1
|
Cornman RS. A genomic hotspot of diversifying selection and structural change in the hoary bat ( Lasiurus cinereus). PeerJ 2024; 12:e17482. [PMID: 38832043 PMCID: PMC11146322 DOI: 10.7717/peerj.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
2
|
Castro MG, Amado TF, Olalla-Tárraga MÁ. Correlated evolution between body size and echolocation in bats (order Chiroptera). BMC Ecol Evol 2024; 24:44. [PMID: 38622513 PMCID: PMC11017568 DOI: 10.1186/s12862-024-02231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Body size and echolocation call frequencies are related in bats. However, it is unclear if this allometry applies to the entire clade. Differences have been suggested between nasal and oral emitting bats, as well as between some taxonomic families. Additionally, the scaling of other echolocation parameters, such as bandwidth and call duration, needs further testing. Moreover, it would be also interesting to test whether changes in body size have been coupled with changes in these echolocation parameters throughout bat evolution. Here, we test the scaling of peak frequency, bandwidth, and call duration with body mass using phylogenetically informed analyses for 314 bat species. We specifically tested whether all these scaling patterns differ between nasal and oral emitting bats. Then, we applied recently developed Bayesian statistical techniques based on large-scale simulations to test for the existence of correlated evolution between body mass and echolocation. RESULTS Our results showed that echolocation peak frequencies, bandwidth, and duration follow significant allometric patterns in both nasal and oral emitting bats. Changes in these traits seem to have been coupled across the laryngeal echolocation bats diversification. Scaling and correlated evolution analyses revealed that body mass is more related to peak frequency and call duration than to bandwidth. We exposed two non-exclusive kinds of mechanisms to explain the link between size and each of the echolocation parameters. CONCLUSIONS The incorporation of Bayesian statistics based on large-scale simulations could be helpful for answering macroevolutionary patterns related to the coevolution of traits in bats and other taxonomic groups.
Collapse
Affiliation(s)
- Mario G Castro
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain.
- Instituto de Cambio Global, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain.
| | - Talita Ferreira Amado
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain
- German Center for Integrative Bioaffiliationersity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Miguel Á Olalla-Tárraga
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain
- Instituto de Cambio Global, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, Spain
| |
Collapse
|
3
|
Rossoni DM, Patterson BD, Marroig G, Cheverud JM, Houle D. The Role of (Co)variation in Shaping the Response to Selection in New World Leaf-Nosed Bats. Am Nat 2024; 203:E107-E127. [PMID: 38489775 DOI: 10.1086/729219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.
Collapse
|
4
|
Arbour J, Rumpp F, López-Fernández H. Organismal form constrains the evolution of complex lever systems in Neotropical cichlid four-bar linkages. Anat Rec (Hoboken) 2024; 307:81-96. [PMID: 37102462 DOI: 10.1002/ar.25231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
The diversification of functional traits may be limited by the intrinsic constraints of organismal form (i.e., constructional constraints), owing to the differential investment in different anatomical structures. In this study, we test whether overall organismal form impacts the evolution of shape and function in complex lever systems. We examined the relationship between four-bar shape and overall head shape in two four-bar linkage systems: the oral-jaw and hyoid-neurocranium systems in Neotropical cichlids. We also investigated the strength of form-function mapping in these four-bar linkages and the impact of constraining head shape on these correlations. We quantified the shape of the head and two four-bar linkages using geometric morphometrics and compared these with the kinematic transmission coefficient of each linkage system. The shapes of both linkages were strongly correlated with their mechanical properties, and head shape appears to constrain the shape of both four-bar linkages. Head shape induced greater integration between the two linkages, was associated with stronger form-function correlations and higher rates of evolution in biomechanically important features. Head shape constraints may also contribute to a weak but significant trade-off in linkage kinematics. Elongation of the head and body, in particular, appears to minimize the impact of this trade-off, possibly through maximizing anterior-posterior space availability. However, the strength of relationships between shape and function, and the impact of head shape differed between the two linkages, with the hyoid four-bar in general showing stronger form-function relationships despite being more independent from head shape constraints.
Collapse
Affiliation(s)
- Jessica Arbour
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Faith Rumpp
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Hernán López-Fernández
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Anthwal N, Hall RP, de la Rosa Hernandez FA, Koger M, Yohe LR, Hedrick BP, Davies KTJ, Mutumi GL, Roseman CC, Dumont ER, Dávalos LM, Rossiter SJ, Sadier A, Sears KE. Cochlea development shapes bat sensory system evolution. Anat Rec (Hoboken) 2023. [PMID: 37994725 DOI: 10.1002/ar.25353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Sensory organs must develop alongside the skull within which they are largely encased, and this relationship can manifest as the skull constraining the organs, organs constraining the skull, or organs constraining one another in relative size. How this interplay between sensory organs and the developing skull plays out during the evolution of sensory diversity; however, remains unknown. Here, we examine the developmental sequence of the cochlea, the organ responsible for hearing and echolocation, in species with distinct diet and echolocation types within the ecologically diverse bat super-family Noctilionoidea. We found the size and shape of the cochlea largely correlates with skull size, with exceptions of Pteronotus parnellii, whose high duty cycle echolocation (nearly constant emission of sound pulses during their echolocation process allowing for detailed information gathering, also called constant frequency echolocation) corresponds to a larger cochlear and basal turn, and Monophyllus redmani, a small-bodied nectarivorous bat, for which interactions with other sensory organs restrict cochlea size. Our findings support the existence of developmental constraints, suggesting that both developmental and anatomical factors may act synergistically during the development of sensory systems in noctilionoid bats.
Collapse
Affiliation(s)
- Neal Anthwal
- King's College London, Centre for Craniofacial and Regenerative Biology, London, UK
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Ronald P Hall
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | | | - Michael Koger
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kalina T J Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Gregory L Mutumi
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | - Charles C Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Elizabeth R Dumont
- Department of Life and Environment Sciences, University of California Merced, Merced, California, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, USA
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Smith TD, Santana SE, Eiting TP. Ecomorphology and sensory biology of bats. Anat Rec (Hoboken) 2023; 306:2660-2669. [PMID: 37656052 DOI: 10.1002/ar.25314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
This special issue of The Anatomical Record is inspired by and dedicated to Professor Kunwar P. Bhatnagar, whose lifelong interests in biology, and long career studying bats, inspired many and advanced our knowledge of the world's only flying mammals. The 15 articles included here represent a broad range of investigators, treading topics familiar to Prof. Bhatnagar, who was interested in seemingly every aspect of bat biology. Key topics include broad themes of bat development, sensory systems, and specializations related to flight and diet. These articles paint a complex picture of the fascinating adaptations of bats, such as rapid fore limb development, ear morphologies relating to echolocation, and other enhanced senses that allow bats to exploit niches in virtually every part of the world. In this introduction, we integrate and contextualize these articles within the broader story of bat ecomorphology, providing an overview of each of the key themes noted above. This special issue will serve as a springboard for future studies both in bat biology and in the broader world of mammalian comparative anatomy and ecomorphology.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Thomas P Eiting
- Department of Physiology and Pathology, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| |
Collapse
|
7
|
Stanchak KE, Faure PA, Santana SE. Ontogeny of cranial musculoskeletal anatomy and its relationship to allometric increase in bite force in an insectivorous bat (Eptesicus fuscus). Anat Rec (Hoboken) 2023; 306:2842-2852. [PMID: 37005737 DOI: 10.1002/ar.25213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023]
Abstract
Bite force is a performance metric commonly used to link cranial morphology with dietary ecology, as the strength of forces produced by the feeding apparatus largely constrains the foods an individual can consume. At a macroevolutionary scale, there is evidence that evolutionary changes in the anatomical elements involved in producing bite force have contributed to dietary diversification in mammals. Much less is known about how these elements change over postnatal ontogeny. Mammalian diets drastically shift over ontogeny-from drinking mother's milk to feeding on adult foods-presumably with equally drastic changes in the morphology of the feeding apparatus and bite performance. Here, we investigate ontogenetic morphological changes in the insectivorous big brown bat (Eptesicus fuscus), which has an extreme, positive allometric increase in bite force during development. Using contrast-enhanced micro-computed tomography scans of a developmental series from birth to adult morphology, we quantified skull shape and measured skeletal and muscular parameters directly related to bite force production. We found pronounced changes in the skull over ontogeny, including a large increase in the volume of the temporalis and masseter muscles, and an expansion of the skull dome and sagittal crest that would serve to increase the temporalis attachment area. These changes indicate that development of the jaw adductors play an important role in the development of biting performance of these bats. Notably, static bite force increases with positive allometry with respect to all anatomical measures examined, suggesting that modifications in biting dynamics and/or improved motor coordination also contribute to increases in biting performance.
Collapse
Affiliation(s)
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, USA
- Department of Mammalogy, Burke Museum of Natural History and Culture, Seattle, Western Australia, USA
| |
Collapse
|
8
|
Rhoda DP, Haber A, Angielczyk KD. Diversification of the ruminant skull along an evolutionary line of least resistance. SCIENCE ADVANCES 2023; 9:eade8929. [PMID: 36857459 PMCID: PMC9977183 DOI: 10.1126/sciadv.ade8929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 05/28/2023]
Abstract
Clarifying how microevolutionary processes scale to macroevolutionary patterns is a fundamental goal in evolutionary biology, but these analyses, requiring comparative datasets of population-level variation, are limited. By analyzing a previously published dataset of 2859 ruminant crania, we find that variation within and between ruminant species is biased by a highly conserved mammalian-wide allometric pattern, CREA (craniofacial evolutionary allometry), where larger species have proportionally longer faces. Species with higher morphological integration and species more biased toward CREA have diverged farther from their ancestors, and Ruminantia as a clade diversified farther than expected in the direction of CREA. Our analyses indicate that CREA acts as an evolutionary "line of least resistance" and facilitates morphological diversification due to its alignment with the browser-grazer continuum. Together, our results demonstrate that constraints at the population level can produce highly directional patterns of phenotypic evolution at the macroevolutionary scale. Further research is needed to explore how CREA has been exploited in other mammalian clades.
Collapse
Affiliation(s)
- Daniel P. Rhoda
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Chicago, IL 60637, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Dr., Chicago, IL 60605, USA
| | - Annat Haber
- The Jackson Laboratory, Farmington, CT 06032, USA
| | - Kenneth D. Angielczyk
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Chicago, IL 60637, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S. DuSable Lake Shore Dr., Chicago, IL 60605, USA
| |
Collapse
|
9
|
Goodwin MR, Arbour JH. Darter fishes exhibit variable intraspecific head shape allometry and modularity. Anat Rec (Hoboken) 2023; 306:446-456. [PMID: 36153816 DOI: 10.1002/ar.25088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
Allometry, the relationship between anatomical proportions and body size, may either limit or facilitate the diversification of morphology. We examined the impact of allometry in darter fish morphology, which displays a variety of trophic morphologies. This study aimed to address (a) whether there was significant variation in darter head allometry, (b) if allometry contributed to head shape diversity in adults, and (c) if darters show head shape modularity associated with allometry. We used geometric morphometrics to quantify head shape across 10 different species and test for heterogeneity in allometric slopes. In addition, we quantified the degree of modularity between the preorbital and postorbital regions of the darter head, both before and after correction for body size. We found that different species have unique allometric slopes, particularly among the Simoperca subgenus, and that closely related darter species tend to show ontogenetic divergence, contributing to the diversity of head shapes observed in adults. We suggest that such a pattern may result from the similarity of juvenile diets due to gape limitation. We also found that several species show significant modularity in head shape but that modularity was evolutionarily labile and only sometimes impacted by head shape allometry. Overall, our work suggests that ontogenetic shape development may have been important to the evolution of head shape in darters, particularly in the evolution of foraging traits and microhabitat.
Collapse
Affiliation(s)
- Maris R Goodwin
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Jessica H Arbour
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
10
|
Linden TJ, Burtner AE, Rickman J, McFeely A, Santana SE, Law CJ. Scaling patterns of body plans differ among squirrel ecotypes. PeerJ 2023; 11:e14800. [PMID: 36718452 PMCID: PMC9884040 DOI: 10.7717/peerj.14800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Body size is often hypothesized to facilitate or constrain morphological diversity in the cranial, appendicular, and axial skeletons. However, how overall body shape scales with body size (i.e., body shape allometry) and whether these scaling patterns differ between ecological groups remains poorly investigated. Here, we test whether and how the relationships between body shape, body size, and limb lengths differ among species with different locomotor specializations, and describe the underlying morphological components that contribute to body shape evolution among squirrel (Sciuridae) ecotypes. We quantified the body size and shape of 87 squirrel species from osteological specimens held at museum collections. Using phylogenetic comparative methods, we first found that body shape and its underlying morphological components scale allometrically with body size, but these allometric patterns differ among squirrel ecotypes: chipmunks and gliding squirrels exhibited more elongate bodies with increasing body sizes whereas ground squirrels exhibited more robust bodies with increasing body size. Second, we found that only ground squirrels exhibit a relationship between forelimb length and body shape, where more elongate species exhibit relatively shorter forelimbs. Third, we found that the relative length of the ribs and elongation or shortening of the thoracic region contributes the most to body shape evolution across squirrels. Overall, our work contributes to the growing understanding of mammalian body shape evolution and how it is influenced by body size and locomotor ecology, in this case from robust subterranean to gracile gliding squirrels.
Collapse
Affiliation(s)
- Tate J. Linden
- University of Washington, Seattle, WA, United States of America
| | | | | | - Annika McFeely
- University of Washington, Seattle, WA, United States of America
| | | | - Chris J. Law
- University of Washington, Seattle, WA, United States of America,University of Texas at Austin, Austin, TX, United States of America,American Museum of Natural History, New York, NY, United States of America
| |
Collapse
|
11
|
Lanzetti A, Coombs EJ, Portela Miguez R, Fernandez V, Goswami A. The ontogeny of asymmetry in echolocating whales. Proc Biol Sci 2022; 289:20221090. [PMID: 35919995 PMCID: PMC9346347 DOI: 10.1098/rspb.2022.1090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Extreme asymmetry of the skull is one of the most distinctive traits that characterizes toothed whales (Odontoceti, Cetacea). The origin and function of cranial asymmetry are connected to the evolution of echolocation, the ability to use high-frequency sounds to navigate the surrounding environment. Although this novel phenotype must arise through changes in cranial development, the ontogeny of cetacean asymmetry has never been investigated. Here we use three-dimensional geometric morphometrics to quantify the changes in degree of asymmetry and skull shape during prenatal and postnatal ontogeny for five genera spanning odontocete diversity (oceanic dolphins, porpoises and beluga). Asymmetry in early ontogeny starts low and tracks phylogenetic relatedness of taxa. Distantly related taxa that share aspects of their ecology overwrite these initial differences via heterochronic shifts, ultimately converging on comparable high levels of skull asymmetry. Porpoises maintain low levels of asymmetry into maturity and present a decelerated rate of growth, probably retained from the ancestral condition. Ancestral state reconstruction of allometric trajectories demonstrates that both paedomorphism and peramorphism contribute to cranial shape diversity across odontocetes. This study provides a striking example of how divergent developmental pathways can produce convergent ecological adaptations, even for some of the most unusual phenotypes exhibited among vertebrates.
Collapse
Affiliation(s)
- Agnese Lanzetti
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| | - Ellen J. Coombs
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, PO Box 37012, MRC 108, Washington, DC 20013-7012, USA
| | - Roberto Portela Miguez
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| | | | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, Cromwell Road, Kensington, London SW7 5BD, UK
| |
Collapse
|
12
|
López-Aguirre C, Hand SJ, Simmons NB, Silcox MT. Untangling the ecological signal in the dental morphology in the bat superfamily Noctilionoidea. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09606-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
Menger FM, Rizvi SAA. Evolution of Complexity. Molecular Aspects of Preassembly. Molecules 2021; 26:6618. [PMID: 34771027 PMCID: PMC8587518 DOI: 10.3390/molecules26216618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
An extension of neo-Darwinism, termed preassembly, states that genetic material required for many complex traits, such as echolocation, was present long before emergence of the traits. Assembly of genes and gene segments had occurred over protracted time-periods within large libraries of non-coding genes. Epigenetic factors ultimately promoted transfers from noncoding to coding genes, leading to abrupt formation of the trait via de novo genes. This preassembly model explains many observations that to this present day still puzzle biologists: formation of super-complexity in the absence of multiple fossil precursors, as with bat echolocation and flowering plants; major genetic and physical alterations occurring in just a few thousand years, as with housecat evolution; lack of precursors preceding lush periods of species expansion, as in the Cambrian explosion; and evolution of costly traits that exceed their need during evolutionary times, as with human intelligence. What follows in this paper is a mechanism that is not meant to supplant neo-Darwinism; instead, preassembly aims to supplement current ideas when complexity issues leave them struggling.
Collapse
Affiliation(s)
| | - Syed A. A. Rizvi
- School of Pharmacy, Hampton University, Hampton, VA 23669, USA; or
| |
Collapse
|
15
|
Martinez Q, Naas A. Digest: New insight into sensory trade-off in phyllostomid bats . Evolution 2021; 75:2946-2947. [PMID: 34498264 DOI: 10.1111/evo.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Do the relative size of the olfactory bulb, cochlea, and orbit correlate with diet in phyllostomid bats? Hall et al. (2021) found that the degree of frugivory is positively correlated with the relative size of the olfactory bulb and the orbit. The degree of animalivory is negatively correlated with the relative size of the olfactory bulb and the orbit. Finally, the degree of nectarivory is negatively correlated with the relative size of the cochlea.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, Université de Montpellier (UM), Montpellier, UMR 5554, 34095, France
| | - Arthur Naas
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, Université de Montpellier (UM), Montpellier, UMR 5554, 34095, France
| |
Collapse
|