1
|
Lin RZ, Amith MT, Wang CX, Strickley J, Tao C. Dermoscopy Differential Diagnosis Explorer (D3X) Ontology to Aggregate and Link Dermoscopic Patterns to Differential Diagnoses: Development and Usability Study. JMIR Med Inform 2024; 12:e49613. [PMID: 38904996 PMCID: PMC11226929 DOI: 10.2196/49613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Dermoscopy is a growing field that uses microscopy to allow dermatologists and primary care physicians to identify skin lesions. For a given skin lesion, a wide variety of differential diagnoses exist, which may be challenging for inexperienced users to name and understand. OBJECTIVE In this study, we describe the creation of the dermoscopy differential diagnosis explorer (D3X), an ontology linking dermoscopic patterns to differential diagnoses. METHODS Existing ontologies that were incorporated into D3X include the elements of visuals ontology and dermoscopy elements of visuals ontology, which connect visual features to dermoscopic patterns. A list of differential diagnoses for each pattern was generated from the literature and in consultation with domain experts. Open-source images were incorporated from DermNet, Dermoscopedia, and open-access research papers. RESULTS D3X was encoded in the OWL 2 web ontology language and includes 3041 logical axioms, 1519 classes, 103 object properties, and 20 data properties. We compared D3X with publicly available ontologies in the dermatology domain using a semiotic theory-driven metric to measure the innate qualities of D3X with others. The results indicate that D3X is adequately comparable with other ontologies of the dermatology domain. CONCLUSIONS The D3X ontology is a resource that can link and integrate dermoscopic differential diagnoses and supplementary information with existing ontology-based resources. Future directions include developing a web application based on D3X for dermoscopy education and clinical practice.
Collapse
Affiliation(s)
- Rebecca Z Lin
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, United States
| | - Muhammad Tuan Amith
- Department of Information Science, University of North Texas, Denton, TX, United States
- Department of Biostatistics and Data Science, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, United States
| | - Cynthia X Wang
- Department of Dermatology, Kaiser Permanente Redwood City Medical Center, Redwood City, CA, United States
| | - John Strickley
- Division of Dermatology, University of Louisville, Louisville, KY, United States
| | - Cui Tao
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
2
|
Turki H, Jemielniak D, Hadj Taieb MA, Labra Gayo JE, Ben Aouicha M, Banat M, Shafee T, Prud’hommeaux E, Lubiana T, Das D, Mietchen D. Using logical constraints to validate statistical information about disease outbreaks in collaborative knowledge graphs: the case of COVID-19 epidemiology in Wikidata. PeerJ Comput Sci 2022; 8:e1085. [PMID: 36262159 PMCID: PMC9575845 DOI: 10.7717/peerj-cs.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Urgent global research demands real-time dissemination of precise data. Wikidata, a collaborative and openly licensed knowledge graph available in RDF format, provides an ideal forum for exchanging structured data that can be verified and consolidated using validation schemas and bot edits. In this research article, we catalog an automatable task set necessary to assess and validate the portion of Wikidata relating to the COVID-19 epidemiology. These tasks assess statistical data and are implemented in SPARQL, a query language for semantic databases. We demonstrate the efficiency of our methods for evaluating structured non-relational information on COVID-19 in Wikidata, and its applicability in collaborative ontologies and knowledge graphs more broadly. We show the advantages and limitations of our proposed approach by comparing it to the features of other methods for the validation of linked web data as revealed by previous research.
Collapse
Affiliation(s)
- Houcemeddine Turki
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Dariusz Jemielniak
- Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Masovia, Poland
| | - Mohamed A. Hadj Taieb
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Jose E. Labra Gayo
- Web Semantics Oviedo (WESO) Research Group, University of Oviedo, Oviedo, Asturias, Spain
| | - Mohamed Ben Aouicha
- Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Mus’ab Banat
- Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Thomas Shafee
- La Trobe University, Melbourne, Victoria, Australia
- Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Eric Prud’hommeaux
- World Wide Web Consortium, Cambridge, Massachusetts, United States of America
| | - Tiago Lubiana
- Computational Systems Biology Laboratory, University of São Paulo, São Paulo, Brazil
| | - Diptanshu Das
- Institute of Child Health (ICH), Kolkata, West Bengal, India
- Medica Superspecialty Hospital, Kolkata, West Bengal, India
| | - Daniel Mietchen
- Ronin Institute, Montclair, New Jersey, United States of America
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- School of Data Science, University of Virginia, Charlottesville, Virginia, United States
- Institute for Globally Distributed Open Research and Education (IGDORE), Jena, Germany
| |
Collapse
|
3
|
Azzi S, Michalowski W, Iglewski M. Developing a pneumonia diagnosis ontology from multiple knowledge sources. Health Informatics J 2022; 28:14604582221083850. [PMID: 35377253 DOI: 10.1177/14604582221083850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Pneumonia is difficult to differentiate from other pulmonary diseases because it shares many symptoms with these diseases. Diagnosing pneumonia in clinical practice would benefit from having access to a codified representation of clinical knowledge. An ontology represents a well-established paradigm for such codification. Objectives: The goal of this research is to create Pneumonia Diagnosis Ontology (PNADO) that brings together the medical knowledge dispersed among multiple medical knowledge sources. Material and Methods: We used several clinical practice guidelines (CPGs) describing the pneumonia diagnostic process as a starting point in developing PNADO. Preliminary version of PNADO was subsequently expanded to cover a broader range of the concepts by reusing ontologies from Open Biological and Biomedical Ontology (OBO) Foundry and BioPortal. PNADO was evaluated by examining relevant concepts from the pneumonia-specific systematic reviews, using patient data from the MIMIC-III clinical dataset, and by clinical domain experts. Results: PNADO is a comprehensive ontology and has a rich set of classes and properties that cover different types of pneumonia, pathogens, symptoms, clinical signs, laboratory tests and imaging, clinical findings, complications, and diagnoses. Conclusion: PNADO unifies pneumonia diagnostic concepts from multiple knowledge sources. It is available in the BioPortal repository.
Collapse
|
4
|
Amith M, Fujimoto K, Mauldin R, Tao C. Friend of a Friend with Benefits ontology (FOAF+): extending a social network ontology for public health. BMC Med Inform Decis Mak 2020; 20:269. [PMID: 33319708 PMCID: PMC7737278 DOI: 10.1186/s12911-020-01287-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dyadic-based social networks analyses have been effective in a variety of behavioral- and health-related research areas. We introduce an ontology-driven approach towards social network analysis through encoding social data and inferring new information from the data. METHODS The Friend of a Friend (FOAF) ontology is a lightweight social network ontology. We enriched FOAF by deriving social interaction data and relationships from social data to extend its domain scope. RESULTS Our effort produced Friend of a Friend with Benefits (FOAF+) ontology that aims to support the spectrum of human interaction. A preliminary semiotic evaluation revealed a semantically rich and comprehensive knowledge base to represent complex social network relationships. With Semantic Web Rules Language, we demonstrated FOAF+ potential to infer social network ties between individual data. CONCLUSION Using logical rules, we defined interpersonal dyadic social connections, which can create inferred linked dyadic social representations of individuals, represent complex behavioral information, help machines interpret some of the concepts and relationships involving human interaction, query network data, and contribute methods for analytical and disease surveillance.
Collapse
Affiliation(s)
- Muhammad Amith
- grid.267308.80000 0000 9206 2401School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, TX 77030 USA
| | - Kayo Fujimoto
- grid.267308.80000 0000 9206 2401School of Public Health, The University of Texas Health Science Center at Houston, 7000 Fannin Street, Suite 2514, Houston, TX 77030 USA
| | - Rebecca Mauldin
- grid.267315.40000 0001 2181 9515The University of Texas at Arlington, 211 South Cooper Street, Box 19129, Arlington, TX 76019 USA
| | - Cui Tao
- grid.267308.80000 0000 9206 2401School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St Suite 600, Houston, TX 77030 USA
| |
Collapse
|
5
|
Abad-Navarro F, Quesada-Martínez M, Duque-Ramos A, Fernández-Breis JT. Analysis of readability and structural accuracy in SNOMED CT. BMC Med Inform Decis Mak 2020; 20:284. [PMID: 33319711 PMCID: PMC7737250 DOI: 10.1186/s12911-020-01291-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background The increasing adoption of ontologies in biomedical research and the growing number of ontologies available have made it necessary to assure the quality of these resources. Most of the well-established ontologies, such as the Gene Ontology or SNOMED CT, have their own quality assurance processes. These have demonstrated their usefulness for the maintenance of the resources but are unable to detect all of the modelling flaws in the ontologies. Consequently, the development of efficient and effective quality assurance methods is needed. Methods Here, we propose a series of quantitative metrics based on the processing of the lexical regularities existing in the content of the ontology, to analyse readability and structural accuracy. The readability metrics account for the ratio of labels, descriptions, and synonyms associated with the ontology entities. The structural accuracy metrics evaluate how two ontology modelling best practices are followed: (1) lexically suggest locally define (LSLD), that is, if what is expressed in natural language for humans is available as logical axioms for machines; and (2) systematic naming, which accounts for the amount of label content of the classes in a given taxonomy shared. Results We applied the metrics to different versions of SNOMED CT. Both readability and structural accuracy metrics remained stable in time but could capture some changes in the modelling decisions in SNOMED CT. The value of the LSLD metric increased from 0.27 to 0.31, and the value of the systematic naming metric was around 0.17. We analysed the readability and structural accuracy in the SNOMED CT July 2019 release. The results showed that the fulfilment of the structural accuracy criteria varied among the SNOMED CT hierarchies. The value of the metrics for the hierarchies was in the range of 0–0.92 (LSLD) and 0.08–1 (systematic naming). We also identified the cases that did not meet the best practices. Conclusions We generated useful information about the engineering of the ontology, making the following contributions: (1) a set of readability metrics, (2) the use of lexical regularities to define structural accuracy metrics, and (3) the generation of quality assurance information for SNOMED CT.
Collapse
Affiliation(s)
- Francisco Abad-Navarro
- Departamento de Informática y Sistemas, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Manuel Quesada-Martínez
- Center of Operations Research (CIO), Miguel Hernández University of Elche, Avda. de la Universidad, 03202, Alicante, Spain
| | - Astrid Duque-Ramos
- Facultad de Ingenierías, Universidad Autónoma Latinoamericana, Carrera 55 49, 050010, Medellín, Colombia
| | - Jesualdo Tomás Fernández-Breis
- Departamento de Informática y Sistemas, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain. .,Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain.
| |
Collapse
|
6
|
He Z, Bian J, Tao C, Zhang R. Selected articles from the Third International Workshop on Semantics-Powered Data Analytics (SEPDA 2018). BMC Med Inform Decis Mak 2019; 19:148. [PMID: 31391050 PMCID: PMC6686213 DOI: 10.1186/s12911-019-0855-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this editorial, we first summarize the Third International Workshop on Semantics-Powered Data Analytics (SEPDA 2018) held on December 3, 2018 in conjunction with the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018) in Madrid, Spain, and then briefly introduce five research articles included in this supplement issue, covering topics including Data Analytics, Data Visualization, Text Mining, and Ontology Evaluation.
Collapse
Affiliation(s)
- Zhe He
- School of Information, Florida State University, 142 Collegiate Loop, Tallahassee, FL, 32306, USA.
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Cui Tao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rui Zhang
- Institute for Health Informatics and College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|