1
|
Aw YB, Chen S, Yeo A, Dangerfield JA, Mok P. Development and functional testing of a novel in vitro delayed scratch closure assay. Histochem Cell Biol 2024; 162:245-255. [PMID: 38713267 PMCID: PMC11322216 DOI: 10.1007/s00418-024-02292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
As the development of chronic wound therapeutics continues to expand, the demand for advanced assay systems mimicking the inflammatory wound microenvironment in vivo increases. Currently, this is performed in animal models or in in vitro cell-based models such as cell culture scratch assays that more closely resemble acute wounds. Here, we describe for the first time a delayed scratch closure model that mimics some features of a chronic wound in vitro. Chronic wounds such as those suffered by later stage diabetic patients are characterised by degrees of slowness to heal caused by a combination of continued localised physical trauma and pro-inflammatory signalling at the wound. To recreate this in a cell-based assay, a defined physical scratch was created and stimulated by combinations of pro-inflammatory factors, namely interferon, the phorbol ester PMA, and lipopolysaccharide, to delay scratch closure. The concentrations of these factors were characterised for commonly used human keratinocyte (HaCaT) and dermal fibroblast (HDF) cell lines. These models were then tested for scratch closure responsiveness to a proprietary healing secretome derived from human Wharton's jelly mesenchymal stem cells (MSCs) previously validated and shown to be highly effective on closure of acute wound models both in vitro and in vivo. The chronically open scratches from HaCaT cells showed closure after exposure to the MSC secretome product. We propose this delayed scratch closure model for academic and industrial researchers studying chronic wounds looking for responsiveness to drugs or biological treatments prior to testing on explanted patient material or in vivo.
Collapse
Affiliation(s)
- Yi Bing Aw
- Celligenics Pte Ltd, Singapore, Singapore
| | - Sixun Chen
- Celligenics Pte Ltd, Singapore, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Aimin Yeo
- Celligenics Pte Ltd, Singapore, Singapore
| | - John A Dangerfield
- Celligenics Pte Ltd, Singapore, Singapore
- Austrianova Singapore Pte Ltd, Singapore, Singapore
| | - Pamela Mok
- Celligenics Pte Ltd, Singapore, Singapore.
| |
Collapse
|
2
|
Laurindo LF, Rodrigues VD, Minniti G, de Carvalho ACA, Zutin TLM, DeLiberto LK, Bishayee A, Barbalho SM. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J Nutr Biochem 2024; 131:109670. [PMID: 38768871 DOI: 10.1016/j.jnutbio.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Antonelly Cassio Alves de Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Tereza Laís Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Salem A, Abdelhedi O, Ben Taheur F, Mansour C, Safta Skhiri S, Sebai H, Jridi M, Zouari N, Fakhfakh N. Novel garden cress-fish gelatin based ointment: Improvement of skin wound healing in rats through modulation of anti-inflammatory and antioxidant states. Heliyon 2024; 10:e33048. [PMID: 39022005 PMCID: PMC11253254 DOI: 10.1016/j.heliyon.2024.e33048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
This study aimed to investigate the ability of aqueous extract of Lepidium sativum seeds (LSE) to improve the wound healing process in rat models. The gelatin, extracted from the skin of smooth-hound shark using citric acid, was used as a support material for ointment. Animals were divided into four groups of six rats each: an untreated control group, a control group treated with Moist Exposed Burn Ointment (MEBO), a treated group with gelatin gel, and a treated group with gelatin gel fortified with 20 mg/mL LSE. Phenolics profile analysis showed that the major compounds in LSE were catechin (125 μg/g) and quinic acid (105 μg/g). In vitro antioxidant tests showed that LSE has interesting activities to scavenge ABTS•+ radicals (IC50 = 0.22 mg/mL) and inhibit the oxidation of linoleic acid. A significant decline in the antioxidant enzymes activities and an increase in the level of thiobarbituric acid reactive substances (TBARS) and inflammatory markers was observed within the injured tissues of the untreated rats compared to rats treated with MEBO. Interestingly, when the wounded tissue was treated with gelatin gel a remarkable reversal of this trend occurred. Further, by enrichment of gelatin gel with LSE, the levels of CAT, GPx and SOD activities significantly increased by 35, 126, and 212 %, respectively, whereas the TBARS level was reduced by 31 %. These results were consistent with the wound contraction percentage and histological analysis, which suggest the potential effect of LSE-enriched gelatin gels to regenerate damaged tissues.
Collapse
Affiliation(s)
- Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Fadia Ben Taheur
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sihem Safta Skhiri
- University of Monastir, ABCDF Laboratory, Faculty of Dental Medicine, Monastir, 5000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR17ES27), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, 9000, Beja, Tunisia
| | - Nacim Zouari
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
| | - Nahed Fakhfakh
- High Institute of Applied Biology of Medenine, University of Gabes, 4119, Medenine, Tunisia
| |
Collapse
|
4
|
Wang J, Ismail M, Khan NR, Khan DEN, Iftikhar T, Shahid MG, Shah SU, Rehman ZU. Chitosan based ethanolic Allium Sativumextract hydrogel film: a novel skin tissue regeneration platform for 2nd degree burn wound healing. Biomed Mater 2024; 19:045036. [PMID: 38898715 DOI: 10.1088/1748-605x/ad565b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the potential of ethanolic garlic extract-loaded chitosan hydrogel film for burn wound healing in an animal model. The ethanolic garlic extract was prepared by macerating fresh ground garlic cloves in ethanol for 24 h, followed by filtration and concentration using a rotary evaporator. Hydrogels were then prepared by casting a chitosan solution with garlic extract added at varying concentrations for optimization and, following drying, subjected to various characterization tests, including moisture adsorption (MA), water vapor transmission rate (WVTR), and water vapor permeability rate (WVPR), erosion, swelling, tensile strength, vibrational, and thermal analysis, and surface morphology. The optimized hydrogel (G2) was then analyzedin vivofor its potential for healing 2nd degree burn wounds in rats, and histological examination of skin samples on day 14 of the healing period. Results showed optimized hydrogel (G2; chitosan: 2 g, garlic extract: 1 g) had MA of 56.8% ± 2.7%, WVTR and WVPR of 0.00074 ± 0.0002, and 0.000 498 946 ± 0.0001, eroded up to 11.3% ± 0.05%, 80.7% ± 0.04% of swelling index, and tensile strength of 16.6 ± 0.9 MPa, which could be attributed to the formation of additional linkages between formulation ingredients and garlic extract constituents at OH/NH and C=O, translating into an increase in transition melting temperature and enthalpy (ΔT= 238.83 °C ± 1.2 °C, ΔH= 4.95 ± 0.8 J g-1) of the chitosan moieties compared with blank. Animal testing revealed G2 formulation significantly reduced the wound size within 14 d of the experiment (37.3 ± 6.8-187.5 ± 21.5 mm2) and had significantly higher reepithelization (86.3 ± 6.8-26.8 ± 21.5 and 38.2% ± 15.3%) compared to untreated and blank groups by hastening uniform and compact deposition of collagen fibers at the wound site, cementing developed formulation a promising platform for skin regeneration.
Collapse
Affiliation(s)
- Jing Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710004, People's Republic of China
| | - Mohammad Ismail
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
| | - Nauman Rahim Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
| | - Dur-E-Najaf Khan
- Department of Pharmacy, Bacha Khan University Charsadda, Charsadda, KP 24540, Pakistan
| | - Tayyaba Iftikhar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | | | | | - Zahid Ur Rehman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000 KP, Pakistan
| |
Collapse
|
5
|
Fu Y, Li L, Gao J, Wang F, Zhou Z, Zhang Y. J-shaped association of dietary catechins intake with the prevalence of osteoarthritis and moderating effect of physical activity: an American population-based cohort study. Front Immunol 2024; 14:1287856. [PMID: 38259454 PMCID: PMC10801035 DOI: 10.3389/fimmu.2023.1287856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Catechins are a class of natural compounds with a variety of health benefits, The relationship between catechins and the prevalence of osteoarthritis (OA) is unknown. This study investigated the associations between daily intake of catechins and the prevalence of OA among American adults and assessed the moderating effect of physical activity (PA). Methods This study included 10,039 participants from the National Health and Nutrition Examination Survey (2007-2010,2017-2018). The logistic regression, weighted quantile sum (WQS) regression, and restricted cubic spline (RCS) regression models were conducted to explore the associations between daily intake of catechins and the prevalence of OA. Moreover, interaction tests were performed to assess the moderating effect of PA. Results After multivariable adjustment, the weighted multivariable logistic regression and RCS regression analyses revealed significant J-shaped non-linear correlations between intakes of epigallocatechin and epigallocatechin 3-gallate had significant associations with the prevalence of OA among in U.S. adults. WQS regression analysis showed that excessive epigallocatechin intake was the most significant risk factor for OA among all subtypes of catechins. In the interaction assay, PA showed a significant moderating effect in the relationship between epigallocatechin intake and OA prevalence. Conclusions The intake of gallocatechin and gallocatechin 3-gallate had a significant negative correlation with the prevalence of OA and the dose-response relationship was J-shaped.PA below 150 MET-min/week and the threshold intakes of 32.70mg/d for epigallocatechin and 76.24mg/d for epigallocatechin 3-gallate might be the targets for interventions to reduce the risk of developing OA.
Collapse
Affiliation(s)
- Yuesong Fu
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Lu Li
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Jing Gao
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Fazheng Wang
- Department of Orthopedics, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang, China
| | - Zihan Zhou
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Xu S, Chen Q, Luo N, Yang J, Li D. Effects of age and tissue of Juniperus sabina L. on its phytochemical characteristics, anti-cholinesterase, antidiabetes, and anti-drug resistant bacteria activities. FRONTIERS IN PLANT SCIENCE 2023; 14:1174922. [PMID: 37731973 PMCID: PMC10507269 DOI: 10.3389/fpls.2023.1174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023]
Abstract
Juniperus sabina L. is used in the traditional Chinese medicine (TCM) system to prevent or treat various diseases. However, only the leaves and branches are used as medicinal parts. The aim of this study was to compare the chemical characteristics of different tissues (leaves, branches, stems, and roots) of J. sabina at different ages by HPLC-MS and to evaluate the biological activity (enzyme inhibition, anti-drug-resistant bacteria). Total phenol (TPC) and total lignan (TLC) contents in J. sabina were determined by Folin-Ciocalteu method and UV spectrophotometry, respectively. High levels of total phenols (87.16 mg GAE/g dry weight) and total lignans (491.24 mg PPT/g dry weight) were detected in fifteen annual J. sabina roots and current year leaves, respectively. Eleven compounds, of which six were phenolic compounds and five were lignans, were identified and quantified by HPLC/HPLC-MS. Statistical analysis showed that the distribution and content of the detected compounds showed considerable variation among ages and tissues, and that the current year leaves of fifteen annual J. sabina could be used as a potential application site for the source of podophyllotoxin. Acetylcholinesterase (AChE) inhibitory activity was found to be the highest on the extracts of fifteen annual J. sabina current year leaves (47.37 μg/mL), while the highest inhibition towards butyrylcholinesterase (BChE) was observed for the extracts of seven annual J. sabina previous year leaves (136.3 μg/mL). And the second annual J. sabina current year stem's extracts showed the best antidiabetic activity (anti-α-glucosidase, 62.59 μg/mL). In addition, the extracts of fifteen annual J. sabina roots (47.37 μg/mL) showed the highest anti-MRSA activity (31.25 μg/mL). Redundancy analysis (RDA) was conducted to clarify the factors affecting the biological activity of J. sabina, and its results showed that epicatechin and matairesinol showed positive promotion. This study provides a new perspective for understanding the chemical differences and comprehensive utilization of different tissues of J. sabina.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Qian Chen
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Na Luo
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinyan Yang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|