1
|
Galià-Camps C, Junkin L, Borrallo X, Carreras C, Pascual M, Turon X. Navigating spatio-temporal microbiome dynamics: Environmental factors and trace elements shape the symbiont community of an invasive marine species. MARINE POLLUTION BULLETIN 2024; 203:116477. [PMID: 38759466 DOI: 10.1016/j.marpolbul.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain; Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| | - Liam Junkin
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain.
| | - Xavier Borrallo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Spain.
| |
Collapse
|
2
|
Lin YT, Ip JCH, He X, Gao ZM, Perez M, Xu T, Sun J, Qian PY, Qiu JW. Scallop-bacteria symbiosis from the deep sea reveals strong genomic coupling in the absence of cellular integration. THE ISME JOURNAL 2024; 18:wrae048. [PMID: 38531780 PMCID: PMC10999363 DOI: 10.1093/ismejo/wrae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.
Collapse
Affiliation(s)
- Yi-Tao Lin
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, Hong Kong SAR, 999077, China
| | - Xing He
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhao-Ming Gao
- Deep-sea Science Division, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Maeva Perez
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Dungan AM, Tandon K, Jameson V, Gotze CR, Blackall LL, van Oppen MJH. A targeted approach to enrich host-associated bacteria for metagenomic sequencing. FEMS MICROBES 2023; 5:xtad021. [PMID: 38264162 PMCID: PMC10804224 DOI: 10.1093/femsmc/xtad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Multicellular eukaryotic organisms are hosts to communities of bacteria that reside on or inside their tissues. Often the eukaryotic members of the system contribute to high proportions of metagenomic sequencing reads, making it challenging to achieve sufficient sequencing depth to evaluate bacterial ecology. Stony corals are one such complex community; however, separation of bacterial from eukaryotic (primarily coral and algal symbiont) cells has so far not been successful. Using a combination of hybridization chain reaction fluorescence in situ hybridization and fluorescence activated cell sorting (HCR-FISH + FACS), we sorted two populations of bacteria from five genotypes of the coral Acropora loripes, targeting (i) Endozoicomonas spp, and (ii) all other bacteria. NovaSeq sequencing resulted in 67-91 M reads per sample, 55%-90% of which were identified as bacterial. Most reads were taxonomically assigned to the key coral-associated family, Endozoicomonadaceae, with Vibrionaceae also abundant. Endozoicomonadaceae were 5x more abundant in the 'Endozoicomonas' population, highlighting the success of the dual-labelling approach. This method effectively enriched coral samples for bacteria with <1% contamination from host and algal symbionts. The application of this method will allow researchers to decipher the functional potential of coral-associated bacteria. This method can also be adapted to accommodate other host-associated communities.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vanta Jameson
- Melbourne Cytometry Platform, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
- Reef Recovery, Restoration and Adaptation Program, Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
4
|
Zhou Y, Liu H, Feng C, Lu Z, Liu J, Huang Y, Tang H, Xu Z, Pu Y, Zhang H. Genetic adaptations of sea anemone to hydrothermal environment. SCIENCE ADVANCES 2023; 9:eadh0474. [PMID: 37862424 PMCID: PMC10588955 DOI: 10.1126/sciadv.adh0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Hydrothermal vent habitats are characterized by high hydrostatic pressure, darkness, and the continuous release of toxic metal ions into the surrounding environment where sea anemones and other invertebrates thrive. Nevertheless, the understanding of metazoan metal ion tolerances and environmental adaptations remains limited. We assembled a chromosome-level genome for the vent sea anemone, Alvinactis idsseensis sp. nov. Comparative genomic analyses revealed gene family expansions and gene innovations in A. idsseensis sp. nov. as a response to high concentrations of metal ions. Impressively, the metal tolerance proteins MTPs is a unique evolutionary response to the high concentrations of Fe2+ and Mn2+ present in the environments of these anemones. We also found genes associated with high concentrations of polyunsaturated fatty acids that may respond to high hydrostatic pressure and found sensory and circadian rhythm-regulated genes that were essential for adaptations to darkness. Overall, our results provide insights into metazoan adaptation to metal ions, high pressure, and darkness in hydrothermal vents.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zaiqing Lu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yanan Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Zehui Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujin Pu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
5
|
Goffredi SK, Appy RG, Hildreth R, deRogatis J. Marine vampires: Persistent, internal associations between bacteria and blood-feeding marine annelids and crustaceans. Front Microbiol 2023; 13:1113237. [PMID: 36713196 PMCID: PMC9876621 DOI: 10.3389/fmicb.2022.1113237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Persistent bacterial presence is believed to play an important role in host adaptation to specific niches that would otherwise be unavailable, including the exclusive consumption of blood by invertebrate parasites. Nearly all blood-feeding animals examined so far host internal bacterial symbionts that aid in some essential aspect of their nutrition. Obligate blood-feeding (OBF) invertebrates exist in the oceans, yet symbiotic associations between them and beneficial bacteria have not yet been explored. This study describes the microbiome of 6 phylogenetically-diverse species of marine obligate blood-feeders, including leeches (both fish and elasmobranch specialists; e.g., Pterobdella, Ostreobdella, and Branchellion), isopods (e.g., Elthusa and Nerocila), and a copepod (e.g., Lernanthropus). Amplicon sequencing analysis revealed the blood-feeding invertebrate microbiomes to be low in diversity, compared to host fish skin surfaces, seawater, and non-blood-feeding relatives, and dominated by only a few bacterial genera, including Vibrio (100% prevalence and comprising 39%-81% of the average total recovered 16S rRNA gene sequences per OBF taxa). Vibrio cells were localized to the digestive lumen in and among the blood meal for all taxa examined via fluorescence microscopy. For Elthusa and Branchellion, Vibrio cells also appeared intracellularly within possible hemocytes, suggesting an interaction with the immune system. Additionally, Vibrio cultivated from four of the obligate blood-feeding marine taxa matched the dominant amplicons recovered, and all but one was able to effectively lyse vertebrate blood cells. Bacteria from 2 additional phyla and 3 families were also regularly recovered, albeit in much lower abundances, including members of the Oceanospirillaceae, Flavobacteriacea, Porticoccaceae, and unidentified members of the gamma-and betaproteobacteria, depending on the invertebrate host. For the leech Pterobdella, the Oceanospirillaceae were also detected in the esophageal diverticula. For two crustacean taxa, Elthusa and Lernanthropus, the microbial communities associated with brooded eggs were very similar to the adults, indicating possible direct transmission. Virtually nothing is known about the influence of internal bacteria on the success of marine blood-feeders, but this evidence suggests their regular presence in marine parasites from several prominent groups.
Collapse
Affiliation(s)
- Shana K. Goffredi
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Ralph G. Appy
- Cabrillo Marine Aquarium, San Pedro, CA, United States
| | - Rebecca Hildreth
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Julia deRogatis
- Department of Biology, Occidental College, Los Angeles, CA, United States
| |
Collapse
|
6
|
Osman EO, Vohsen SA, Girard F, Cruz R, Glickman O, Bullock LM, Anderson KE, Weinnig AM, Cordes EE, Fisher CR, Baums IB. Capacity of deep-sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization. GLOBAL CHANGE BIOLOGY 2023; 29:189-205. [PMID: 36271605 PMCID: PMC10092215 DOI: 10.1111/gcb.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
Collapse
Affiliation(s)
- Eslam O. Osman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Marine Biology LabZoology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
- Red Sea Research Center (RSRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Samuel A. Vohsen
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Fanny Girard
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Rafaelina Cruz
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Orli Glickman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Lena M. Bullock
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Kaitlin E. Anderson
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | | | | | - Charles R. Fisher
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Iliana B. Baums
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)AmmerländerHeerstraße 231, 26129 OldenburgGermany
| |
Collapse
|
7
|
Delgado A, Benedict C, Macrander J, Daly M. Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms. Mar Drugs 2022; 20:730. [PMID: 36547877 PMCID: PMC9782873 DOI: 10.3390/md20120730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.
Collapse
Affiliation(s)
- Alonso Delgado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Charlotte Benedict
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33815, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Abstract
The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic-anoxic boundary layers in the ocean.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA;
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
9
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Goffredi SK, Motooka C, Fike DA, Gusmão LC, Tilic E, Rouse GW, Rodríguez E. Author Correction to: Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California. BMC Biol 2021; 19:126. [PMID: 34144714 PMCID: PMC8214254 DOI: 10.1186/s12915-021-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | | | | | | | - Greg W Rouse
- Scripps Institution of Oceanography, San Diego, CA, USA
| | | |
Collapse
|