1
|
Cabral-de-Mello DC, Palacios-Gimenez OM. Repetitive DNAs: the 'invisible' regulators of insect adaptation and speciation. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101295. [PMID: 39521343 DOI: 10.1016/j.cois.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Like other eukaryotes, insect genomes contain a large portion of repetitive sequences, particularly transposable elements and satellite DNAs. This review highlights key studies on repetitive DNAs and examines their structural, functional, and evolutionary impact on insect genomes. Repetitive sequences promote genetic diversification through mutations and large-scale rearrangements, playing a crucial role in shaping genomic architecture, aiding organismal adaptation, and driving speciation. We also explore the influence of repeats in genome size variation and species incompatibilities, along with their contribution to adaptive phenotypes and gene regulation. Studying repetitive DNA in insects not only provides insights into basic genomic features but also offers valuable information for conservation strategies, pest control, and advancements in genetics, ecology, and evolutionary biology.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP - São Paulo State University, Rio Claro, São Paulo 13506-900, Brazil.
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden; Institute of Ecology and Evolution, Friedrich Schiller University Jena, 07743 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Chung G, Piano F, Gunsalus KC. TeloSearchLR: an algorithm to detect novel telomere repeat motifs using long sequencing reads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.617943. [PMID: 39554068 PMCID: PMC11565940 DOI: 10.1101/2024.10.29.617943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Telomeres are eukaryotic chromosome end structures that guard against sequence loss and aberrant chromosome fusions. Telomeric repeat motifs (TRMs), the minimal repeating unit of a telomere, vary from species to species, with some evolutionary clades experiencing a rapid sequence divergence. To explore the full scope of this evolutionary divergence, many bioinformatic tools have been developed to infer novel TRMs using repetitive sequence search on short sequencing reads. However, novel telomeric motifs remain unidentified in up to half of the sequencing libraries assayed with these tools. A possible reason may be that short reads, derived from extensively sheared DNA, preserve little to no positional context of the repetitive sequences assayed. On the other hand, if a sequencing read is sufficiently long, telomeric sequences must appear at either end rather than in the middle. The TeloSearchLR algorithm relies on this to help identify novel TRMs on long reads, in many cases where short-read search tools have failed. In addition, we demonstrate that TeloSearchLR can reveal unusually long telomeric motifs not maintained by telomerase, and it can also be used to anchor terminal scaffolds in new genome assemblies.
Collapse
|
3
|
García-Lozano M, Salem H. Microbial bases of herbivory in beetles. Trends Microbiol 2024:S0966-842X(24)00216-6. [PMID: 39327210 DOI: 10.1016/j.tim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
The ecological radiation of herbivorous beetles is among the most successful in the animal kingdom. It coincided with the rise and diversification of flowering plants, requiring beetles to adapt to a nutritionally imbalanced diet enriched in complex polysaccharides and toxic secondary metabolites. In this review, we explore how beetles overcame these challenges by coopting microbial genes, enzymes, and metabolites, through both horizontal gene transfer (HGT) and symbiosis. Recent efforts revealed the functional convergence governing both processes and the unique ways in which microbes continue to shape beetle digestion, development, and defense. The development of genetic and experimental tools across a diverse set of study systems has provided valuable mechanistic insights into how microbes spurred metabolic innovation and facilitated an herbivorous transition in beetles.
Collapse
Affiliation(s)
- Marleny García-Lozano
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Hassan Salem
- Mutualisms Research Group, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
4
|
Mayekar HV, Rajpurohit S. No single rescue recipe: genome complexities modulate insect response to climate change. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101220. [PMID: 38848812 DOI: 10.1016/j.cois.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Declines in insect populations have gained formidable attention. Given their crucial role in the ecosystem, the causes of declining insect populations must be investigated. However, the insect clade has been associated with low extinction and high diversification rates. It is unlikely that insects underwent mass extinctions in the past. However, the pace of current climate change could make insect populations vulnerable to extinction. We propose genome size (GS) and transposable elements (TEs) to be rough estimates to assess extinction risk. Larger GS and/or proliferating TEs have been associated with adaptation in rapid climate change scenarios. We speculate that unstable, stressful environmental conditions are strongly associated with GS and TE expansion, which could be further correlated with adaptations. Alternately, stressful conditions trigger TE bursts that are not purged in smaller populations. GS and TE loads could be indicators of small effective populations in the wild, likely experiencing bottlenecks or drastic climatic perturbations, which calls for an urgent assessment of extinction risk.
Collapse
Affiliation(s)
- Harshad Vijay Mayekar
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| | - Subhash Rajpurohit
- Biological and Life Sciences, School of Arts of Sciences, Ahmedabad University, Ahmedabad 380009, India.
| |
Collapse
|
5
|
Majid M, Khan H, Liu X, Shaheer M, Huang Y. Evolutionary Dynamics of Satellite DNA Repeats across the Tettigoniidae Family: Insights from Genomic Analysis. Biomolecules 2024; 14:915. [PMID: 39199303 PMCID: PMC11352069 DOI: 10.3390/biom14080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Satellite DNA repeats are repetitive DNA sequences found in eukaryotic genomes, typically consisting of short DNA motifs repeated in tandem arrays. Despite the vast body of literature on satellite DNA repeats in other taxa, investigations specifically targeting Tettigoniidae remain conspicuously absent. Our study aims to fill a critical gap in our understanding of satellitome evolutionary processes shaping Tettigoniidae genomes. Repeatome analysis revealed that the Meconema thalassinum genome comprises 92%, and Phryganogryllacris superangulata had the lowest value of 34%, with an average of 67% in other Tettigoniidae species. The analysis reveals significant variation in the number of satellite DNA repeats across species of the Tettigoniidae family, with M. thalassinum exhibiting the highest count, 246, reported in insects to date and the lowest count, 10, in Pholidoptera griseoptera. Ruspolia dubia and Ruspolia yunnana, which are congeneric species, showcase distinct counts of 104 and 84 families, respectively. Satellite DNA repeats in R. dubia exhibit the highest abundance, constituting 17.2% of the total genome, while the lowest abundance was reported in P. griseoptera, at 5.65%. The genome size correlates weakly with the satellite DNA family count (rs = 0.42, p = 0.29), but a strong correlation exists between satellite abundance and family number (rs = 0.73, p = 0.03). Moreover, the analysis of satellite DNA gain and loss patterns provides insights into the amplification and homogenization of satellite DNA families within the genome, with species-specific repeats exhibiting a positive trend toward amplification. The chromosomal distribution in M. thalassinum displayed that the highest accumulation was observed on Chr12, Chr01, and Chr04, constituting 17.79%, 17.4%, and 17.22% of the total chromosome size, respectively. The chromosome-specific propagation of satellite DNA families was evident, with MthSat01 solely on chromosome 1 and MthSat170 on chromosome 2, sharing 1.64% and 2.33%. The observed conservation and variations in satellite DNA number and abundances, along with distinct patterns of gain and loss, indicate the influence of potentially diverse evolutionary processes shaping the genomic landscape of these insects, which requires further investigation. Furthermore, the differential accumulation of satellite DNA on specific chromosomes implies that potential chromosome-specific functions or structural features influence the retention and proliferation of satellite sequences.
Collapse
Affiliation(s)
- Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Muhammad Shaheer
- Department of Entomology, MNS Agriculture University, Multan 66000, Pakistan
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| |
Collapse
|
6
|
Galambos N, Vincent-Monegat C, Vallier A, Parisot N, Heddi A, Zaidman-Rémy A. Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230062. [PMID: 38497254 PMCID: PMC10945404 DOI: 10.1098/rstb.2023.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- N. Galambos
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | | | - A. Vallier
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - N. Parisot
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Heddi
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
- Institut universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
7
|
Xing L, Liu B, Yu D, Tang X, Sun J, Zhang B. A near-complete genome assembly of Monochamus alternatus a major vector beetle of pinewood nematode. Sci Data 2024; 11:312. [PMID: 38531927 DOI: 10.1038/s41597-024-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The Japanese sawyer beetle, Monochamus alternatus, is not only one of the most important wood boring pest itself, but also a major vector of the invasive pinewood nematode (PWN), which is the causal agent of the devastative pine wilt disease (PWD) and threats the global pine forest. Here, we present a near-complete genome of M. alternatus at the chromosome level. The assembled genome was 792.05 Mb with contig N50 length of 55.99 Mb, which is the largest N50 size among the sequenced Coleoptera insects currently. 99.57% of sequence was anchored onto ten pseudochromosomes (one X-chromosome and nine autosomes), and the final genome harbored only 13 gaps. BUSCO evaluation revealed the presence of 99.0% of complete core genes. Thus, our genome assembly represented the highest-contiguity genome assembly as well as high completeness in insects so far. We identified 20,471 protein-coding genes, of which 20,070 (98.04%) were functionally annotated. The genome assembly of M. alternatus provides a valuable resource for exploring the evolution of the symbiosis between PWN and the vector insects.
Collapse
Affiliation(s)
- Longsheng Xing
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dunyang Yu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xuan Tang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Bin Zhang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
8
|
Zhong S, Zhu H, Li W, Wu D, Miao Y, Dong B, Wang Y, Xiao Z, Fang Q, Deng J, Zhao H. DNA methylome analysis reveals novel insights into active hypomethylated regulatory mechanisms of temperature-dependent flower opening in Osmanthus fragrans. HORTICULTURE RESEARCH 2024; 11:uhae010. [PMID: 38464472 PMCID: PMC10923647 DOI: 10.1093/hr/uhae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Short-term ambient low temperature (ALT) stimulation is necessary for Osmanthus fragrans to facilitate continued flower opening after floral bud development reaches maturity. DNA methylation, a vital epigenetic modification, regulates various biological processes in response to temperature fluctuations. However, its role in temperature-driven flower opening remains elusive. In this study, we identified the pivotal timeframe during which O. fragrans promptly detected temperature cues. Using whole-genome bisulfite sequencing, we explored global DNA hypomethylation during this phase, with the most significant changes occurring in CHH sequence contexts. Auxin transport inhibitor (TIBA) application revealed that ALT-induced endogenous auxin accumulation promoted peduncle elongation. In our mRNA-seq analysis, we discovered that the differentially expressed genes (DEGs) with hypo-differentially methylated regions (hypo-DMRs) were mainly enriched in auxin and temperature response, RNA processing, and carbohydrate and lipid metabolism. Transcripts of three DNA demethylase genes (OfROS1a, OfDML3, OfDME) showed upregulation. Furthermore, all DNA methylase genes, except OfCMT2b, also displayed increased expression, specifically with two of them, OfCMT3a and OfCMT1, being associated with hypo-DMRs. Promoter assays showed that OfROS1a, with promoters containing low-temperature- and auxin-responsive elements, were activated by ALT and exogenous IAA at low concentrations but inhibited at high concentrations. Overexpression of OfROS1 reduced endogenous auxin levels but enhanced the expression of genes related to auxin response and spliceosome in petunia. Furthermore, OfROS1 promoted sucrose synthesis in petunia corollas. Our data characterized the rapid response of active DNA hypomethylation to ALT and suggested a possible epiregulation of temperature-dependent flower opening in O. fragrans. This study revealed the pivotal role of DNA hypomethylation in O. fragrans during the ALT-responsive phase before flower opening, involving dynamic DNA demethylation, auxin signaling modulation, and a potential feedback loop between hypomethylation and methylation.
Collapse
Affiliation(s)
- Shiwei Zhong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huijun Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Arnqvist G, Westerberg I, Galbraith J, Sayadi A, Scofield DG, Olsen RA, Immonen E, Bonath F, Ewels P, Suh A. A chromosome-level assembly of the seed beetle Callosobruchus maculatus genome with annotation of its repetitive elements. G3 (BETHESDA, MD.) 2024; 14:jkad266. [PMID: 38092066 PMCID: PMC10849321 DOI: 10.1093/g3journal/jkad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 02/09/2024]
Abstract
Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Ivar Westerberg
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE10691, Sweden
| | - James Galbraith
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala SE75236, Sweden
| | - Douglas G Scofield
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
- Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE75236, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE10691, Sweden
| | - Elina Immonen
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE10691, Sweden
| | | | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
| |
Collapse
|
10
|
He J, Li J, Zhang R, Dong Z, Liu G, Chang Z, Bi W, Ruan Y, Yang Y, Liu H, Qiu L, Zhao R, Wan W, Li Z, Chen L, Li Y, Li X. Multiple Origins of Bioluminescence in Beetles and Evolution of Luciferase Function. Mol Biol Evol 2024; 41:msad287. [PMID: 38174583 PMCID: PMC10798137 DOI: 10.1093/molbev/msad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.
Collapse
Affiliation(s)
- Jinwu He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Jun Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zhiwei Dong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guichun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhou Chang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wenxuan Bi
- Room 401, No. 2, Lane 155, Lianhua South Road, Shanghai 201100, China
| | - Yongying Ruan
- Plant Protection Research Center, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Yuxia Yang
- Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haoyu Liu
- Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lu Qiu
- Engineering Research Center for Forest and Grassland Disaster Prevention and Reduction, Mianyang Normal University, 621000 Mianyang, China
| | - Ruoping Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wenting Wan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zihe Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xueyan Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
11
|
Amorim IC, Mello CAA, Félix AP, Xavier C, Wallau GL, Moura RC. Mobilome characterization of the beetle Euchroma gigantea (Buprestidae) uncovers multiple long range Tc1-Mariner horizontal transfer events. Gene 2023; 888:147785. [PMID: 37689222 DOI: 10.1016/j.gene.2023.147785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Transposable elements (TEs) are mobile repetitive DNA sequences that can transfer horizontally between species. Due to their mutagenic characteristics, TEs are associated with different evolutionary events, including chromosomal rearrangements that are abundant in the beetle Euchroma gigantea. In order to understand more in depth the impact of TEs on the genomic evolution of E. gigantea, we characterized the E. gigantea mobilome and evaluated the horizontal transfer of Tc1-Mariner elements. Genomic sequencing data was generated on the Illumina Hiseq plataform, from a specimen (Northeast lineage) collected in Recife, Pernambuco - Brazil. The TEs were characterized by two independent approaches based on the clustering and assembly of highly repetitive sequences, the RepeatExplorer and dnaPipeTE. The sequences obtained were further characterized using ORFfinder and CD-Search, to obtain the TEs' potential coding proteins and verify the presence and integrity of known TE domains. Evidence for horizontal transfer was evaluated by nucleotide and protein genetic distance between TEs from E. gigantea and other species and phylogenetic incongruences detected between TEs and hosts phylogenetic trees. The mobilome of E. gigantea represents about 21 to 26% of its genome. This mobilome is composed of TEs from 31 superfamilies, belonging to different classes and most known orders of TEs. Several types of TEs with intact domains were observed with emphasis on Tc1-Mariner suggesting the presence of potentially autonomous elements. This superfamily also stands out for having the greatest abundance and diversity, with TEs being classified into four families. When compared to TEs deposited in databases, Mariner TEs stood out as having the highest nucleotide identity (above 90%) with TEs from phylogenetically distant species, such as ants and bees. Altogether these results suggest that E. gigantea Mariner TEs underwent multiple horizontal transfer events to other insect species.
Collapse
Affiliation(s)
- Igor C Amorim
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Juazeiro, BA, Brasil
| | - Catarine A A Mello
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Aline P Félix
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas (CB), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães - Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Crislaine Xavier
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel L Wallau
- Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães - Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil; Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Rita C Moura
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas (CB), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
12
|
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, Heddi A. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. MICROBIOME 2023; 11:274. [PMID: 38087390 PMCID: PMC10717185 DOI: 10.1186/s40168-023-01714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | | | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Ophélie Hurtado
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Institut universitaire de France (IUF), Paris, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| |
Collapse
|
13
|
Rodriguez Ruiz A, Van Dam AR. Metagenomic binning of PacBio HiFi data prior to assembly reveals a complete genome of Cosmopolites sordidus (Germar) (Coleopterea: Curculionidae, Dryophthorinae) the most damaging arthropod pest of bananas and plantains. PeerJ 2023; 11:e16276. [PMID: 38025758 PMCID: PMC10676084 DOI: 10.7717/peerj.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
PacBio HiFi sequencing was employed in combination with metagenomic binning to produce a high-quality reference genome of Cosmopolites sordidus. We compared k-mer and alignment reference based pre-binning and post-binning approaches to remove contamination. We were also interested to know if the post-binning approach had interspersed bacterial contamination within intragenic regions of Arthropoda binned contigs. Our analyses identified 3,433 genes that were composed with reads identified as of putative bacterial origins. The pre-binning approach yielded a C. sordidus genome of 1.07 Gb genome composed of 3,089 contigs with 98.6% and 97.1% complete and single copy genome and protein BUSCO scores respectively. In this article we demonstrate that in this case the pre-binning approach does not sacrifice assembly quality for more stringent metagenomic filtering. We also determine post-binning allows for increased intragenic contamination increased with increasing coverage, but the frequency of gene contamination increased with lower coverage. Future work should focus on developing reference free pre-binning approaches for HiFi reads produced from eukaryotic based metagenomic samples.
Collapse
Affiliation(s)
- Alfredo Rodriguez Ruiz
- Departamento de Biología, Universidad de Puerto Rico Recinto Universitario de Mayagüez, Mayagüez, Puerto Rico, United States of America
| | - Alex R. Van Dam
- Departamento de Biología, Universidad de Puerto Rico Recinto Universitario de Mayagüez, Mayagüez, Puerto Rico, United States of America
| |
Collapse
|
14
|
Wells JN, Chang NC, McCormick J, Coleman C, Ramos N, Jin B, Feschotte C. Transposable elements drive the evolution of metazoan zinc finger genes. Genome Res 2023; 33:1325-1339. [PMID: 37714714 PMCID: PMC10547256 DOI: 10.1101/gr.277966.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 09/17/2023]
Abstract
Cys2-His2 zinc finger genes (ZNFs) form the largest family of transcription factors in metazoans. ZNF evolution is highly dynamic and characterized by the rapid expansion and contraction of numerous subfamilies across the animal phylogeny. The forces and mechanisms underlying rapid ZNF evolution remain poorly understood, but there is growing evidence that, in tetrapods, the targeting and repression of lineage-specific transposable elements (TEs) plays a critical role in the evolution of the Krüppel-associated box ZNF (KZNF) subfamily. Currently, it is unknown whether this function and coevolutionary relationship is unique to KZNFs or is a broader feature of metazoan ZNFs. Here, we present evidence that genomic conflict with TEs has been a central driver of the diversification of ZNFs in animals. Sampling from 3221 genome assemblies, we show that the copy number of retroelements correlates with that of ZNFs across at least 750 million years of metazoan evolution. Using computational predictions, we show that ZNFs preferentially bind TEs in diverse animal species. We further investigate the largest ZNF subfamily found in cyprinid fish, which is characterized by a conserved sequence we dubbed the fish N-terminal zinc finger-associated (FiNZ) domain. Zebrafish possess approximately 700 FiNZ-ZNFs, many of which are evolving adaptively under positive selection. Like mammalian KZNFs, most zebrafish FiNZ-ZNFs are expressed at the onset of zygotic genome activation, and blocking their translation using morpholinos during early embryogenesis results in derepression of transcriptionally active TEs. Together, these data suggest that ZNF diversification has been intimately connected to TE expansion throughout animal evolution.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - John McCormick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Caitlyn Coleman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Nathalie Ramos
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Bozhou Jin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
15
|
Manee MM, Alqahtani FH, Al-Shomrani BM, El-Shafie HAF, Dias GB. Omics in the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): A Bridge to the Pest. INSECTS 2023; 14:255. [PMID: 36975940 PMCID: PMC10054242 DOI: 10.3390/insects14030255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curculionidae), is the most devastating pest of palm trees worldwide. Mitigation of the economic and biodiversity impact it causes is an international priority that could be greatly aided by a better understanding of its biology and genetics. Despite its relevance, the biology of the RPW remains poorly understood, and research on management strategies often focuses on outdated empirical methods that produce sub-optimal results. With the development of omics approaches in genetic research, new avenues for pest control are becoming increasingly feasible. For example, genetic engineering approaches become available once a species's target genes are well characterized in terms of their sequence, but also population variability, epistatic interactions, and more. In the last few years alone, there have been major advances in omics studies of the RPW. Multiple draft genomes are currently available, along with short and long-read transcriptomes, and metagenomes, which have facilitated the identification of genes of interest to the RPW scientific community. This review describes omics approaches previously applied to RPW research, highlights findings that could be impactful for pest management, and emphasizes future opportunities and challenges in this area of research.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Fahad H. Alqahtani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Badr M. Al-Shomrani
- National Center for Bioinformatics, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
- Institute of Advanced Agricultural and Food Technologies, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | | | | |
Collapse
|
16
|
Lacotte V, Dell'Aglio E, Peignier S, Benzaoui F, Heddi A, Rebollo R, Da Silva P. A comparative study revealed hyperspectral imaging as a potential standardized tool for the analysis of cuticle tanning over insect development. Heliyon 2023; 9:e13962. [PMID: 36895353 PMCID: PMC9988560 DOI: 10.1016/j.heliyon.2023.e13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Cereal-feeding beetles are a major risk for cereal crop maintenance. Cereal weevils such as Sitophilus oryzae have symbiotic intracellular bacteria that provide essential aromatic amino acid to the host for the biosynthesis of their cuticle building blocks. Their cuticle is an important protective barrier against biotic and abiotic stresses, providing high resistance from insecticides. Quantitative optical methods specialized in insect cuticle analysis exist, but their scope of use and the repeatability of the results remain limited. Here, we investigated the potential of Hyperspectral Imaging (HSI) as a standardized cuticle analysis tool. Based on HSI, we acquired time series of average reflectance profiles from 400 to 1000 nm from symbiotic (with bacteria) and aposymbiotic (without bacteria) cereal weevils S. oryzae exposed to different nutritional stresses. We assessed the phenotypic changes of weevils under different diets throughout their development and demonstrated the agreement of the results between the HSI method and the classically used Red-Green-Blue analysis. Then, we compared the use of both technologies in laboratory conditions and highlighted the assets of HSI to develop a simple, automated, and standardized analysis tool. This is the first study showing the reliability and feasibility of HSI for a standardized analysis of insect cuticle changes.
Collapse
Affiliation(s)
- Virginie Lacotte
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Sergio Peignier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Fadéla Benzaoui
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Pedro Da Silva
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| |
Collapse
|
17
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
18
|
Weevil Carbohydrate Intake Triggers Endosymbiont Proliferation: A Trade-Off between Host Benefit and Endosymbiont Burden. mBio 2023; 14:e0333322. [PMID: 36779765 PMCID: PMC10127669 DOI: 10.1128/mbio.03333-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Nutritional symbioses between insects and intracellular bacteria (endosymbionts) are a major force of adaptation, allowing animals to colonize nutrient-poor ecological niches. Many beetles feeding on tyrosine-poor substrates rely on a surplus of aromatic amino acids produced by bacterial endosymbionts. This surplus of aromatic amino acids is crucial for the biosynthesis of a thick exoskeleton, the cuticle, which is made of a matrix of chitin with proteins and pigments built from tyrosine-derived molecules, providing an important defensive barrier against biotic and abiotic stress. Other endosymbiont-related advantages for beetles include faster development and improved fecundity. The association between Sitophilus oryzae and the Sodalis pierantonius endosymbiont represents a unique case study among beetles: endosymbionts undergo an exponential proliferation in young adults concomitant with the cuticle tanning, and then they are fully eliminated. While endosymbiont clearance, as well as total endosymbiont titer, are host-controlled processes, the mechanism triggering endosymbiont exponential proliferation remains poorly understood. Here, we show that endosymbiont exponential proliferation relies on host carbohydrate intake, unlike the total endosymbiont titer or the endosymbiont clearance, which are under host genetic control. Remarkably, insect fecundity was preserved, and the cuticle tanning was achieved, even when endosymbiont exponential proliferation was experimentally blocked, except in the context of a severely unbalanced diet. Moreover, a high endosymbiont titer coupled with nutrient shortage dramatically impacted host survival, revealing possible environment-dependent disadvantages for the host, likely due to the high energy cost of exponentially proliferating endosymbionts. IMPORTANCE Beetles thriving on tyrosine-poor diet sources often develop mutualistic associations with endosymbionts able to synthesize aromatic amino acids. This surplus of aromatic amino acids is used to reinforce the insect's protective cuticle. An exceptional feature of the Sitophilus oryzae/Sodalis pierantonius interaction is the exponential increase in endosymbiotic titer observed in young adult insects, in concomitance with cuticle biosynthesis. Here, we show that host carbohydrate intake triggers endosymbiont exponential proliferation, even in conditions that lead to the detriment of the host survival. In addition, when hosts thrive on a balanced diet, endosymbiont proliferation is dispensable for several host fitness traits. The endosymbiont exponential proliferation is therefore dependent on the nutritional status of the host, and its consequences on host cuticle biosynthesis and survival depend on food quality and availability.
Collapse
|
19
|
Abstract
The detection and quantification of transposable elements (TE) are notoriously challenging despite their relevance in evolutionary genomics and molecular ecology. The main hurdle is caused by the dependence of numerous tools on genome assemblies, whose level of completion directly affects the comparability of the results across species or populations. dnaPipeTE, whose use is demonstrated here, tackles this issue by directly performing TE detection, classification, and quantification from unassembled short reads. This chapter details all the required steps to perform a comparative analysis of the TE content between two related species, starting from the installation of a recently containerized version of the program to the post-processing of the outputs.
Collapse
Affiliation(s)
- Clément Goubert
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada.
- McGill Genome Centre, Montreal, QC, Canada.
- Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Ferrarini MG, Vallier A, Dell’Aglio E, Balmand S, Vincent-Monégat C, Debbache M, Maire J, Parisot N, Zaidman-Rémy A, Heddi A, Rebollo R. Endosymbiont-containing germarium transcriptional survey in a cereal weevil depicts downregulation of immune effectors at the onset of sexual maturity. Front Physiol 2023; 14:1142513. [PMID: 37035680 PMCID: PMC10073668 DOI: 10.3389/fphys.2023.1142513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Insects often establish long-term relationships with intracellular symbiotic bacteria, i.e., endosymbionts, that provide them with essential nutrients such as amino acids and vitamins. Endosymbionts are typically confined within specialized host cells called bacteriocytes that may form an organ, the bacteriome. Compartmentalization within host cells is paramount for protecting the endosymbionts and also avoiding chronic activation of the host immune system. In the cereal weevil Sitophilus oryzae, bacteriomes are present as a single organ at the larval foregut-midgut junction, and in adults, at the apex of midgut mesenteric caeca and at the apex of the four ovarioles. While the adult midgut endosymbionts experience a drastic proliferation during early adulthood followed by complete elimination through apoptosis and autophagy, ovarian endosymbionts are maintained throughout the weevil lifetime by unknown mechanisms. Bacteria present in ovarian bacteriomes are thought to be involved in the maternal transmission of endosymbionts through infection of the female germline, but the exact mode of transmission is not fully understood. Here, we show that endosymbionts are able to colonize the germarium in one-week-old females, pinpointing a potential infection route of oocytes. To identify potential immune regulators of ovarian endosymbionts, we have analyzed the transcriptomes of the ovarian bacteriomes through young adult development, from one-day-old adults to sexually mature ones. In contrast with midgut bacteriomes, immune effectors are downregulated in ovarian bacteriomes at the onset of sexual maturation. We hypothesize that relaxation of endosymbiont control by antimicrobial peptides might allow bacterial migration and potential oocyte infection, ensuring endosymbiont transmission.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Agnès Vallier
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Elisa Dell’Aglio
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Séverine Balmand
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | | | - Mériem Debbache
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Justin Maire
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Nicolas Parisot
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Abdelaziz Heddi
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Rita Rebollo
- Université de Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
- *Correspondence: Rita Rebollo,
| |
Collapse
|
21
|
Liu X, Majid M, Yuan H, Chang H, Zhao L, Nie Y, He L, Liu X, He X, Huang Y. Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism. BMC Biol 2022; 20:243. [PMID: 36307800 PMCID: PMC9615261 DOI: 10.1186/s12915-022-01441-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs.
Results
We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.
Conclusions
Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
Collapse
|
22
|
Ferrarini MG, Dell’Aglio E, Vallier A, Balmand S, Vincent-Monégat C, Hughes S, Gillet B, Parisot N, Zaidman-Rémy A, Vieira C, Heddi A, Rebollo R. Efficient compartmentalization in insect bacteriomes protects symbiotic bacteria from host immune system. MICROBIOME 2022; 10:156. [PMID: 36163269 PMCID: PMC9513942 DOI: 10.1186/s40168-022-01334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments. RESULTS We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts. CONCLUSIONS This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Elisa Dell’Aglio
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Séverine Balmand
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Sandrine Hughes
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Benjamin Gillet
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| |
Collapse
|
23
|
Cong Y, Ye X, Mei Y, He K, Li F. Transposons and non-coding regions drive the intrafamily differences of genome size in insects. iScience 2022; 25:104873. [PMID: 36039293 PMCID: PMC9418806 DOI: 10.1016/j.isci.2022.104873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022] Open
Abstract
Genome size (GS) can vary considerably between phylogenetically close species, but the landscape of GS changes in insects remain largely unclear. To better understand the specific evolutionary factors that determine GS in insects, we examined flow cytometry-based published GS data from 1,326 insect species, spanning 700 genera, 155 families, and 21 orders. Model fitting showed that GS generally followed an Ornstein-Uhlenbeck adaptive evolutionary model in Insecta overall. Ancestral reconstruction indicated a likely GS of 1,069 Mb, suggesting that most insect clades appeared to undergo massive genome expansions or contractions. Quantification of genomic components in 56 species from nine families in four insect orders revealed that the proliferation of transposable elements contributed to high variation in GS between close species, such as within Coleoptera. This study sheds lights on the pattern of GS variation in insects and provides a better understanding of insect GS evolution.
Collapse
Affiliation(s)
- Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Microsatellite Variation in the Most Devastating Beetle Pests (Coleoptera: Curculionidae) of Agricultural and Forest Crops. Int J Mol Sci 2022; 23:ijms23179847. [PMID: 36077247 PMCID: PMC9456221 DOI: 10.3390/ijms23179847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Weevils, classified in the family Curculionidae (true weevils), constitute a group of phytophagous insects of which many species are considered significant pests of crops. Within this family, the red palm weevil (RPW), Rhynchophorus ferrugineus, has an integral role in destroying crops and has invaded all countries of the Middle East and many in North Africa, Southern Europe, Southeast Asia, Oceania, and the Caribbean Islands. Simple sequence repeats (SSRs), also termed microsatellites, have become the DNA marker technology most applied to study population structure, evolution, and genetic diversity. Although these markers have been widely examined in many mammalian and plant species, and draft genome assemblies are available for many species of true weevils, very little is yet known about SSRs in weevil genomes. Here we carried out a comparative analysis examining and comparing the relative abundance, relative density, and GC content of SSRs in previously sequenced draft genomes of nine true weevils, with an emphasis on R. ferrugineus. We also used Illumina paired-end sequencing to generate draft sequence for adult female RPW and characterized it in terms of perfect SSRs with 1–6 bp nucleotide motifs. Among weevil genomes, mono- to trinucleotide SSRs were the most frequent, and mono-, di-, and hexanucleotide SSRs exhibited the highest GC content. In these draft genomes, SSR number and genome size were significantly correlated. This work will aid our understanding of the genome architecture and evolution of Curculionidae weevils and facilitate exploring SSR molecular marker development in these species.
Collapse
|
25
|
Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, Johnston JS, Koutroumpa F, Persyn E, Monsempès C, François MC, Jacquin-Joly E. Spodoptera littoralis genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae. G3 (BETHESDA, MD.) 2022; 12:6598846. [PMID: 35652787 PMCID: PMC9339325 DOI: 10.1093/g3journal/jkac131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
The bitter taste, triggered via gustatory receptors, serves as an important natural defense against the ingestion of poisonous foods in animals, and the increased host breadth is usually linked to an increase in the number of gustatory receptor genes. This has been especially observed in polyphagous insect species, such as noctuid species from the Spodoptera genus. However, the dynamic and physical mechanisms leading to these gene expansions and the evolutionary pressures behind them remain elusive. Among major drivers of genome dynamics are the transposable elements but, surprisingly, their potential role in insect gustatory receptor expansion has not been considered yet. In this work, we hypothesized that transposable elements and possibly positive selection would be involved in the highly dynamic evolution of gustatory receptor in Spodoptera spp. We first sequenced de novo the full 465 Mb genome of S. littoralis, and manually annotated the main chemosensory genes, including a large repertoire of 373 gustatory receptor genes (including 19 pseudogenes). We also improved the completeness of S. frugiperda and S. litura gustatory receptor gene repertoires. Then, we annotated transposable elements and revealed that a particular category of class I retrotransposons, the SINE transposons, was significantly enriched in the vicinity of gustatory receptor gene clusters, suggesting a transposon-mediated mechanism for the formation of these clusters. Selection pressure analyses indicated that positive selection within the gustatory receptor gene family is cryptic, only 7 receptors being identified as positively selected. Altogether, our data provide a new good quality Spodoptera genome, pinpoint interesting gustatory receptor candidates for further functional studies and bring valuable genomic information on the mechanisms of gustatory receptor expansions in polyphagous insect species.
Collapse
Affiliation(s)
- Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Pauline Mainet
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Stéphanie Robin
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - Fabrice Legeai
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - Anthony Bretaudeau
- INRAE, UMR Institut de Génétique, Environnement et Protection des Plantes (IGEPP), BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes, France.,INRIA, IRISA, GenOuest Core Facility, Campus de Beaulieu, Rennes 5042, France
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France.,Present address: INRAE, Université Tours, Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Emma Persyn
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France.,CIRAD, UMR PVBMT, Réunion, France
| | - Christelle Monsempès
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| |
Collapse
|
26
|
Feron R, Waterhouse RM. Exploring new genomic territories with emerging model insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100902. [PMID: 35301165 DOI: 10.1016/j.cois.2022.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Improvements in reference genome generation for insects and across the tree of life are extending the concept and utility of model organisms beyond traditional laboratory-tractable supermodels. Species or groups of species with comprehensive genome resources can be developed into model systems for studying a large variety of biological phenomena. Advances in sequencing and assembly technologies are supporting these emerging genome-enabled model systems by producing resources that are increasingly accurate and complete. Nevertheless, quality controls including assessing gene content completeness are required to ensure that these data can be included in expanding catalogues of high-quality references that will greatly advance understanding of insect biology and evolution.
Collapse
Affiliation(s)
- Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Nakajima Y, Ogura A. Genomics and effective trait candidates of edible insects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Sicat JPA, Visendi P, Sewe SO, Bouvaine S, Seal SE. Characterization of transposable elements within the Bemisia tabaci species complex. Mob DNA 2022; 13:12. [PMID: 35440097 PMCID: PMC9017028 DOI: 10.1186/s13100-022-00270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. Results This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. Conclusion This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00270-6.
Collapse
Affiliation(s)
- Juan Paolo A Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK.
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven O Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| |
Collapse
|
29
|
Gagalova KK, Whitehill JGA, Culibrk L, Lin D, Lévesque-Tremblay V, Keeling CI, Coombe L, Yuen MMS, Birol I, Bohlmann J, Jones SJM. The genome of the forest insect pest Pissodes strobi reveals genome expansion and evidence of a Wolbachia endosymbiont. G3 GENES|GENOMES|GENETICS 2022; 12:6529542. [PMID: 35171977 PMCID: PMC8982425 DOI: 10.1093/g3journal/jkac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/23/2022] [Indexed: 12/11/2022]
Abstract
The highly diverse insect family of true weevils, Curculionidae, includes many agricultural and forest pests. Pissodes strobi, commonly known as the spruce weevil or white pine weevil, is a major pest of spruce and pine forests in North America. Pissodes strobi larvae feed on the apical shoots of young trees, causing stunted growth and can destroy regenerating spruce or pine forests. Here, we describe the nuclear and mitochondrial Pissodes strobi genomes and their annotations, as well as the genome of an apparent Wolbachia endosymbiont. We report a substantial expansion of the weevil nuclear genome, relative to other Curculionidae species, possibly driven by an abundance of class II DNA transposons. The endosymbiont observed belongs to a group (supergroup A) of Wolbachia species that generally form parasitic relationships with their arthropod host.
Collapse
Affiliation(s)
- Kristina K Gagalova
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Luka Culibrk
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Diana Lin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | | | - Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, QC G1V4C7, Canada
- Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Laval, QC G1V0A6, Canada
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Inanç Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|