1
|
Wang Y, Huang Y, Chen Y, Yu Z, Liu P, Li G, Yang Q. Genome-Wide Identification of GAST Family Members and Their Potential Roles in Epicotyl Dormancy in Chinese Cork Oak ( Quercus variabilis). PLANTS (BASEL, SWITZERLAND) 2024; 13:1247. [PMID: 38732462 PMCID: PMC11085511 DOI: 10.3390/plants13091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
Chinese cork oak (Quercus variabilis Blume) is a widespread tree species with high economic and ecological values. Chinese cork oak exhibits epicotyl dormancy, causing emergence heterogeneity and affecting the quality of seedling cultivation. Gibberellic acid-stimulated transcript (GAST) is a plant-specific protein family that plays a crucial regulatory role in plant growth, development, and seed germination. However, their evolution in Chinese cork oak and roles in epicotyl dormancy are still unclear. Here, a genome-wide identification of the GAST gene family was conducted in Chinese cork oak. Ten QvGAST genes were identified, and nine of them were expressed in seed. The physicochemical properties and promoter cis-acting elements of the selected Chinese cork oak GAST family genes indicated that the cis-acting elements in the GAST promoter are involved in plant development, hormone response, and stress response. Germinated seeds were subjected to gibberellins (GAs), abscisic acid (ABA), and fluridone treatments to show their response during epicotyl dormancy release. Significant changes in the expression of certain QvGAST genes were observed under different hormone treatments. QvGAST1, QvGAST2, QvGAST3, and QvGAST6 exhibited upregulation in response to gibberellin. QvGAST2 was markedly upregulated during the release of epicotyl dormancy in response to GA. These findings suggested that QvGAST2 might play an important role in epicotyl dormancy release. This study provides a basis for further analysis of the mechanisms underlying the alleviation of epicotyl dormancy in Chinese cork oak by QvGASTs genes.
Collapse
Affiliation(s)
- Yaochen Wang
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yifei Huang
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yixin Chen
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Zhaowei Yu
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Puyuan Liu
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Guolei Li
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Qinsong Yang
- Research Center of Deciduous Oaks, Beijing Forestry University, Beijing 100083, China; (Y.W.); (Y.H.); (Y.C.); (Z.Y.); (P.L.); (G.L.)
- Deciduous Oak Improvement and Regeneration Innovation Team of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Ren Y, Shen F, Liu J, Liang W, Zhang C, Lian T, Jiang L. Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:3802. [PMID: 38005700 PMCID: PMC10675280 DOI: 10.3390/plants12223802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Methionine is an essential amino acid that initiates protein synthesis and serves as a substrate for various chemical reactions. Methionine metabolism plays an important role in Arabidopsis seed germination, but how methionine works in seed germination of maize has not been elucidated. We compared the changes in germination rate, the contents of methionine and folates, and transcriptional levels using transcriptome analysis under water or exogenous methionine treatment. The results indicate that the application of methionine increases seed germination rate (95% versus 70%), leading to significant differences in the content of methionine at 36 h, which brought the rapid increase forward by 12 h in the embryo and endosperm. Transcriptome analysis shows that methionine mainly affects the proliferation and differentiation of cells in the embryo, and the degradation of storage substances and signal transduction in the endosperm. In particular, multiple phenylpropanoid biosynthetic genes were triggered upon methionine treatment during germination. These results provide a theoretical foundation for promoting maize seed germination and serve as a valuable theoretical resource for seed priming strategies.
Collapse
Affiliation(s)
- Ying Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Fengyuan Shen
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Ji’an Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Wenguang Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| |
Collapse
|
3
|
Cui X, Zou M, Li J. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:191-206. [PMID: 37537721 DOI: 10.1111/nph.19149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.
Collapse
Affiliation(s)
- Xuan Cui
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Laloum T, Carvalho SD, Martín G, Richardson DN, Cruz TMD, Carvalho RF, Stecca KL, Kinney AJ, Zeidler M, Barbosa ICR, Duque P. The SCL30a SR protein regulates ABA-dependent seed traits and germination under stress. PLANT, CELL & ENVIRONMENT 2023; 46:2112-2127. [PMID: 37098235 DOI: 10.1111/pce.14593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
SR proteins are conserved RNA-binding proteins best known as splicing regulators that have also been implicated in other steps of gene expression. Despite mounting evidence for a role in plant development and stress responses, the molecular pathways underlying SR protein regulation of these processes remain poorly understood. Here we show that the plant-specific SCL30a SR protein negatively regulates ABA signaling to control seed traits and stress responses during germination in Arabidopsis. Transcriptome-wide analyses revealed that loss of SCL30a function barely affects splicing, but largely induces ABA-responsive gene expression and genes repressed during germination. Accordingly, scl30a mutant seeds display delayed germination and hypersensitivity to ABA and high salinity, while transgenic plants overexpressing SCL30a exhibit reduced ABA and salt stress sensitivity. An ABA biosynthesis inhibitor rescues the enhanced mutant seed stress sensitivity, and epistatic analyses confirm that this hypersensitivity requires a functional ABA pathway. Finally, seed ABA levels are unchanged by altered SCL30a expression, indicating that the gene promotes seed germination under stress by reducing sensitivity to the phytohormone. Our results reveal a new player in ABA-mediated control of early development and stress response.
Collapse
Affiliation(s)
- Tom Laloum
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | | | | - Kevin L Stecca
- Crop Genetics Research and Development, DuPont Experimental Station, Wilmington, Delaware, USA
| | - Anthony J Kinney
- Crop Genetics Research and Development, DuPont Experimental Station, Wilmington, Delaware, USA
| | - Mathias Zeidler
- Institute of Plant Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
5
|
Shi L, Lin K, Su T, Shi F. Abscisic Acid Inhibits Cortical Microtubules Reorganization and Enhances Ultraviolet-B Tolerance in Arabidopsis thaliana. Genes (Basel) 2023; 14:genes14040892. [PMID: 37107650 PMCID: PMC10137628 DOI: 10.3390/genes14040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is one of the important environmental factors limiting plant growth. Both abscisic acid (ABA) and microtubules have been previously reported to be involved in plant response to UV-B. However, whether there is a potential link between ABA and microtubules and the consequent signal transduction mechanism underlying plant response to UV-B radiation remains largely unclear. Here, by using sad2-2 mutant plants (sensitive to ABA and drought) and exogenous application of ABA, we saw that ABA strengthens the adaptive response to UV-B stress in Arabidopsis thaliana (A. thaliana). The abnormal swelling root tips of ABA-deficient aba3 mutants demonstrated that ABA deficiency aggravated the growth retardation imposed by UV-B radiation. In addition, the cortical microtubule arrays of the transition zones of the roots were examined in the aba3 and sad2-2 mutants with or without UV-B radiation. The observation revealed that UV-B remodels cortical microtubules, and high endogenous ABA can stabilize the microtubules and reduce their UV-B-induced reorganization. To further confirm the role of ABA on microtubule arrays, root growth and cortical microtubules were evaluated after exogenous ABA, taxol, and oryzalin feeding. The results suggested that ABA can promote root elongation by stabilizing the transverse cortical microtubules under UV-B stress conditions. We thus uncovered an important role of ABA, which bridges UV-B and plants' adaptive response by remodeling the rearrangement of the cortical microtubules.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Kun Lin
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tongbing Su
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Fumei Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
6
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
7
|
Jonsson K, Hamant O, Bhalerao RP. Plant cell walls as mechanical signaling hubs for morphogenesis. Curr Biol 2022; 32:R334-R340. [PMID: 35413265 DOI: 10.1016/j.cub.2022.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The instructive role of mechanical cues during morphogenesis is increasingly being recognized in all kingdoms. Patterns of mechanical stress depend on shape, growth and external factors. In plants, the cell wall integrates these three parameters to function as a hub for mechanical feedback. Plant cells are interconnected by cell walls that provide structural integrity and yet are flexible enough to act as both targets and transducers of mechanical cues. Such cues may act locally at the subcellular level or across entire tissues, requiring tight control of both cell-wall composition and cell-cell adhesion. Here we focus on how changes in cell-wall chemistry and mechanics act in communicating diverse cues to direct growth asymmetries required for plant morphogenesis. We explore the role of cellulose microfibrils, microtubule arrays and pectin methylesterification in the transduction of mechanical cues during morphogenesis. Plant hormones can affect the mechanochemical composition of the cell wall and, in turn, the cell wall can modulate hormone signaling pathways, as well as the tissue-level distribution of these hormones. This also leads us to revisit the position of biochemical growth factors, such as plant hormones, acting both upstream and downstream of mechanical signaling. Finally, while the structure of the cell wall is being elucidated with increasing precision, existing data clearly show that the integration of genetic, biochemical and theoretical studies will be essential for a better understanding of the role of the cell wall as a hub for the mechanical control of plant morphogenesis.
Collapse
Affiliation(s)
- Kristoffer Jonsson
- IRBV, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada.
| | - Olivier Hamant
- Laboratoire Reproduction et Developpement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69364 Lyon, France
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden.
| |
Collapse
|
8
|
Trinh DC, Alonso-Serra J, Asaoka M, Colin L, Cortes M, Malivert A, Takatani S, Zhao F, Traas J, Trehin C, Hamant O. How Mechanical Forces Shape Plant Organs. Curr Biol 2021; 31:R143-R159. [PMID: 33561417 DOI: 10.1016/j.cub.2020.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs - spheres, cylinders and lamina - can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features - folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals.
Collapse
Affiliation(s)
- Duy-Chi Trinh
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Department of Pharmacological, Medical and Agronomical Biotechnology, University of Science and Technology of Hanoi, Cau Giay District, Hanoi, Vietnam
| | - Juan Alonso-Serra
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariko Asaoka
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leia Colin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Cortes
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Alice Malivert
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Shogo Takatani
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Feng Zhao
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
9
|
Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts. Proc Natl Acad Sci U S A 2020; 117:32731-32738. [PMID: 33288703 PMCID: PMC7768696 DOI: 10.1073/pnas.2008895117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, microtubules largely determine the direction of cell expansion and the orientation of cell division planes. However, what processes orient the microtubules has remained debated. Here, we used microfabricated wells to confine and deform wallless plant cells in a controlled way to analyze the response of microtubules to cell geometry and surface tension. We demonstrate that microtubules align with cell geometry by default, whereas when surface tension increases (e.g. when turgor pressure increases), they align with the direction of maximal tension. Not only does this explain many observations in plant tissues, but it also provides a simple mechanism at the core of plant morphogenesis, in which microtubules can spontaneously align with tension, in a typical self-organized system. In plant cells, cortical microtubules (CMTs) generally control morphogenesis by guiding cellulose synthesis. CMT alignment has been proposed to depend on geometrical cues, with microtubules aligning with the cell long axis in silico and in vitro. Yet, CMTs are usually transverse in vivo, i.e., along predicted maximal tension, which is transverse for cylindrical pressurized vessels. Here, we adapted a microwell setup to test these predictions in a single-cell system. We confined protoplasts laterally to impose a curvature ratio and modulated pressurization through osmotic changes. We find that CMTs can be longitudinal or transverse in wallless protoplasts and that the switch in CMT orientation depends on pressurization. In particular, longitudinal CMTs become transverse when cortical tension increases. This explains the dual behavior of CMTs in planta: CMTs become longitudinal when stress levels become low, while stable transverse CMT alignments in tissues result from their autonomous response to tensile stress fluctuations.
Collapse
|