1
|
Vinopalová M, Arbonová L, Füssy Z, Dohnálek V, Samad A, Bílý T, Vancová M, Doležal P. Mlf mediates proteotoxic response via formation of cellular foci for protein folding and degradation in Giardia. PLoS Pathog 2024; 20:e1012617. [PMID: 39432513 PMCID: PMC11527388 DOI: 10.1371/journal.ppat.1012617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/31/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Myeloid leukemia factor 1 (Mlf1) was identified as a proto-oncoprotein that affects hematopoietic differentiation in humans. However, its cellular function remains elusive, spanning roles from cell cycle regulation to modulation of protein aggregate formation and participation in ciliogenesis. Given that structurally conserved homologs of Mlf1 can be found across the eukaryotic tree of life, we decided to characterize its cellular role underlying this phenotypic pleiotropy. Using a model of the unicellular eukaryote Giardia intestinalis, we demonstrate that its Mlf1 homolog (GiMlf) mainly localizes to two types of cytosolic foci: microtubular structures, where it interacts with Hsp40, and ubiquitin-rich, membraneless compartments, found adjacent to mitochondrion-related organelles known as mitosomes, containing the 26S proteasome regulatory subunit 4. Upon cellular stress, GiMlf either relocates to the affected compartment or disperses across the cytoplasm, subsequently accumulating into enlarged foci during the recovery phase. In vitro assays suggest that GiMlf can be recruited to membranes through its affinity for signaling phospholipids. Importantly, cytosolic foci diminish in the gimlf knockout strain, which exhibits extensive proteomic changes indicative of compromised proteostasis. Consistent with data from other cellular systems, we propose that Mlf acts in the response to proteotoxic stress by mediating the formation of function-specific foci for protein folding and degradation.
Collapse
Affiliation(s)
- Martina Vinopalová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Lenka Arbonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Abdul Samad
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Tomáš Bílý
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| |
Collapse
|
2
|
Harris SE, Alexis MS, Giri G, Cavazos FF, Hu Y, Murn J, Aleman MM, Burge CB, Dominguez D. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. Nat Commun 2024; 15:8400. [PMID: 39333159 PMCID: PMC11436793 DOI: 10.1038/s41467-024-52231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examine interspecies differences in RNA-protein interactions using the conserved neuronal RNA-binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstitute the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.
Collapse
Affiliation(s)
- Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Maria S Alexis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Remix Therapeutics, Cambridge, MA, USA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Francisco F Cavazos
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Hu
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Maria M Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA.
- RNA Discovery Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Taheri T, Davarpanah E, Samimi-Rad K, Seyed N. PUF Proteins as Critical RNA-Binding Proteins in TriTryp Parasites: A Review Article. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:278-289. [PMID: 39318822 PMCID: PMC11417976 DOI: 10.18502/ijpa.v19i3.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
In eukaryotes, translation is a fundamental step in the long pathway of protein synthesis within the cell. In this process, several proteins and factors have involved directly or indirectly, individually or in association with other elements to contact mRNA. For perfect translation, many essential modifications should be done, such as cis-splicing to remove introns and two main events for capping and poly A polymerization in 5' and 3' end of mRNA, respectively. Gene expression is then regulated at both translation and stability of the target mRNA molecule levels. Pumilio/FBFs (PUFs) are the main group of RNA-binding proteins which bind to the 3'-UTR of target RNA and thereby regulate the fate, stability and subcellular localization of mRNAs and adjust the translated protein level. PUF proteins have been found both in nucleus where that bind to precursor mRNA, for processing and maturation of rRNA, and in cytoplasm where that bind to mRNA, stall the ribosomes, suppress the translation and localization of the mRNA. They can regulate the expression of mRNAs through activation or suppression of translation. Therefore, these proteins have recently garnered much attention as new generation of therapeutic targets against diseases such as cancer and neurological disorders. In comparison to other eukaryotes, trypanosomatids have a high number of PUF proteins, which function not only as gene expression regulatory factors but also in several biological processes such as differentiation and life-cycle progression of the cells. Here, we review the molecular and biological roles of known PUF proteins in TriTryp parasites (Trypanosome brucei, T. cruzi and Leishmania) beside some other parasites.
Collapse
Affiliation(s)
- Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elaheh Davarpanah
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Katayon Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Harris SE, Alexis MS, Giri G, Cavazos FF, Murn J, Aleman MM, Burge CB, Dominguez D. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577729. [PMID: 38352439 PMCID: PMC10862761 DOI: 10.1101/2024.01.29.577729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examined interspecies differences in RNA-protein interactions using the conserved neuronal RNA binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstituted the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.
Collapse
Affiliation(s)
- Sarah E. Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Maria S. Alexis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Remix Therapeutics, Cambridge, MA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC
| | | | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA
- Center for RNA Biology and Medicine, Riverside, CA
| | - Maria M. Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | | | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC
- RNA Discovery Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
5
|
Motyčková A, Voleman L, Najdrová V, Arbonová L, Benda M, Dohnálek V, Janowicz N, Malych R, Šuťák R, Ettema TJG, Svärd S, Stairs CW, Doležal P. Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis. PLoS Pathog 2023; 19:e1010773. [PMID: 37792908 PMCID: PMC10578589 DOI: 10.1371/journal.ppat.1010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023] Open
Abstract
Mitochondrial metabolism is entirely dependent on the biosynthesis of the [4Fe-4S] clusters, which are part of the subunits of the respiratory chain. The mitochondrial late ISC pathway mediates the formation of these clusters from simpler [2Fe-2S] molecules and transfers them to client proteins. Here, we characterized the late ISC pathway in one of the simplest mitochondria, mitosomes, of the anaerobic protist Giardia intestinalis that lost the respiratory chain and other hallmarks of mitochondria. In addition to IscA2, Nfu1 and Grx5 we identified a novel BolA1 homologue in G. intestinalis mitosomes. It specifically interacts with Grx5 and according to the high-affinity pulldown also with other core mitosomal components. Using CRISPR/Cas9 we were able to establish full bolA1 knock out, the first cell line lacking a mitosomal protein. Despite the ISC pathway being the only metabolic role of the mitosome no significant changes in the mitosome biology could be observed as neither the number of the mitosomes or their capability to form [2Fe-2S] clusters in vitro was affected. We failed to identify natural client proteins that would require the [2Fe-2S] or [4Fe-4S] cluster within the mitosomes, with the exception of [2Fe-2S] ferredoxin, which is itself part of the ISC pathway. The overall uptake of iron into the cellular proteins remained unchanged as also observed for the grx5 knock out cell line. The pull-downs of all late ISC components were used to build the interactome of the pathway showing specific position of IscA2 due to its interaction with the outer mitosomal membrane proteins. Finally, the comparative analysis across Metamonada species suggested that the adaptation of the late ISC pathway identified in G. intestinalis occurred early in the evolution of this supergroup of eukaryotes.
Collapse
Affiliation(s)
- Alžběta Motyčková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Lenka Arbonová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Martin Benda
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Natalia Janowicz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Róbert Šuťák
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden
| | | | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová Vestec, Czech Republic
| |
Collapse
|
6
|
Feng W, Zhang H, Cao Y, Yang C, Khalid MHB, Yang Q, Li W, Wang Y, Fu F, Yu H. Comprehensive Identification of the Pum Gene Family and Its Involvement in Kernel Development in Maize. Int J Mol Sci 2023; 24:14036. [PMID: 37762337 PMCID: PMC10530998 DOI: 10.3390/ijms241814036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The Pumilio (Pum) RNA-binding protein family regulates post-transcription and plays crucial roles in stress response and growth. However, little is known about Pum in plants. In this study, a total of 19 ZmPum genes were identified and classified into two groups in maize. Although each ZmPum contains the conserved Pum domain, the ZmPum members show diversity in the gene and protein architectures, physicochemical properties, chromosomal location, collinearity, cis-elements, and expression patterns. The typical ZmPum proteins have eight α-helices repeats, except for ZmPum2, 3, 5, 7, and 14, which have fewer α-helices. Moreover, we examined the expression profiles of ZmPum genes and found their involvement in kernel development. Except for ZmPum2, ZmPum genes are expressed in maize embryos, endosperms, or whole seeds. Notably, ZmPum4, 7, and 13 exhibited dramatically high expression levels during seed development. The study not only contributes valuable information for further validating the functions of ZmPum genes but also provides insights for improvement and enhancing maize yield.
Collapse
Affiliation(s)
- Wenqi Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongwanjun Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Hayder Bin Khalid
- National Research Centre of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingge Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Application of Proteomics to the Study of the Therapeutics and Pathogenicity of Giardia duodenalis. Diagnostics (Basel) 2022; 12:diagnostics12112744. [DOI: 10.3390/diagnostics12112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Giardia duodenalis remains a neglected tropical disease. A key feature of the sustained transmission of Giardia is the ability to form environmentally resistant cysts. For the last 38 years, proteomics has been utilised to study various aspects of the parasite across different life cycle stages. Thirty-one articles have been published in PubMed from 2012 to 2022 related to the proteomics of G. duodenalis. Currently, mass spectrometry with LC-MS/MS and MALDI-TOF/TOF has been commonly utilised in proteomic analyses of Giardia, which enables researchers to determine potential candidates for diagnostic biomarkers as well as vaccine and drug targets, in addition to allowing them to investigate the virulence of giardiasis, the pathogenicity mechanisms of G. duodenalis, and the post-translational modifications of Giardia proteins throughout encystation. Over the last decade, valuable information from proteomics analyses of G. duodenalis has been discovered in terms of the pathogenesis and virulence of Giardia, which may provide guidance for the development of better means with which to prevent and reduce the impacts of giardiasis. Nonetheless, there is room for improving proteomics analyses of G. duodenalis, since genomic sequences for additional assemblages of Giardia have uncovered previously unknown proteins associated with the Giardia proteome. Therefore, this paper aims to review the applications of proteomics for the characterisation of G. duodenalis pathogenicity and the discovery of novel vaccine as well as drug targets, in addition to proposing some general directions for future Giardia proteomic research.
Collapse
|
8
|
Fry MY, Najdrová V, Maggiolo AO, Saladi SM, Doležal P, Clemons WM. Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Nat Struct Mol Biol 2022; 29:820-830. [DOI: 10.1038/s41594-022-00798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
|
9
|
Ko CF, Chang YC, Cho HC, Yu J. The Puf-A Protein Is Required for Primordial Germ Cell Development. Cells 2022; 11:cells11091476. [PMID: 35563782 PMCID: PMC9105799 DOI: 10.3390/cells11091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Puf-A, a nucleolar Puf domain protein, is required for ribosome biogenesis. A study of Puf-A in zebrafish has shown that Puf-A is highly expressed in primordial germ cells (PGCs) and participates in PGC development. However, it remains unclear how Puf-A governs PGC development in mammals. Here, we generated transgenic mice carrying inducible Puf-A shRNA and obtained double heterozygous mice with Puf-A shRNA and Oct4-EGFP to examine the behavior of PGCs. It was found that the knockdown of Puf-A led to the loss of a considerable number of PGCs and a slowdown of the movement of the remaining PGCs. Puf-A and NPM1 colocalized in clusters in the nuclei of the PGCs. The silencing of Puf-A resulted in the translocation of NPM1 from nucleolus to nucleoplasm and the hyperactivation of p53 in the PGCs. The PGCs in Puf-A knockdown embryos showed a significant increase in subpopulations of PGCs at G1 arrest and apoptosis. Moreover, the expression of essential genes associated with PGC maintenance was decreased in the Puf-A knockdown PGCs. Our study showed that Puf-A governed PGC development by regulating the growth, survival, and maintenance of PGCs. We also observed the alterations of NPM1 and p53 upon Puf-A knockdown to be consistent with the previous study in cancer cells, which might explain the molecular mechanism for the role of Puf-A in PGC development.
Collapse
|
10
|
Horáčková V, Voleman L, Hagen KD, Petrů M, Vinopalová M, Weisz F, Janowicz N, Marková L, Motyčková A, Najdrová V, Tůmová P, Dawson SC, Doležal P. Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis. Open Biol 2022; 12:210361. [PMID: 35472287 PMCID: PMC9042576 DOI: 10.1098/rsob.210361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
CRISPR/Cas9-mediated genome editing has become an extremely powerful technique used to modify gene expression in many organisms, including parasitic protists. Giardia intestinalis, a protist parasite that infects approximately 280 million people around the world each year, has been eluding the use of CRISPR/Cas9 to generate knockout cell lines due to its tetraploid genome. In this work, we show the ability of the in vitro assembled CRISPR/Cas9 components to successfully edit the genome of G. intestinalis. The cell line that stably expresses Cas9 in both nuclei of G. intestinalis showed effective recombination of the cassette containing the transcription units for the gRNA and the resistance marker. This highly efficient process led to the removal of all gene copies at once for three independent experimental genes, mem, cwp1 and mlf1. The method was also applicable to incomplete disruption of the essential gene, as evidenced by significantly reduced expression of tom40. Finally, testing the efficiency of Cas9-induced recombination revealed that homologous arms as short as 150 bp can be sufficient to establish a complete knockout cell line in G. intestinalis.
Collapse
Affiliation(s)
- Vendula Horáčková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Kari D. Hagen
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, UC Davis, Davis, CA, USA
| | - Markéta Petrů
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Martina Vinopalová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Filip Weisz
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natalia Janowicz
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Lenka Marková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Alžběta Motyčková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, UC Davis, Davis, CA, USA
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Praha, Czech Republic
| |
Collapse
|
11
|
The Role of Pumilio RNA Binding Protein in Plants. Biomolecules 2021; 11:biom11121851. [PMID: 34944494 PMCID: PMC8699478 DOI: 10.3390/biom11121851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic organisms have a posttranscriptional/translational regulation system for the control of translational efficiency. RNA binding proteins (RBPs) have been known to control target genes. One type of protein, Pumilio (Pum)/Puf family RNA binding proteins, show a specific binding of 3′ untranslational region (3′ UTR) of target mRNA and function as a post-transcriptional/translational regulator in eukaryotic cells. Plant Pum protein is involved in development and biotic/abiotic stresses. Interestingly, Arabidopsis Pum can control target genes in a sequence-specific manner and rRNA processing in a sequence-nonspecific manner. As shown in in silico Pum gene expression analysis, Arabidopsis and rice Pum genes are responsive to biotic/abiotic stresses. Plant Pum can commonly contribute to host gene regulation at the post-transcriptional/translational step, as can mammalian Pum. However, the function of plant Pum proteins is not yet fully known. In this review, we briefly summarize the function of plant Pum in defense, development, and environmental responses via recent research and bioinformatics data.
Collapse
|
12
|
Lin HW, Lee JY, Chou NL, Shih TW, Chang MS. Phosphorylation of PUF-A/PUM3 on Y259 modulates PUF-A stability and cell proliferation. PLoS One 2021; 16:e0256282. [PMID: 34407138 PMCID: PMC8372891 DOI: 10.1371/journal.pone.0256282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 01/24/2023] Open
Abstract
Human PUF-A/PUM3 is a RNA and DNA binding protein participating in the nucleolar processing of 7S to 5.8S rRNA. The nucleolar localization of PUF-A redistributes to the nucleoplasm upon the exposure to genotoxic agents in cells. However, little is known regarding the roles of PUF-A in tumor progression. Phosphoprotein database analysis revealed that Y259 phosphorylation of PUF-A is the most prevalent residue modified. Here, we reported the importance of PUF-A’s phosphorylation on Y259 in tumorigenesis. PUF-A gene was knocked out by the Crispr/Cas9 method in human cervix epithelial HeLa cells. Loss of PUF-A in HeLa cells resulted in reduced clonogenic and lower transwell invasion capacity. Introduction of PUF-AY259F to PUF-A deficient HeLa cells was unable to restore colony formation. In addition, the unphosphorylated mutant of PUF-A, PUF-AY259F, attenuated PUF-A protein stability. Our results suggest the important role of Y259 phosphorylation of PUF-A in cell proliferation.
Collapse
Affiliation(s)
- Hung-Wei Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jin-Yu Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Nai-Lin Chou
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ting-Wei Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|