1
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Naoom AY, Kang W, Ghanem NF, Abdel-Daim MM, El-Demerdash FM. Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
3
|
Natta S, Pal K, Kumar Alam B, Mondal D, Kumar Dutta S, Sahana N, Mandal S, Bhowmick N, Sankar Das S, Mondal P, Kumar Pandit G, Kumar Paul P, Choudhury A. In-depth evaluation of nutritive, chemical constituents and anti-glycemic properties of jackfruit (Artocarpus heterophyllus Lam) clonal accessions with flake colour diversity from Eastern Sub-Himalayan plains of India. Food Chem 2023; 407:135098. [PMID: 36493473 DOI: 10.1016/j.foodchem.2022.135098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The study was designed to elucidate the potential of jackfruit clonal accessions having diverse flake colours from nutritional and medicinal perspectives. Jack fruit accessions with deep yellow flakes were found to contain the highest flavonoids, antioxidant activity, ascorbic acid, and α-glucosidase inhibition whereas, orange-red flakes exhibited the highest β-carotene, phenol, minerals (iron and zinc) and better inhibition of α-amylase and β-glucosidase enzymes. Phenolic compounds profiling revealed the presence of higher sinapic acid, ferulic acid and quercetin contents in the orange-red-coloured flakes. Metabolite analysis revealed presence of anti-diabetic compounds (n-Hexadecanoic acid, tridecane, 2-Heptadecenal etc.) in deep yellow and orange-red coloured jack flakes with lower glycemic load. Considering the abundant health benefits as evident from the present study, orange-red and deep yellow-coloured flakes may be recommended for consumption to manage the hyperglycemic condition.
Collapse
Affiliation(s)
- Suman Natta
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India; ICAR-NRC for Orchids, Pakyong 737106, Sikkim, India
| | - Kumaresh Pal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | | | - Debayan Mondal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | - Sudip Kumar Dutta
- ICAR-Research Complex for NEH Region, Sikkim Centre, Tadong, Gangtok 737102, Sikkim, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India.
| | - Nilesh Bhowmick
- Department of Pomology and Post-harvest Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | - Soumitra Sankar Das
- Department of Agricultural Statistics & Computer Application, Birsa Agricultural University, Ranchi 736165, India
| | - Prithusayak Mondal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | - Goutam Kumar Pandit
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | - Prodyut Kumar Paul
- Department of Pomology and Post-harvest Technology, Uttar Banga Krishi Viswavidyalaya, Pundibari 736165, Cooch Behar, West Bengal, India
| | - Ashok Choudhury
- Soil Microbiology Laboratory, Regional Research Station, Uttar Banga Krishi Viswavidyalaya, Pundibari, Coochbehar 736165, India
| |
Collapse
|
4
|
Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico. Metabolites 2023; 13:metabo13020281. [PMID: 36837900 PMCID: PMC9966293 DOI: 10.3390/metabo13020281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Breynia cernua has been used as an alternative medicine for wounds, smallpox, cervical cancer, and breast cancer. This plant is a potential source of new plant-derived drugs to cure numerous diseases for its multiple therapeutic functions. An in vitro study revealed that the methanol extract of B. cernua (stem) exhibits antioxidant activity according to DPPH and SOD methods, with IC50 values of 33 and 8.13 ppm, respectively. The extract also exerts antibacterial activity against Staphylococcus aureus with minimum bactericidal concentration of 1875 ppm. Further analysis revealed that the extract with a concentration of 1-2 ppm protects erythrocytes from the ring formation stage of Plasmodium falciparum, while the extract with a concentration of 1600 ppm induced apoptosis in the MCF-7 breast cancer cell line. GC-MS analysis showed 45 bioactive compounds consisting of cyclic, alkyl halide, organosulfur, and organoarsenic compounds. Virtual screening via a blind docking approach was conducted to analyze the binding affinity of each metabolite against various target proteins. The results unveiled that two compounds, namely, N-[β-hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine and 1,3-phenylene, bis(3-phenylpropenoate), demonstrated the best binding score toward four tested proteins with a binding affinity varying from -8.3 to -10.8 kcal/mol. Site-specific docking analysis showed that the two compounds showed similar binding energy with native ligands. This finding indicated that the two phenolic compounds could be novel antioxidant, antibacterial, antiplasmodial, and anticancer drugs. A thorough analysis by monitoring drug likeness and pharmacokinetics revealed that almost all the identified compounds can be considered as drugs, and they have good solubility, oral bioavailability, and synthetic accessibility. Altogether, the in vitro and in silico analysis suggested that the extract of B. cernua (stem) contains various compounds that might be correlated with its bioactivities.
Collapse
|
5
|
Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. Evaluation of cytotoxicity and antiviral activity of Rhazya stricta Decne leaves extract against influenza A/PR/8/34 (H1N1). Saudi J Biol Sci 2022; 29:103375. [PMID: 35935104 PMCID: PMC9352461 DOI: 10.1016/j.sjbs.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
Influenza viruses have developed resistance to the current classes of drugs, which means they could eventually become more virulent and cause more mortality and hospitalization. Our study aims to investigate the antiviral activity of Rhazya stricta Decne leaves extract in vitro and search for new promising drugs from R. stricta identified compounds in silico. The study was performed in vitro by utilizing Madin-Darby Canine Kidney cell line (MDCK) as a substrate for the influenza virus and estimating the inhibition performance of the plant leaves extract. Additionally, in silico screening was conducted to explore the antiviral activity of R. stricta phytochemicals. We investigated the cytotoxicity of R. stricta leaves extract and its antiviral activity against influenza virus (A/Puerto Rico/8/34 (H1N1)) using the MTT assay. The mode of action of the plant leaves extract during the viral life cycle was tested using time-of-addition assay. In silico analyses were performed, including molecular docking, drug-likeness analysis, and toxicity risk assessment, to state the leading compounds to be developed into an anti-influenza virus drug. The 50% cytotoxicity concentration of the leaves extract was CC50: 184.6 µg/mL, and the 50% inhibition concentration was CI50: 19.71 µg\mL. The time of addition assay revealed that R. stricta leaves extract exerted its activity in the late step of the influenza virus replication cycle. In comparison to Oseltamivir, the leading compounds showed better binding affinity and can be developed into oral drugs with low toxicity risk. Isolation and purification of the leading compounds and testing their antiviral activity in vitro and in vivo are required.
Collapse
|
6
|
Phytochemical Analysis and Molecular Identification of Green Macroalgae Caulerpa spp. from Bali, Indonesia. Molecules 2022; 27:molecules27154879. [PMID: 35956828 PMCID: PMC9370202 DOI: 10.3390/molecules27154879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The studies of the Bulung Boni and Bulung Anggur (Caulerpa spp.) species and secondary metabolites are still very limited. Proper identification will support various aspects, such as cultivation, utilization, and economic interests. Moreover, understanding the secondary metabolites will assist in developing algae-based products. This study aimed to identify these indigenous Caulerpa algae and analyze their bioactive components. The tufA sequence was employed as a molecular marker in DNA barcoding, and its bioactive components were identified using the GC-MS method. The phylogenetic tree was generated in MEGA 11 using the maximum likelihood method, and the robustness of the tree was evaluated using bootstrapping with 1000 replicates. This study revealed that Bulung Boni is strongly connected to Caulerpa cylindracea. However, Bulung Anggur shows no close relationship to other Caulerpa species. GC-MS analysis of ethanolic extracts of Bulung Boni and Bulung Anggur showed the presence of 11 and 13 compounds, respectively. The majority of the compounds found in these algae have been shown to possess biological properties, such as antioxidant, antibacterial, anticancer, anti-inflammation, and antidiabetic. Further study is necessary to compare the data obtained using different molecular markers in DNA barcoding, and to elucidate other undisclosed compounds in these Caulerpa algae.
Collapse
|
7
|
Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. A Review of Rhazya stricta Decne Phytochemistry, Bioactivities, Pharmacological Activities, Toxicity, and Folkloric Medicinal Uses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112508. [PMID: 34834871 PMCID: PMC8619226 DOI: 10.3390/plants10112508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The local medicinal plant Rhazya stricta Decne is reviewed for its folkloric medicinal, phytochemical, pharmacological, biological, and toxicological features. R. stricta has been used widely in different cultures for various medical disorders. The phytochemical studies performed on the R. stricta extract revealed many alkaloidal and fatty acid compounds. Moreover, several flavonoid and terpenoid compounds were also detected. Pharmacological activates of R. stricta extracts are approved to possess antimicrobial, antioxidant, anticancer, antidiabetic, and antihypertensive activities. Additionally, R. stricta extract was found to hold biological activates such as larvicidal and phytoremediation activates R. stricta extract was found to be toxic, genotoxic, and mutagenic. R. stricta contains novel phytochemical compounds that have not been investigated pharmacologically. Further research is needed through in vitro and in vivo experiments to pave the road for these compounds for medical, veterinary, and ecological uses.
Collapse
Affiliation(s)
- Abdulaziz Albeshri
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
- Correspondence:
| | - Nabih A. Baeshen
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
| | - Thamer A. Bouback
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A. Aljaddawi
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
| |
Collapse
|
8
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
9
|
Ethyl Acetate Fraction of Helianthus tuberosus L. Induces Anti-Diabetic, and Wound-Healing Activities in Insulin-Resistant Human Liver Cancer and Mouse Fibroblast Cells. Antioxidants (Basel) 2021; 10:antiox10010099. [PMID: 33445702 PMCID: PMC7828129 DOI: 10.3390/antiox10010099] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Traditional, complementary, and integrative medicine are globally accepted alternative methods for the treatment of diabetes mellitus (DM). However, the mechanism of anti-diabetic effects of Helianthus tuberosus L. remains unproven. In the present study, antioxidant and anti-diabetic activity of the tubers of H. tuberosus were studied in detail. Methanolic extracts of H. tuberosus tubers were subjected to solvent fractionation method by increasing the polarity of the solvent using n-hexane, and ethyl acetate. The obtained methanol extracts and its fractions were subjected to free radical scavenging activity (DPPH and ABTS assay) and in vitro enzyme (α-amylase and α-glucosidase) inhibition assay. Moreover, glucose uptake in insulin-resistant HepG2 cell line was analyzed. The preliminary phytochemical analysis confirmed the presence of phenolic and flavonoid compounds in the active fraction. The radical scavenging and in vitro diabetic related enzyme inhibitory activities were found to be dose dependent. The maximum ABTS+ and DPPH scavenging activity was documented in ethyl acetate fraction of the H. tuberosus followed by methanol extract, hexane fraction, and methanol fraction. We also found that H. tuberosus showed a less toxicity in mouse fibroblast cells and enhance the glucose uptake in insulin-resistant HepG2 cells. Besides, the ethyl acetate fraction of the H. tuberosus analyzed by UPLC-QTOF-MS-MS and GC/MS revealed the presence of phenolic compounds such as neochlorogenic acid, chlorogenic acid, caffeic acid, 5-O-(4-coumaroyl)-quinic acid, feruloylquinic acid, caffeoylquinic acid, isoxazolidine, salicylic acid β-D-glucoside, dicaffeoylquinic acid isomers, salvianolic acid derivative isomers, and 1,4 dicaffeoylquinic acid etc. Among the identified phytochemicals, six were chosen for molecular docking study to explore their its inhibitory interactions with α-amylase and α-glucosidase. Taken together, the findings of the present study suggested that phytocompounds of EAF were responsible for the significant in vitro antioxidant, wound-healing, and anti-diabetic activities.
Collapse
|