificial neural network integrated with genetic algorithm (RSM-ANN-GA). The optimized extraction parameters determined through RSM yielded a TFO concentration of 13.538 mg g-1 under the following conditions: an ethanol concentration of 61.95%, a liquid-solid ratio of 41.06 mL g-1, an ultrasonic power setting of 351.57 W, and an ultrasonic exposure duration of 58.95 minutes. Conversely, the RSM-ANN-GA approach identified an even more refined set of conditions, achieving a TFO concentration of 13.7844 mg g-1, with an ethanol concentration of 58.93%, a liquid-solid ratio of 41.16 mL g-1, an ultrasonic power of 350.22 W, and an ultrasonic exposure time of 58.18 minutes. These findings underscore the superior predictive accuracy and enhanced extraction efficiency offered by the RSM-ANN-GA model over the conventional RSM method. Furthermore, the study demonstrated that TFO possesses a potent antioxidant effect, as evidenced by its ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals in vitro, highlighting its potential as a valuable source of natural antioxidants.
Collapse
Affiliation(s)
- Deng-Zhao Jiang
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
- Jiujiang Key Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Northwest Jiangxi Jiujiang 332005 China
| | - Dan-Ping Yu
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
| | - Ming Zeng
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
| | - Wen-Bo Liu
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
| | - Dong-Lin Li
- Analytical and Testing Center, Jiujiang University Jiujiang 332005 China
| | - Ke-Yue Liu
- School of Pharmacy and Life Science, Jiujiang University Jiujiang 332005 China
- Jiujiang Key Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Northwest Jiangxi Jiujiang 332005 China
| |
Collapse
|
2
|
Atazhanova G, Ishmuratova M, Levaya Y, Smagulov M, Lakomkina Y. The Genus Hyssopus: Traditional Use, Phytochemicals and Pharmacological Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1683. [PMID: 38931115 PMCID: PMC11207324 DOI: 10.3390/plants13121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
According to modern concepts, the genus Hyssopus L. includes seven plant species (Hyssopus ambiguus (Trautv.) Iljin ex Prochorov. & Lebel; Hyssopus cuspidatus Boriss; Hyssopus latilabiatus C.Y.Wu & H.W. Li; Hyssopus macranthus Boriss.; Hyssopus officinalis L.; Hyssopus seravschanicus (Dubj.) Pazij; Hyssopus subulifolius (Rech.f.) Rech.f.). The plants are rich in various groups of biologically active substances with a wide spectrum of pharmacological action. This review presents a modern comprehensive overview of the botanical research, extraction methods, chemical composition and pharmacological activity of plants of the genus Hyssopus L. As a result of the review, it was established that the chemical composition of plant extracts of the genus Hyssopus L. depends on various factors (place of growth, weather conditions, chemotypes, extraction methods, etc.). For the further use of the plants, the extraction methods and low-molecular metabolites isolated from them (mono- and sesquiterpenoids, flavonoids, alkaloids, etc.) are discussed. The data from the review provide an assessment of the relevance.
Collapse
Affiliation(s)
- Gayane Atazhanova
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| | - Margarita Ishmuratova
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
| | - Yana Levaya
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| | - Marlen Smagulov
- Research Park of Biotechnology and Eco-Monitoring, Karaganda Buketov University, Universitetskaya Street, 28, Karaganda 100028, Kazakhstan; (G.A.); (M.S.)
| | - Yekaterina Lakomkina
- School of Pharmacy, Karaganda Medical University, Gogol Street, 40, Karaganda 100017, Kazakhstan;
| |
Collapse
|
3
|
Touzout SN, Merghni A, Laouani A, Boukhibar H, Alenazy R, Alobaid A, Alenazy M, Ben-Attia M, Saguem K, El-Bok S. Antibacterial Properties of Methanolic Leaf Extracts of Melia azedarach L. against Gram-Positive and Gram-Negative Pathogenic Bacteria. Microorganisms 2023; 11:2062. [PMID: 37630622 PMCID: PMC10457991 DOI: 10.3390/microorganisms11082062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Melia azedarach L., a Meliaceae family tree, is widely used in traditional folkloric medicine for its pharmaceutical properties. In the present study, we investigated the phytochemical composition of four methanolic leaf extracts of M. azedarach of various origins (Algeria and Tunisia) using high-performance liquid chromatography (HPLC). The antibacterial efficacy and mechanisms of action against Gram-positive and Gram-negative pathogenic microorganisms were then evaluated. Our findings revealed a presence of phenolic acids and flavonoids, such as gallic acid, chlorogenic acid, caffeic acid, hyperoside, isoquercetin, quercetin, and isorhamnetin both in Algerian and Tunisian localities, with an abundance of phenolic acids compared to flavonoids. Additionally, the studied extracts exhibit a broad spectrum of antibacterial activities, with MIC values ranging from 31.25 mg/mL to 125 mg/mL. Methanolic leaf extracts of M. azedarach from Algeria exhibited more potent biofilm eradication, with a percentage of inhibition reaching 72.17% against the S. aureus strain. Furthermore, inhibitory concentrations of tested substances, particularly the extract from the Relizane area, were capable of disrupting the membrane integrity of the treated bacteria as well as producing oxidative stress through ROS generation. Likewise, our results reveal that plant extract induces lipid peroxidation by raising MDA levels in comparison to untreated cells, particularly with the plant extract of Blida. M. azedarach extracts also reduced the synthesis of antioxidant enzymes (CAT and SOD). Our findings illustrate that M. azedarach remains a plant with significant antibacterial potential and distinct mechanisms of action that are closely related to the origins of this specimen.
Collapse
Affiliation(s)
- Soraya Naila Touzout
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Halima Boukhibar
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdulmohsen Alobaid
- Department of Medical Laboratory, Aliman General Hospital-Riyadh, Ministry of Health, Riyadh 12684, Saudi Arabia;
| | | | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia;
| | - Khaled Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.); (K.S.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Safia El-Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (S.N.T.); (H.B.); (S.E.-B.)
| |
Collapse
|
4
|
Boukhibar H, Laouani A, Touzout SN, Alenazy R, Alqasmi M, Bokhari Y, Saguem K, Ben-Attia M, El-Bok S, Merghni A. Chemical Composition of Ailanthus altissima (Mill.) Swingle Methanolic Leaf Extracts and Assessment of Their Antibacterial Activity through Oxidative Stress Induction. Antibiotics (Basel) 2023; 12:1253. [PMID: 37627673 PMCID: PMC10451179 DOI: 10.3390/antibiotics12081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The present study was conducted to investigate the chemical composition of Ailanthus altissima (Mill.) Swingle methanolic leaf extracts from geographically distinct regions and to assess their antimicrobial properties along with their ability to induce oxidative stress. The HPLC-DAD analysis revealed the presence of phenolic acids and flavonoids including chlorogenic acid, gallic acid, synapic acid, p-coumaric acid, apigenin, hyperoside, isoamnétine-3-O-beta-D-glucotrioside, quercetin, and isoquercetin in various amounts depending on the origin of tested extracts. The assessment of antibacterial activity showed the effectiveness of the A. altissima extracts particularly against Gram-positive bacteria, with inhibition zone diameters reaching 14 ± 1 mm and minimum inhibitory concentrations ranging from 4 to 72.2 mg/mL. These bioactive substances also exhibited strong antibiofilm activity with an eradication percentage reaching 67.07%. Furthermore, they increased ROS production to levels two to five times higher than the control group, altered the membrane integrity and caused lipid peroxidation with MDA production exceeding 2.5 µmol/mg protein in the Gram-positive and Gram-negative strains. A decrease in the levels of the antioxidant enzymes SOD and CAT was also observed, indicating an impairment of the bacterial response to the oxidative stress caused by the tested extracts. These findings highlight the antibacterial properties of A. altissima leaf extracts depending on their origins and promote their exploitation and application in the agro-food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Halima Boukhibar
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (H.B.); (S.N.T.); (S.E.-B.)
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12/ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Soraya Naila Touzout
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (H.B.); (S.N.T.); (S.E.-B.)
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammed Alqasmi
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Yaseen Bokhari
- College of Pharmacy, Alfaisal University, Riyadh 12714, Saudi Arabia;
| | - khaled Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12/ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia;
| | - Safia El-Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (H.B.); (S.N.T.); (S.E.-B.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99/ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
5
|
Ling-Fei K, Xiao-Juan R, Pan Y, Tuo Q, Xiao-Hui Z, Yu-Tong K, Bo C, Wen-Ling S, Tian-Le G, Cai T. The influence of Hyssopus cuspidatus Boriss extract on lipid mediators metabolism network in asthmatic mice. Front Pharmacol 2023; 14:1066643. [PMID: 36937885 PMCID: PMC10017864 DOI: 10.3389/fphar.2023.1066643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Current drugs do not provide an absolute cure or modify the course of asthma. Hyssopus cuspidatus Boriss extract (SXCF) has been used as Uyghur medicine for several years to treat bronchial asthma. However, very limited research has been conducted on the therapeutic mechanisms of SXCF. Disruptions in the metabolic network of lipid mediators (LMs) are closely linked to the development of asthma. Here, we explored the therapeutic mechanism of SXCF in asthma based on the metabolic network of LMs, aiming to contribute to the understanding of SXCF in asthma treatment at the molecular level. The UHPLC-MRM strategy was used for the quantitative detection of LMs in the lung tissue and in the peripheral circulatory system (serum). ELISA was used to detect IgE in serum and cytokines in BALF. The lung tissue sections were stained with H&E to observe the infiltration of inflammatory cells, and behavioural changes in mice were observed and recorded throughout the animal experiment. In contrast to the asthma group, the opposite result was observed in the SXCF groups, where the perturbed LMs metabolic network was partly restored in a dose-dependent manner with a significant elevation of anti-inflammatory metabolites, while pro-inflammatory lipids were decreased. As significant downregulation of IgE and pro-inflammatory cytokines was observed, IgE and cytokines analysis also supported the anti-inflammatory effects of SXCF. It was also noticed that SXCF treatment reduced the number of coughs and decreased the inflammatory cell infiltration around the bronchus in mice. These results suggested that SXCF has a significant ameliorative effect on ovalbumin (OVA)-induced asthma. The modulation of LMs is a possible underlying mechanism of the SXCF effects.
Collapse
Affiliation(s)
- Kong Ling-Fei
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Rong Xiao-Juan
- Xinjiang Institute of Material Medica, Urumqi, China
- *Correspondence: Rong Xiao-Juan, ; Tie Cai,
| | - Yan Pan
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Qin Tuo
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Zhang Xiao-Hui
- State Key laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Kang Yu-Tong
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Cheng Bo
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Su Wen-Ling
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Gao Tian-Le
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tie Cai
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
- *Correspondence: Rong Xiao-Juan, ; Tie Cai,
| |
Collapse
|
6
|
Xie C, Gul A, Yu H, Huang X, Deng L, Pan Y, Ni S, Nurahmat M, Abduwaki M, Luo Q, Dong J. Integrated systems pharmacology and transcriptomics to dissect the mechanisms of Loki Zupa decoction in the treatment of murine allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115351. [PMID: 35533913 DOI: 10.1016/j.jep.2022.115351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/17/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loki zupa (LKZP) decoction, a traditional Uyghur medicine prescription, has been commonly used to treat numerous respiratory ailments in the Xinjiang region of western China, especially chronic airway inflammatory diseases such as allergic asthma. Due to its complex chemical composition, however, the mechanism of action of LKZP has yet to be fully elucidated. AIM OF THE STUDY Based on the balanced regulation theory of pro-inflammation and anti-inflammation, we tried to investigate the effectiveness of LKZP on asthma and its related protective mechanisms. MATERIALS AND METHODS In this study, an experimental model of asthma was established using ovalbumin (OVA) in BALB/c mice to assess the effects of LKZP. The potential mechanism of LKZP anti allergic asthma were researched by the combination of in silico systems pharmacology and in vivo transcriptomics. RESULTS Our data revealed that LKZP exerted a therapeutic effect against OVA-induced asthma by reducing airway hyperresponsiveness (AHR), peribronchial inflammation, and mucus hypersecretion. Meanwhile, LKZP downregulated the expression of OVA-induced IgE, interleukin (IL)-4, IL-5, IL-13, and tumor necrosis factor (TNF)-α and concurrently promoted the expression of interferon (IFN)-γ in serum and bronchoalveolar lavage fluid (BALF). Systems pharmacology analysis identified 10 core bioactive ingredients and 26 hub targets of LKZP against asthma. Transcriptomic analysis confirmed 246 differentially expressed genes (DEGs) after LKZP treatment. These were mainly expressed in cytokine-cytokine receptor interactions and immune and inflammatory response-related signaling pathways. Additionally, the real-time quantitative PCR (qPCR) results for the nine selected DEGs matched those of the RNA-seq analysis. Nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)-1 signaling pathways were identified as candidate targets involved in the action of LKZP on allergic asthma, which was highly consistent with the findings in silico. By qPCR, Western blot, and immunohistochemical analysis, it was verified that LKZP treatment dramatically inhibited the activation of NF-κB p65 and HIF-1α stimulated by OVA in asthmatic mice. CONCLUSIONS Taken together, our experimental data revealed that LKZP could be a candidate for the treatment of allergic asthma via NF-κB and HIF-1 signaling pathways.
Collapse
Affiliation(s)
- Cong Xie
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Yue Pan
- Institute of Integrative Medicine, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China.
| | - Shuangshuang Ni
- Sinopharm Xinjiang Pharmaceutical Co., Ltd., Urumqi, Xinjiang, China.
| | - Mammat Nurahmat
- College of Xinjiang Uyghur Medicine, Hotan, Xinjiang, China.
| | | | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Exploration of the Molecular Mechanisms of Hyssopus cuspidatus Boriss Treatment of Asthma in an mRNA-miRNA Network via Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7111901. [PMID: 35572723 PMCID: PMC9098316 DOI: 10.1155/2022/7111901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 12/07/2022]
Abstract
Hyssopus cuspidatus Boriss (H. cuspidatus) is a traditional Chinese medicine commonly used in the treatment of asthma. In the present study, we applied bioinformatics techniques for mRNA-miRNA profiling to elucidate the potential mechanisms of H. cuspidatus in asthma treatment. Bioactive compounds from H. cuspidatus, potential therapeutic targets of H. cuspidatus, and asthma-related targets were identified from the literature and databases. The intersection of H. cuspidatus-related targets and asthma-related targets was identified using the STRING platform. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Metascape platform. Networks were constructed from these nodes using Cytoscape. The results showed that 23 active compounds were identified in H. cuspidatus, sharing 122 common asthma-related targets. Moreover, 43 miRNAs regulating 19 key targets involved in the antiasthmatic effects of H. cuspidatus were identified. Further analysis of biological pathways, active compound-key target-pathway network, and active compound-key target-miRNA network indicated that the antiasthmatic effects of H. cuspidatus mainly occurred through caffeic acid, methyl rosmarinate, luteolin, esculetin, and 8-hydroxycirsimaritin. These compounds interacted with multiple miRNAs, including miR-99a, miR-498, miR-33b, and miR-18a, regulating multiple genes, including JAK, STAT3, EGFR, LYN, and IL-6, in multiple pathways, including those involved in the regulation of JAK-STAT signaling, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling, and inflammation. In summary, we have elucidated the potential mechanisms of H. cuspidatus treatment of asthma from a systemic and holistic perspective through analysis of compound-mRNA-miRNA interaction. Our study should provide new insights for further research on H. cuspidatus treatment of asthma.
Collapse
|
8
|
Zhang Y, Liao H, Shen D, Zhang X, Wang J, Zhang X, Wang X, Li R. Renal Protective Effects of Inonotus obliquus on High-Fat Diet/Streptozotocin-Induced Diabetic Kidney Disease Rats: Biochemical, Color Doppler Ultrasound and Histopathological Evidence. Front Pharmacol 2022; 12:743931. [PMID: 35111043 PMCID: PMC8801815 DOI: 10.3389/fphar.2021.743931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is the current leading cause of end-stage renal disease. Inonotus obliquus (chaga), a medicinal fungus, has been used in treatment of diabetes. Here, we aim to identify the renal protective effects of chaga extracts on a DKD rat model which was induced by a high-fat diet and streptozotocin injection. During the total 17-weeks experiment, the biological parameters of serum and urine were examined, and the color Doppler ultrasound of renal artery, the periodic acid-Schiff staining, and electron microscopy of kidney tissue were performed. The compositions of chaga extracts were analyzed and the intervention effects of the extracts were also observed. Compared with the normal control group, the biochemical research showed that insulin resistance was developed, blood glucose and total cholesterol were elevated, urinary protein excretion and serum creatinine levels were significantly increased in the DKD model. The ultrasound examinations confirmed the deteriorated blood flow parameters of the left renal interlobar artery in the rat models. Finally, histopathological data supported renal injury on the thickened glomerular basement membrane and fusion of the foot processes. 8 weeks intervention of chaga improved the above changes significantly, and the 100 mg/kg/d chaga group experienced significant effects compared with the 50 mg/kg/d in some parameters. Our findings suggested that Doppler ultrasound examinations guided with biochemical indicators played important roles in evaluating the renal injury as an effective, noninvasive, and repeatable method in rats. Based on biochemical, ultrasound, and histopathological evidence, we confirmed that chaga had pharmacodynamic effects on diabetes-induced kidney injury and the aforementioned effects may be related to delaying the progression of DKD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Hui Liao
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Dayue Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xilan Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jufang Wang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Xiaohong Zhang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Xiaocheng Wang
- Department of Statistic and Medical Record, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| |
Collapse
|
9
|
Network Pharmacology-Based Analysis of the Underlying Mechanism of Hyssopus cuspidatus Boriss. for Antiasthma: A Characteristic Medicinal Material in Xinjiang. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7671247. [PMID: 34880921 PMCID: PMC8648465 DOI: 10.1155/2021/7671247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Background Hyssopus cuspidatus Boriss. (Shen Xiang Cao (SXC)), a traditional medicine herb in Xinjiang, has a long history of being used by minorities to treat asthma. However, its active antiasthmatic compounds and underlying mechanism of action are still unknown. The aim of this study was to investigate the bioactive compounds and explore the molecular mechanism of SCX in the treatment of asthma using network pharmacology. Methods The compounds of SCX were collected by a literature search, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction were used to predict targets and screen active compounds. Moreover, asthma-related targets were obtained based on DisGeNET, Herb, and GeneCards databases, and a protein-protein interaction (PPI) network was built by the STRING database. Furthermore, the topological analysis of the PPI and SXC-compound-target networks were analyzed and established by Cytoscape software. Finally, the RStudio software package was used for carrying out Gene Ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. AutoDock tools and AutoDock Vina were used to molecularly dock the active compounds and key targets. Results A total of 8 active compounds and 258 potential targets related to SXC were predicted, and PPI network screened out key targets, including IL-6, JUN, TNF, IL10, and CXCL8. GO enrichment analysis involved cell responses to reactive oxygen species, oxidative stress, chemical stress, etc. In addition, KEGG pathway analysis showed that SXC effectively treated asthma through regulation of mitogen-activated protein kinases (MAPK) signaling pathways, interleukin 17 (IL-17) signaling pathways, toll-like receptor (TLR) signaling pathways, and tumor necrosis factor (TNF) signaling pathways. Conclusion The preliminary study that was based on multiple compounds, multiple targets, and multiple pathways provides a scientific basis for further elucidating the molecules involved and the underlying antiasthma-related mechanisms of SXC.
Collapse
|
10
|
Aihaiti K, Li J, Yaermaimaiti S, Liu L, Xin X, Aisa HA. Non-volatile compounds of Hyssopus cuspidatus Boriss and their antioxidant and antimicrobial activities. Food Chem 2021; 374:131638. [PMID: 34839965 DOI: 10.1016/j.foodchem.2021.131638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/04/2022]
Abstract
Hyssopus cuspidatus is a famous spice and an aromatic vegetable. Few information could be available concerning its non-volatile chemical composition and bioactivities. Preliminary bioactive evaluations on the crude ethanol extract and its four fractions disclosed that the ethyl acetate fraction (EAF) exhibited antioxidant and antimicrobial bioactivities. LC-MS/MS analysis of EAF helped to identify sixty-four compounds, and phenolic compounds were the dominant components. Systematic separation and purification of EAF led to the isolation of thirty-four compounds. Six compounds were identified to be new and eighteen compounds were discovered from H. cuspidatus for the first time. Rosmarinic acid, methyl rosmarinate, butyl rosmarinate and salvigenin were the major components of EAF and their contents were determined. Most of isolated compounds exhibited significant or moderate antioxidant and antimicrobial activities. This research supported the edible application of H. cuspidatus and disclosed the potency of it as a natural antioxidant and antimicrobial food additive.
Collapse
Affiliation(s)
- Kariyemu Aihaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China.
| |
Collapse
|
11
|
Jia D, Cai H, Ke Y. Simultaneous Determination of the Five Constituents in Maiwei Dihuang Pills by the HPLC-DAD Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2536558. [PMID: 34512773 PMCID: PMC8433003 DOI: 10.1155/2021/2536558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of study is to establish an HPLC-DAD method for determination of the five constituents (deoxyschizandrin, γ-schizandrin, loganin, paeoniflorin, and paeonol) in Maiwei Dihuang Pills. METHODS An Agilent ZORBAX SB-C18 chromatographic column was carried out to determine the five constituents of 50% methanol extract of Maiwei Dihuang Pills. RESULTS It was found the chromatographic peak resolution of each component in the study sample solution was 1.5 higher than that of other peaks and no peaks appeared in the blank control solution during the same time, suggesting specificity of HPLC-DAD was well established. The linearity test indicated that deoxyschizandrin, γ-schizandrin, loganin, paeoniflorin, and paeonol were 11.6-72.3 μg/mL, 6.4-45.2 μg/mL, 35.2-237.6 μg/mL, 18.1-114.2 μg/mL, and 32.2-215.3 μg/mL, respectively, suggesting each component has a good linear relationship within its own range. Additionally, the precision of HPLC-DAD was confirmed by a precision test; the stability of the study sample solution was confirmed by a stability test; and good reproducibility of HPLC-DAD was proved by a reproducible test. The recovery rate test showed that relative standard deviation (RSD) of recovery rate in deoxyschizandrin, γ-schizandrin, loganin, paeoniflorin, and paeonol was 100.26% (1.80%), 101.39% (1.74%), 101.19% (1.76%), 102.50% (1.65%), and 102.30% (1.58%), respectively. CONCLUSIONS HPLC-DAD used to determine the five constituents in Maiwei Dihuang Pills, and it was easier and faster to operate, showing good condition in repeatability, precision, stability, and recovery, which is a great option for quality control.
Collapse
Affiliation(s)
- Danchun Jia
- Shangluo Drug Control Institute, Shangzhou, Shanxi, China
| | - Hong Cai
- Shangluo Drug Control Institute, Shangzhou, Shanxi, China
| | - Yuan Ke
- Shangluo Drug Control Institute, Shangzhou, Shanxi, China
| |
Collapse
|