1
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
3
|
B N, K G V, D S. Enrichment of vegan gluten-free pasta with basil seeds: Cooking quality, nutritional and antioxidant properties. FOOD SCI TECHNOL INT 2024:10820132241252218. [PMID: 38766716 DOI: 10.1177/10820132241252218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The germinated clove basil (Ocimum gratissimum) and sweet basil (Ocimum basilicum) seeds being a potent source of dietary fibre, minerals and antioxidants are utilized as functional ingredients for the enrichment of gluten-free pasta. The germinated clove basil seed and sweet basil seed incorporated pastas with acceptable sensory scores were developed by substituting 30% and 15% of gluten-free flour respectively. Basil seed pastas exhibited lesser cooking time (7-8 min), cooking loss (6%) and similar texture as that of control. The clove basil seed pasta exhibited better cooking quality, nutritional and antioxidant properties than the sweet basil seed pasta due to higher level of basil seed flour substitution. Consumption of one serving of clove basil seed pasta (75 g) could meet the dietary fibre (49%, 58%), protein (15%, 17%), magnesium (18%, 21%), phosphorus (22%, 22%), manganese (28%, 28%) and copper (28%, 28%) daily requirements of sedentary adult men and women, respectively.
Collapse
Affiliation(s)
- Neeharika B
- Department of Food Science and Nutrition, University of Agricultural Sciences, GKVK, Bengaluru, KA, India
| | - Vijayalaxmi K G
- Department of Food Science and Nutrition, University of Agricultural Sciences, GKVK, Bengaluru, KA, India
| | - Shobha D
- AICRP on PHET, University of Agricultural Sciences, GKVK, Bengaluru, KA, India
| |
Collapse
|
4
|
Nechita MA, Pralea IE, Țigu AB, Iuga CA, Pop CR, Gál E, Vârban R, Nechita VI, Oniga O, Toiu A, Benedec D, Hanganu D, Oniga I. Agastache Species (Lamiaceae) as a Valuable Source of Volatile Compounds: GC-MS Profiling and Investigation of In Vitro Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:5366. [PMID: 38791403 PMCID: PMC11120732 DOI: 10.3390/ijms25105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzău" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzău" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzău" EO (IC50 = 203.70 ± 0.24 μg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 μL/mL) and S. aureus (10.80 ± 0.00 μL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.
Collapse
Affiliation(s)
- Mihaela-Ancuța Nechita
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4–6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (C.-A.I.)
| | - Adrian-Bogdan Țigu
- Department of Translational Medicine, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4–6, 400349 Cluj-Napoca, Romania; (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Florești Street 64, 400509 Cluj-Napoca, Romania;
| | - Emese Gál
- Department of Chemistry and Chemical Engineering, Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028 Cluj-Napoca, Romania;
| | - Rodica Vârban
- Department of Crop Science, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street 3–5, 400372 Cluj-Napoca, Romania;
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babeș Street 41, 400010 Cluj-Napoca, Romania;
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Ion Creangă Street 12, 400010 Cluj-Napoca, Romania; (M.-A.N.); (A.T.); (D.H.); (I.O.)
| |
Collapse
|
5
|
Gostiljac DM, Popovic SS, Dimitrijevic-Sreckovic V, Ilic SM, Jevtovic JA, Nikolic DM, Soldatovic IA. Effect of special types of bread with select herbal components on postprandial glucose levels in diabetic patients. World J Diabetes 2024; 15:664-674. [PMID: 38680690 PMCID: PMC11045426 DOI: 10.4239/wjd.v15.i4.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Nutrition recommendations in patients with type 2 diabetes mellitus (T2DM) are to consume rye or integral bread instead of white bread. A positive effect on glucoregulation has been achieved by enriching food with various biologically active substances of herbal origin, so we formulated an herbal mixture that can be used as a supplement for a special type of bread (STB) to achieve better effects on postprandial glucose and insulin levels in patients with T2DM. AIM To compare organoleptic characteristics and effects of two types of bread on postprandial glucose and insulin levels in T2DM patients. METHODS This trial included 97 patients with T2DM. A parallel group of 16 healthy subjects was also investigated. All participants were given 50 g of rye bread and the same amount of a STB with an herbal mixture on 2 consecutive days. Postprandial blood glucose and insulin levels were compared at the 30th, 60th, 90th and 120th min. A questionnaire was used for subjective estimation of the organoleptic and satiety features of the two types of bread. RESULTS Compared to patients who consumed rye bread, significantly lower postprandial blood glucose and insulin concentrations were found in T2DM patients who consumed STB. No relevant differences were found among the healthy subjects. Subjectively estimated organoleptic and satiety characteristics are better for STB than for rye bread. CONCLUSION STB have better effects than rye bread on postprandial glucoregulation in T2DM patients. Subjectively estimated organoleptic and satiety characteristics are better for STB than for rye bread. Therefore, STB can be recommended for nutrition in T2DM patients.
Collapse
Affiliation(s)
- Drasko M Gostiljac
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Srdjan S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vesna Dimitrijevic-Sreckovic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Sasa M Ilic
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | - Jelena A Jevtovic
- Clinic for Gastroenterology and Hepatology, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | - Dragan M Nikolic
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases-Laboratory for Human Pancreatic Islets Culture, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | | |
Collapse
|
6
|
Yang N, Li S, Zhang Y, Pan F, Liu G, Chen X, Yu C, Li K, Liu Y. Evaluation of volatile components from the tuber, fibrous roots, bud, stem and leaf tissues of Bletilla striata for its anti-colon cancer activity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:619-631. [PMID: 38737324 PMCID: PMC11087428 DOI: 10.1007/s12298-024-01450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Bletilla striata (Thunb.) Rchb.f., a medicinal plant in the Orchidaceae family, is mainly found in East Asia and has extensive pharmacological activities. Plant's volatile components are important active ingredients with a wide range of physiological activities, and B. striata has a special odor and unique volatile components. Yet it has received little attention, hindering a full understanding of its phytochemical components. Employing the ultrasonic-assisted extraction method, the volatile components of B. striata's fibrous root, bud, aerial part and tuber were extracted, resulting in yields of 0.06%, 0.64%, 3.38% and 4.47%, respectively. A total of 78 compounds were identified from their chemical profiles using gas chromatography-mass spectrometry (GC-MS), including 45 components with the main compounds of linoleic acid (content accounting for 31.23%), n-hexadecanoic acid (13.53%), and octadecanoic acid (9.5%) from the tuber, 34 components with the main compounds of eicosane, 2-methyl- (28.42%), linoelaidic acid (10.43%), linoleic acid (4.53%), and n-hexadecanoic acid (6.91%) from the fibrous root, 38 components with the main compounds of pentadeca-6,9-dien-1-ol (9.29%), n-hexadecanoic acid (11%), eicosane,2-methyl- (23.43%), and linoleic acid (23.53%) from the bud, and 27 components with the main compounds of linoelaidic acid (5.97%), n-hexadecanoic acid (15.99%), and linolenic acid ethyl ester (18.9%) from the aerial part. Additionally, the growth inhibition activity against colon cancer HCT116 cells was evaluated using sulforhodamine B (SRB) assay and the thiazolyl blue tetrazolium bromide (MTT) assay, and the accumulation of reactive oxygen species (ROS) was determined using dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining and fluorescence intensity analysis. The volatile extracts exhibited significant growth inhibitory efficacy against HCT116 cells, with half-maximal inhibitory concentration (IC50) values of 3.65, 2.32, 2.42 and 3.89 mg/mL in the SRB assay, and 3.55, 2.58, 3.12 and 4.80 mg/mL in the MTT assay for the root, bud, aerial part, and tuber, respectively. Notably, treatment with the aerial part extract caused morphological changes in the cells and significantly raised the intracellular ROS level. In summary, the chemical profiles of the volatile components of B. striata were revealed for the first time, demonstrating a certain tissue specificity. Additionally, it demonstrated for the first time that these volatile extracts possess potent anti-colon cancer activity, highlighting the importance of these volatile components in B. striata's medicinal properties.
Collapse
Affiliation(s)
- Nan Yang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Yong Zhang
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Feng Pan
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Guangjun Liu
- Guizhou Guangzheng Pharmaceutical Co., Ltd, Guiyang, Guizhou China
| | - Xingju Chen
- Guizhou Guangzheng Pharmaceutical Co., Ltd, Guiyang, Guizhou China
| | - Chanyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Kunmei Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| |
Collapse
|
7
|
Oliveira GDS, McManus C, Sousa HADF, Santos PHGDS, dos Santos VM. A Mini-Review of the Main Effects of Essential Oils from Citrus aurantifolia, Ocimum basilicum, and Allium sativum as Safe Antimicrobial Activity in Poultry. Animals (Basel) 2024; 14:382. [PMID: 38338025 PMCID: PMC10854582 DOI: 10.3390/ani14030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Poultry production is accompanied by the use of antimicrobial agents because no production step is free of microorganisms. In the absence of antimicrobial treatments with synthetic drugs, essential oils are among the most cited natural alternatives used to prevent and treat microbial contamination in poultry. Although there are several studies on the antimicrobial properties of essential oils, there is still no review that simultaneously compiles information on the leading antimicrobial role of essential oils from Citrus aurantifolia (CAEO), Ocimum basilicum (OBEO), and Allium sativum (ASEO) in poultry. Awareness of the antimicrobial role of these substances opens the door to encouraging their use in natural antimicrobial protocols and discouraging harmful synthetics in poultry. This review aimed to compile information on applying CAEO, OBEO, and ASEO as antimicrobials in poultry farming. The available literature suggests that these essential oils can proportionately align with the poultry industry's demands for microbiologically safe food products.
Collapse
Affiliation(s)
- Gabriel da Silva Oliveira
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil; (G.d.S.O.)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil; (G.d.S.O.)
| | | | | | | |
Collapse
|
8
|
Kumari S, Singh PA, Hazra S, Sindhwani R, Singh S. Ocimum sanctum: The Journey from Sacred Herb to Functional Food. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:83-102. [PMID: 38351693 DOI: 10.2174/012772574x290140240130101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 07/19/2024]
Abstract
In recent years, the growing demand for herbal-based formulations, including functional foods, has acquired significant attention. This study highlights historical, botanical, ecological, and phytochemical descriptions and different extraction mechanisms of Ocimum sanctum utilized in its processing. Besides this, it explores the utilization of Ocimum sanctum as a functional food ingredient in various food products such as bakery products (biscuits, bread), dairy products (herbal milk, cheese), and beverages (tea, juice, wine) while focusing on their evaluation parameters, preparation techniques, and pharmacological activities. In terms of other pharmacological properties, Ocimum sanctum-infused functional foods exhibited cognitiveenhancing properties, adaptogenic qualities, anti-obesity effects, gastroprotective, antiinflammatory, hypoglycemic, and immuno-modulatory effects. Thus, the diverse properties of Ocimum sanctum offer exciting opportunities for the development of functional foods that can promote specific health issues, so future research should focus on developing and analyzing novel Ocimum sanctum-based functional foods to meet the growing demand of the functional food industry.
Collapse
Affiliation(s)
- Sneha Kumari
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Subhajit Hazra
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Ritika Sindhwani
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Sukhvinder Singh
- University Centre for Research & Development (UCRD), Chandigarh University, Mohali-140413, Punjab, India
| |
Collapse
|
9
|
Azizah NS, Irawan B, Kusmoro J, Safriansyah W, Farabi K, Oktavia D, Doni F, Miranti M. Sweet Basil ( Ocimum basilicum L.)-A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:4148. [PMID: 38140476 PMCID: PMC10748370 DOI: 10.3390/plants12244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An urgent demand for natural compound alternatives to conventional medications has arisen due to global health challenges, such as drug resistance and the adverse effects associated with synthetic drugs. Plant extracts are considered an alternative due to their favorable safety profiles and potential for reducing side effects. Sweet basil (Ocimum basilicum L.) is a valuable plant resource and a potential candidate for the development of pharmaceutical medications. A single pure compound or a combination of compounds exhibits exceptional medicinal properties, including antiviral activity against both DNA and RNA viruses, antibacterial effects against both Gram-positive and Gram-negative bacteria, antifungal properties, antioxidant activity, antidiabetic potential, neuroprotective qualities, and anticancer properties. The plant contains various phytochemical constituents, which mostly consist of linalool, eucalyptol, estragole, and eugenol. For centuries, community and traditional healers across the globe have employed O. basilicum L. to treat a wide range of ailments, including flu, fever, colds, as well as issues pertaining to digestion, reproduction, and respiration. In addition, the current research presented underscores the significant potential of O. basilicum-related nanotechnology applications in addressing diverse challenges and advancing numerous fields. This promising avenue of exploration holds great potential for future scientific and technological advancements, promising improved utilization of medicinal products derived from O. basilicum L.
Collapse
Affiliation(s)
- Nabilah Sekar Azizah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Wahyu Safriansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Dina Oktavia
- Department of Transdisciplinary, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| |
Collapse
|
10
|
Abdullah, Hussain T, Faisal S, Rizwan M, Almostafa MM, Younis NS, Yahya G. Zingiber officinale rhizome extracts mediated ni nanoparticles and its promising biomedical and environmental applications. BMC Complement Med Ther 2023; 23:349. [PMID: 37789322 PMCID: PMC10546789 DOI: 10.1186/s12906-023-04182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Zingiber officinale, generally known as ginger, contains bioactive phytochemicals, including gingerols and shogaols, that may function as reducing agents and stabilizers for the formation of nickel nanoparticles (Ni-NPs). Ginger extract-mediated nickel nanoparticles were synthesized using an eco-friendly method, and their antibacterial, antioxidant, antiparasitic, antidiabetic, anticancer, dye degrading, and biocompatibility properties were investigated. METHODS UV-visible spectroscopy, fourier transform infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy were used to validate and characterize the synthesis of Ni-NPs. Agar well diffusion assay, alpha-amylase and glucosidase inhibitory assay, free radical scavenging assay, biocompatibility assay, and MTT assay were used to analyse the biomedical importance of Ni-NPs. RESULTS SEM micrograph examinations revealed almost aggregates of Ni-NPs; certain particles were monodispersed and spherical, with an average grain size of 74.85 ± 2.5 nm. Ni-NPs have successfully inhibited the growth of Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris by inducing membrane damage, as shown by the absorbance at 260 nm (A260). DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals were successfully scavenged by Ni-NPs at an inhibition rate of 69.35 ± 0.81% at 800 µg/mL. A dose-dependent cytotoxicity of Ni-NPs was observed against amastigote and promastigote forms of Leishmania tropica, with significant mortality rates of 94.23 ± 1.10 and 92.27 ± 1.20% at 1.0 mg/mL, respectively. Biocompatibility studies revealed the biosafe nature of Ni-NPs by showing RBC hemolysis up to 1.53 ± 0.81% at 400 µg/mL, which is considered safe according to the American Society for Materials and Testing (ASTM). Furthermore, Ni-NPs showed antidiabetic activity by inhibiting α-amylase and α-glucosidase enzymes at an inhibition rate of 22.70 ± 0.16% and 31.23 ± 0.64% at 200 µg/mL, respectively. Ni-NPs have shown significant cytotoxic activity by inhibiting MCF-7 cancerous cells up to 68.82 ± 1.82% at a concentration of 400 µg/mL. The IC50 for Ni-NPs was almost 190 µg/mL. Ni-NPs also degraded crystal violet dye up to 86.1% at 2 h of exposure. CONCLUSIONS In conclusion, Zingiber officinale extract was found successful in producing stable nanoparticles. Ni-NPs have shown substantial biomedical activities, and as a result, we believe these nanoparticles have potential as a powerful therapeutic agent for use in nanomedicine.
Collapse
Affiliation(s)
- Abdullah
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice, 44-100, Poland.
- Joint Doctoral School, Silesian University of Technology, Academika 2a, Gliwice, 44-100, Poland.
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shah Faisal
- Institube of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, 24460, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Khyber Pakhtunkhwa, 19000, Pakistan
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Alhofuf, 31982, Al-Ahsa, Saudi Arabia
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt
| |
Collapse
|
11
|
Amin HIM, Abdoulrahman K, Sadraddin AS, Smail HA, Jawhar ZH, Dilawer Issa K, Armijos C, Vidari G. Chemical Composition and In Vitro Evaluation of Antioxidant and Antiproliferative Effects of Volatile Oils Hydrodistilled from Onobrychis carduchorum C.C. Towns., a Kurdish Traditional Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:3013. [PMID: 37631224 PMCID: PMC10458915 DOI: 10.3390/plants12163013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The volatile oils hydrodistilled from the aerial parts and roots of O. carduchorum C.C Towns. (Fabaceae) have been chemically characterized for the first time. A total of 43 constituents with an abundance >0.03% were identified and quantified in the two oils by GC/MS and GC/FID analyses. They comprise 38 components (98.58%) of the oil isolated from the aerial parts (OCA) and 34 components (93.33%) of the oil from the roots (OCR). Six constituents, α-pinene (23.11 ± 0.1%), β-elemene (17.33 ± 0.1%), 1,8-cineole (12.15 ± 0.2%), furfural (7.91 ± 0.1%), terpineol-4-ol (6.32 ± 0.2%), and limonene (4.13 ± 0.1%), accounted for about 75% of the total OCA oil. On the other hand, 1,8-cineole (15.79 ± 0.1%), furfural (10.44 ± 0.1%), β-elemene (10.14 ± 0.2%), α-terpineol (7.74 ± 0.1%), linalool (7.45 ± 0.1%), and α-pinene (4.76 ± 0.1%) made up about 60% of the OCR oil. The IC50 values of the scavenging activities of the OCA and OCR oils towards the DPPH radical and H2O2 were 79.8 ± 0.5 and 153.3 ± 0.6 μg/mL and 394.09 ± 0.2 and 311.67 ± 0.4 μg/mL, respectively. In addition, in the MTS assay, the OCA and OCR oils showed significant antiproliferative effects against T47D, MDA-MB-453, BG-1, and A549 human cancer cells that were more powerful than those against two normal human cell lines, HEK-293 and HFF-1. The abundant presence of β-elemene as an antiproliferative component of the two oils suggested the existence of a new chemotype of O. carduchorum.
Collapse
Affiliation(s)
- Hawraz Ibrahim M. Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq; (K.A.); (H.A.S.)
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil 44001, Iraq
| | - Kamaran Abdoulrahman
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq; (K.A.); (H.A.S.)
| | - Azad S. Sadraddin
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq;
| | - Heman A. Smail
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq; (K.A.); (H.A.S.)
| | - Zanko Hassan Jawhar
- Department of Science, College of Health Science, Lebanese French University, Erbil 44001, Iraq;
| | - Kovan Dilawer Issa
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq; (K.D.I.); (G.V.)
| | - Chabaco Armijos
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Loja 1101608, Ecuador;
| | - Giovanni Vidari
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil 44001, Iraq; (K.D.I.); (G.V.)
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|