1
|
Adavi ED, dos Anjos VL, Kotb S, Metz HC, Tian D, Zhao Z, Zung JL, Rose NH, McBride CS. Olfactory receptor coexpression and co-option in the dengue mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608847. [PMID: 39229077 PMCID: PMC11370346 DOI: 10.1101/2024.08.21.608847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The olfactory sensory neurons of vinegar flies and mice tend to express a single ligand-specific receptor. While this 'one neuron-one receptor' motif has long been expected to apply broadly across insects, recent evidence suggests it may not extend to mosquitoes. We sequenced and analyzed the transcriptomes of 46,000 neurons from antennae of the dengue mosquito Aedes aegypti to resolve all olfactory, thermosensory, and hygrosensory neuron subtypes and identify the receptors expressed therein. We find that half of all olfactory subtypes coexpress multiple receptors. However, coexpression occurs almost exclusively among genes from the same family-among odorant receptors (ORs) or among ionotropic receptors (IRs). Coexpression of ORs with IRs is exceedingly rare. Many coexpressed receptors are recent duplicates. In other cases, the recruitment or co-option of single receptors by multiple neuron subtypes has placed these genes together in the same cells with distant paralogs. Close examination of data from Drosophila reveal rare cases of both phenomena, indicating that the olfactory systems of these two species are not fundamentally different, but instead fall at different locations along a continuum likely to encompass diverse insects.
Collapse
Affiliation(s)
- Elisha David Adavi
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Vitor L. dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Summer Kotb
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Hillery C. Metz
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - David Tian
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jessica L. Zung
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Carolyn S. McBride
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| |
Collapse
|
2
|
Wang Q, Zhang J, Liu C, Ru C, Qian Q, Yang M, Yan S, Liu W, Wang G. Identification of antennal alternative splicing by combining genome and full-length transcriptome analysis in Bactrocera dorsalis. Front Physiol 2024; 15:1384426. [PMID: 38952867 PMCID: PMC11215311 DOI: 10.3389/fphys.2024.1384426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuanjian Ru
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qian Qian
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
He J, Kang L. Regulation of insect behavior by non-coding RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1106-1118. [PMID: 38443665 DOI: 10.1007/s11427-023-2482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 03/07/2024]
Abstract
The adaptation of insects to environments relies on a sophisticated set of behaviors controlled by molecular and physiological processes. Over the past several decades, accumulating studies have unveiled the roles of non-coding RNAs (ncRNAs) in regulating insect behaviors. ncRNAs assume particularly pivotal roles in the behavioral plasticity of insects by rapidly responding to environmental stimuli. ncRNAs also contribute to the maintenance of homeostasis of insects by fine-tuning the expression of target genes. However, a comprehensive review of ncRNAs' roles in regulating insect behaviors has yet to be conducted. Here, we present the recent progress in our understanding of how ncRNAs regulate various insect behaviors, including flight and movement, social behavior, reproduction, learning and memory, and feeding. We refine the intricate mechanisms by which ncRNAs modulate the function of neural, motor, reproductive, and other physiological systems, as well as gene expression in insects like fruit flies, social insects, locusts, and mosquitos. Furthermore, we discuss potential avenues for future studies in ncRNA-mediated insect behaviors.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
5
|
Buthasane W, Shotelersuk V, Chetruengchai W, Srichomthong C, Assawapitaksakul A, Tangphatsornruang S, Pootakham W, Sonthirod C, Tongsima S, Wangkumhang P, Wilantho A, Thongphakdee A, Sanannu S, Poksawat C, Nipanunt T, Kasorndorkbua C, Koepfli KP, Pukazhenthi BS, Suriyaphol P, Wongsurawat T, Jenjaroenpun P, Suriyaphol G. Comprehensive genome assembly reveals genetic diversity and carcass consumption insights in critically endangered Asian king vultures. Sci Rep 2024; 14:9455. [PMID: 38658744 PMCID: PMC11043450 DOI: 10.1038/s41598-024-59990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The Asian king vulture (AKV), a vital forest scavenger, is facing globally critical endangerment. This study aimed to construct a reference genome to unveil the mechanisms underlying its scavenger abilities and to assess the genetic relatedness of the captive population in Thailand. A reference genome of a female AKV was assembled from sequencing reads obtained from both PacBio long-read and MGI short-read sequencing platforms. Comparative genomics with New World vultures (NWVs) and other birds in the Family Accipitridae revealed unique gene families in AKV associated with retroviral genome integration and feather keratin, contrasting with NWVs' genes related to olfactory reception. Expanded gene families in AKV were linked to inflammatory response, iron regulation and spermatogenesis. Positively selected genes included those associated with anti-apoptosis, immune response and muscle cell development, shedding light on adaptations for carcass consumption and high-altitude soaring. Using restriction site-associated DNA sequencing (RADseq)-based genome-wide single nucleotide polymorphisms (SNPs), genetic relatedness and inbreeding status of five captive AKVs were determined, revealing high genomic inbreeding in two females. In conclusion, the AKV reference genome was established, providing insights into its unique characteristics. Additionally, the potential of RADseq-based genome-wide SNPs for selecting AKV breeders was demonstrated.
Collapse
Affiliation(s)
- Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ampika Thongphakdee
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Saowaphang Sanannu
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Chaianan Poksawat
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Tarasak Nipanunt
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani, 61160, Thailand
| | - Chaiyan Kasorndorkbua
- Laboratory of Raptor Research and Conservation Medicine, Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Prapat Suriyaphol
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
An L, Pan Y, Yuan M, Wen Z, Qiao L, Wang W, Liu J, Li B, Liu W. Full-Length Transcriptome and Gene Expression Analysis of Different Ovis aries Adipose Tissues Reveals Transcript Variants Involved in Lipid Biosynthesis. Animals (Basel) 2023; 14:7. [PMID: 38200738 PMCID: PMC10777924 DOI: 10.3390/ani14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Sheep have historically been bred globally as a vital food source. To explore the transcriptome of adipose tissue and investigate key genes regulating adipose metabolism in sheep, adipose tissue samples were obtained from F1 Dorper × Hu sheep. High-throughput sequencing libraries for second- and third-generation sequencing were constructed using extracted total RNA. Functional annotation of differentially expressed genes and isoforms facilitated the identification of key regulatory genes and isoforms associated with sheep fat metabolism. SMRT-seq generated 919,259 high-accuracy cDNA sequences after filtering. Full-length sequences were corrected using RNA-seq sequences, and 699,680 high-quality full-length non-chimeric (FLNC) reads were obtained. Upon evaluating the ratio of total lengths based on FLNC sequencing, it was determined that 36,909 out of 56,316 multiple-exon isoforms met the criteria for full-length status. This indicates the identification of 330,375 full-length FLNC transcripts among the 370,114 multiple-exon FLNC transcripts. By comparing the reference genomes, 60,276 loci and 111,302 isoforms were identified. In addition, 43,423 new genes and 44,563 new isoforms were identified. The results identified 185 (3198), 394 (3592), and 83 (3286) differentially expressed genes (transcripts) between tail and subcutaneous, tail and visceral, and subcutaneous and visceral adipose tissues, respectively. Functional annotation and pathway analysis revealed the following observations. (1) Among the differentially expressed genes (DEGs) of TF and SF tissues, the downregulation of ACADL, ACSL6, and NC_056060.1.2536 was observed in SF, while FFAR4 exhibited upregulation. (2) Among the DEGs of TF and VF tissues, expressions of ACADL, ACSL6, COL1A1, COL1A2, and SCD were downregulated in VF, with upregulation of FFAR4. (3) Among SF and VF expressions of COL1A1, COL1A2, and NC_056060.1.2536 were downregulated in VF. Specific differentially expressed genes (ACADL, ACSL6, COL1A1, COL1A2, FFAR4, NC_056060.1.2536, and SCD) and transcripts (NC_056066.1.1866.16 and NC_056066.1.1866.22) were identified as relevant to fat metabolism. These results provide a dataset for further verification of the regulatory pathway associated with fat metabolism in sheep.
Collapse
Affiliation(s)
- Lixia An
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
- School of Food & Environment, Jinzhong College of Information, Jinzhong 030801, China
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Mengjiao Yuan
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Zhonghao Wen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Liying Qiao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Weiwei Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Jianhua Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Baojun Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (L.A.); (Y.P.)
| |
Collapse
|
7
|
Al-Dossary O, Furtado A, KharabianMasouleh A, Alsubaie B, Al-Mssallem I, Henry RJ. Long read sequencing to reveal the full complexity of a plant transcriptome by targeting both standard and long workflows. PLANT METHODS 2023; 19:112. [PMID: 37865785 PMCID: PMC10589961 DOI: 10.1186/s13007-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Long read sequencing allows the analysis of full-length transcripts in plants without the challenges of reliable transcriptome assembly. Long read sequencing of transcripts from plant genomes has often utilized sized transcript libraries. However, the value of including libraries of differing sizes has not been established. METHODS A comprehensive transcriptome of the leaves of Jojoba (Simmondsia chinensis) was generated from two different PacBio library preparations: standard workflow (SW) and long workflow (LW). RESULTS The importance of using both transcript groups in the analysis was demonstrated by the high proportion of unique sequences (74.6%) that were not shared between the groups. A total of 37.8% longer transcripts were only detected in the long dataset. The completeness of the combined transcriptome was indicated by the presence of 98.7% of genes predicted in the jojoba male reference genome. The high coverage of the transcriptome was further confirmed by BUSCO analysis showing the presence of 96.9% of the genes from the core viridiplantae_odb10 lineage. The high-quality isoforms post Cd-Hit merged dataset of the two workflows had a total of 167,866 isoforms. Most of the transcript isoforms were protein-coding sequences (71.7%) containing open reading frames (ORFs) ≥ 100 amino acids (aa). Alternative splicing and intron retention were the basis of most transcript diversity when analysed at the whole genome level and by specific analysis of the apetala2 gene families. CONCLUSION This suggests the need to specifically target the capture of longer transcripts to provide more comprehensive genome coverage in plant transcriptome analysis and reveal the high level of alternative splicing.
Collapse
Affiliation(s)
- Othman Al-Dossary
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Ardashir KharabianMasouleh
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Ibrahim Al-Mssallem
- College of Agriculture and Food Sciences, King Faisal University, 36362, Al Hofuf, Saudi Arabia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
8
|
Jernigan CM, Uy FM. Impact of the social environment in insect sensory systems. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101083. [PMID: 37423425 DOI: 10.1016/j.cois.2023.101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
The social environment has a direct impact on sensory systems and unquestionable consequences on allocation of neural tissue. Although neuroplasticity is adaptive, responses to different social contexts may be mediated by energetic constraints and/or trade-offs between sensory modalities. However, general patterns of sensory plasticity remain elusive due to variability in experimental approaches. Here, we highlight recent studies in social Hymenoptera showing effects of the social environment on sensory systems. Further, we propose to identify a core set of socially mediated mechanisms that drive sensory plasticity. We hope this approach is widely adopted in different insect clades under a phylogenetic framework, which will allow for a more direct integration of the how and why questions exploring sensory plasticity evolution.
Collapse
Affiliation(s)
- Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, NY, USA.
| | - Floria Mk Uy
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
9
|
Abstract
Within the next decade, the genomes of 1.8 million eukaryotic species will be sequenced. Identifying genes in these sequences is essential to understand the biology of the species. This is challenging due to the transcriptional complexity of eukaryotic genomes, which encode hundreds of thousands of transcripts of multiple types. Among these, a small set of protein-coding mRNAs play a disproportionately large role in defining phenotypes. Due to their sequence conservation, orthology can be established, making it possible to define the universal catalog of eukaryotic protein-coding genes. This catalog should substantially contribute to uncovering the genomic events underlying the emergence of eukaryotic phenotypes. This piece briefly reviews the basics of protein-coding gene prediction, discusses challenges in finalizing annotation of the human genome, and proposes strategies for producing annotations across the eukaryotic Tree of Life. This lays the groundwork for obtaining the catalog of all genes-the Earth's code of life.
Collapse
Affiliation(s)
- Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Catalonia
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia
| |
Collapse
|
10
|
Orr SE, Goodisman MA. Social insect transcriptomics and the molecular basis of caste diversity. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101040. [PMID: 37105497 DOI: 10.1016/j.cois.2023.101040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Studies of gene expression provide fundamentally important information on the molecular mechanisms underlying variation in phenotype. Recent technological advances have allowed for the robust study of gene expression through analysis of whole transcriptomes. Here, we review current advances in social insect transcriptomics and discuss their implications in understanding phenotypic diversity. Recent transcriptomic studies provide detailed inventories of the genes involved in producing distinct phenotypes in social species. These investigations have identified key genes and networks involved in producing distinct social insect castes. Nevertheless, questions concerning the evolution of gene expression patterns remain. We suggest a path forward for studying gene expression in future studies of biological systems.
Collapse
Affiliation(s)
- Sarah E Orr
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Michael Ad Goodisman
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
11
|
Hazzard B, Sá JM, Ellis AC, Pascini TV, Amin S, Wellems TE, Serre D. Long read single cell RNA sequencing reveals the isoform diversity of Plasmodium vivax transcripts. PLoS Negl Trop Dis 2022; 16:e0010991. [PMID: 36525464 PMCID: PMC9803293 DOI: 10.1371/journal.pntd.0010991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Plasmodium vivax infections often consist of heterogenous populations of parasites at different developmental stages and with distinct transcriptional profiles, which complicates gene expression analyses. The advent of single cell RNA sequencing (scRNA-seq) enabled disentangling this complexity and has provided robust and stage-specific characterization of Plasmodium gene expression. However, scRNA-seq information is typically derived from the end of each mRNA molecule (usually the 3'-end) and therefore fails to capture the diversity in transcript isoforms documented in bulk RNA-seq data. Here, we describe the sequencing of scRNA-seq libraries using Pacific Biosciences (PacBio) chemistry to characterize full-length Plasmodium vivax transcripts from single cell parasites. Our results show that many P. vivax genes are transcribed into multiple isoforms, primarily through variations in untranslated region (UTR) length or splicing, and that the expression of many isoforms is developmentally regulated. Our findings demonstrate that long read sequencing can be used to characterize mRNA molecules at the single cell level and provides an additional resource to better understand the regulation of gene expression throughout the Plasmodium life cycle.
Collapse
Affiliation(s)
- Brittany Hazzard
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela C. Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tales V. Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shuchi Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Yan H, Opachaloemphan C, Carmona-Aldana F, Mancini G, Mlejnek J, Descostes N, Sieriebriennikov B, Leibholz A, Zhou X, Ding L, Traficante M, Desplan C, Reinberg D. Insulin signaling in the long-lived reproductive caste of ants. Science 2022; 377:1092-1099. [PMID: 36048960 PMCID: PMC9526546 DOI: 10.1126/science.abm8767] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In most organisms, reproduction is correlated with shorter life span. However, the reproductive queen in eusocial insects exhibits a much longer life span than that of workers. In Harpegnathos ants, when the queen dies, workers can undergo an adult caste switch to reproductive pseudo-queens (gamergates), exhibiting a five-times prolonged life span. To explore the relation between reproduction and longevity, we compared gene expression during caste switching. Insulin expression is increased in the gamergate brain that correlates with increased lipid synthesis and production of vitellogenin in the fat body, both transported to the egg. This results from activation of the mitogen-activated protein kinase (MAPK) branch of the insulin signaling pathway. By contrast, the production in the gamergate developing ovary of anti-insulin Imp-L2 leads to decreased signaling of the AKT/forkhead box O (FOXO) branch in the fat body, which is consistent with their extended longevity.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Francisco Carmona-Aldana
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Giacomo Mancini
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Nicolas Descostes
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Long Ding
- Department of Biology, New York University, New York, NY 10003, USA
| | - Maria Traficante
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Ruberto AA, Bourke C, Vantaux A, Maher SP, Jex A, Witkowski B, Snounou G, Mueller I. Single-cell RNA sequencing of Plasmodium vivax sporozoites reveals stage- and species-specific transcriptomic signatures. PLoS Negl Trop Dis 2022; 16:e0010633. [PMID: 35926062 PMCID: PMC9380936 DOI: 10.1371/journal.pntd.0010633] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium vivax sporozoites reside in the salivary glands of a mosquito before infecting a human host and causing malaria. Previous transcriptome-wide studies in populations of these parasite forms were limited in their ability to elucidate cell-to-cell variation, thereby masking cellular states potentially important in understanding malaria transmission outcomes. Methodology/Principal findings In this study, we performed transcription profiling on 9,947 P. vivax sporozoites to assess the extent to which they differ at single-cell resolution. We show that sporozoites residing in the mosquito’s salivary glands exist in distinct developmental states, as defined by their transcriptomic signatures. Additionally, relative to P. falciparum, P. vivax displays overlapping and unique gene usage patterns, highlighting conserved and species-specific gene programs. Notably, distinguishing P. vivax from P. falciparum were a subset of P. vivax sporozoites expressing genes associated with translational regulation and repression. Finally, our comparison of single-cell transcriptomic data from P. vivax sporozoite and erythrocytic forms reveals gene usage patterns unique to sporozoites. Conclusions/Significance In defining the transcriptomic signatures of individual P. vivax sporozoites, our work provides new insights into the factors driving their developmental trajectory and lays the groundwork for a more comprehensive P. vivax cell atlas. Plasmodium vivax is the second most common cause of malaria worldwide. It is particularly challenging for malaria elimination as it forms both active blood-stage infections, as well as asymptomatic liver-stage infections that can persist for extended periods of time. The activation of persister forms in the liver (hypnozoites) are responsible for relapsing infections occurring weeks or months following primary infection via a mosquito bite. How P. vivax persists in the liver remains a major gap in understanding of this organism. It has been hypothesized that there is pre-programming of the infectious sporozoite while it is in the salivary-glands that determines if the cell’s fate once in the liver is to progress towards immediate liver stage development or persist for long-periods as a hypnozoite. The aim of this study was to see if such differences were distinguishable at the transcript level in salivary-gland sporozoites. While we found significant variation amongst sporozoites, we did not find clear evidence that they are transcriptionally pre-programmed as has been suggested. Nevertheless, we highlight several intriguing patterns that appear to be P. vivax specific relative to non-relapsing species that cause malaria prompting further investigation.
Collapse
Affiliation(s)
- Anthony A. Ruberto
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Caitlin Bourke
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Steven P. Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Aaron Jex
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Kingdom of Cambodia
| | - Georges Snounou
- Commissariat à l’Énergie Atomique et aux Énergies Alternatives-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA-HB), Infectious Disease Models and Innovative Therapies (IDMIT) Department, Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), Fontenay-aux-Roses, France
| | - Ivo Mueller
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|