1
|
Pérez-Polo S, Mena AR, Barros L, Borrajo P, Pazos M, Carrera M, Gestal C. Decoding Octopus Skin Mucus: Impact of Aquarium-Maintenance and Senescence on the Proteome Profile of the Common Octopus ( Octopus vulgaris). Int J Mol Sci 2024; 25:9953. [PMID: 39337441 PMCID: PMC11431876 DOI: 10.3390/ijms25189953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The common octopus (Octopus vulgaris) is an excellent candidate for aquaculture diversification, due to its biological traits and high market demand. To ensure a high-quality product while maintaining welfare in captive environments, it is crucial to develop non-invasive methods for testing health biomarkers. Proteins found in skin mucus offer a non-invasive approach to monitoring octopus welfare. This study compares the protein profiles in the skin mucus of wild, aquarium-maintained, and senescent specimens to identify welfare biomarkers. A tandem mass tag (TMT) coupled with an Orbitrap Eclipse Tribrid mass spectrometer was used to create a reference dataset from octopus skin mucus, identifying 1496 non-redundant protein groups. Although similar profiles were observed, differences in relative abundances led to the identification of potential biomarkers, including caspase-3-like, protocadherin 4, deleted in malignant brain tumors, thioredoxin, papilin, annexin, cofilin and mucin-4 proteins. Some of these proteins also revealed potential as bioactive peptides. This investigation provides the most extensive analysis of the skin mucus proteome in the common octopus and is the first to explore how aquarium maintenance and senescence alter the mucus proteome. This research highlights the potential of skin mucus protein/peptides as non-invasive monitoring biomarkers in cultured animals.
Collapse
Affiliation(s)
| | | | | | | | | | - Mónica Carrera
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (S.P.-P.); (A.R.M.); (L.B.); (P.B.); (M.P.)
| |
Collapse
|
2
|
Shook EN, Barlow GT, Garcia-Rosales D, Gibbons CJ, Montague TG. Dynamic skin behaviors in cephalopods. Curr Opin Neurobiol 2024; 86:102876. [PMID: 38652980 DOI: 10.1016/j.conb.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain. During camouflage, cephalopods recreate on their skin an approximation of what they see, providing a window into perceptual processes in the brain. Additionally, cephalopods communicate their internal state during social encounters using innate skin patterns, and create waves of pigmentation on their skin during periods of arousal. Thus, by leveraging the visual displays of cephalopods, we can gain insight into how the external world is represented in the brain and how this representation is transformed into a recapitulation of the world on the skin. Here, we describe the rich skin behaviors of the coleoid cephalopods, what is known about cephalopod neuroanatomy, and how advancements in gene editing, machine learning, optical imaging, and electrophysiological tools may provide an opportunity to explore the neural bases of these fascinating behaviors.
Collapse
Affiliation(s)
- Erica N Shook
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - George Thomas Barlow
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Daniella Garcia-Rosales
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Connor J Gibbons
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
3
|
Destanović D, Schultz DT, Styfhals R, Cruz F, Gómez-Garrido J, Gut M, Gut I, Fiorito G, Simakov O, Alioto TS, Ponte G, Seuntjens E. A chromosome-level reference genome for the common octopus, Octopus vulgaris (Cuvier, 1797). G3 (BETHESDA, MD.) 2023; 13:jkad220. [PMID: 37850903 PMCID: PMC10700109 DOI: 10.1093/g3journal/jkad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Cephalopods are emerging animal models and include iconic species for studying the link between genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and sophisticated cognition. However, no chromosome-scale genome assembly was available for O. vulgaris to aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n = 30 chromosomes. Comparisons with other octopus species' genomes show a conserved octopus karyotype and a pattern of local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod evolution.
Collapse
Affiliation(s)
- Dalila Destanović
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Ruth Styfhals
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | | | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Tyler S Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Eve Seuntjens
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
4
|
Dissegna A, Borrelli L, Ponte G, Chiandetti C, Fiorito G. Octopus vulgaris Exhibits Interindividual Differences in Behavioural and Problem-Solving Performance. BIOLOGY 2023; 12:1487. [PMID: 38132313 PMCID: PMC10740590 DOI: 10.3390/biology12121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By presenting individual Octopus vulgaris with an extractive foraging problem with a puzzle box, we examined the possible correlation between behavioural performances (e.g., ease of adaptation to captive conditions, prevalence of neophobic and neophilic behaviours, and propensity to learn individually or by observing conspecifics), biotic (body and brain size, age, sex) and abiotic (seasonality and place of origin) factors. We found more neophilic animals showing shorter latencies to approach the puzzle box and higher probability of solving the task; also, shorter times to solve the task were correlated with better performance on the individual learning task. However, the most neophilic octopuses that approached the puzzle box more quickly did not reach the solution earlier than other individuals, suggesting that strong neophilic tendency may lead to suboptimal performance at some stages of the problem-solving process. In addition, seasonal and environmental characteristics of location of origin appear to influence the rate of expression of individual traits central to problem solving. Overall, our analysis provides new insights into the traits associated with problem solving in invertebrates and highlights the presence of adaptive mechanisms that promote population-level changes in octopuses' behavioural traits.
Collapse
Affiliation(s)
- Andrea Dissegna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.); (C.C.)
| | - Luciana Borrelli
- Animal Physiology and Evolution Lab, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Cinzia Chiandetti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.); (C.C.)
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
5
|
Dong H, Li J, Wu Q, Jin Y. Confluence and convergence of Dscam and Pcdh cell-recognition codes. Trends Biochem Sci 2023; 48:1044-1057. [PMID: 37839971 DOI: 10.1016/j.tibs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The ability of neurites of the same neuron to avoid each other (self-avoidance) is a conserved feature in both invertebrates and vertebrates. The key to self-avoidance is the generation of a unique subset of cell-surface proteins in individual neurons engaging in isoform-specific homophilic interactions that drive neurite repulsion rather than adhesion. Among these cell-surface proteins are fly Dscam1 and vertebrate clustered protocadherins (cPcdhs), as well as the recently characterized shortened Dscam (sDscam) in the Chelicerata. Herein, we review recent advances in our understanding of how cPcdh, Dscam, and sDscam cell-surface recognition codes are expressed and translated into cellular functions essential for neural wiring.
Collapse
Affiliation(s)
- Haiyang Dong
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China
| | - Jinhuan Li
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Systems Medicine for Cancer, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongfeng Jin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, China; MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, ZJ310058, China.
| |
Collapse
|
6
|
Li J, Zheng X. Morphology, Histology, and Transcriptome Analysis of Gonadal Development in Octopus minor (Sasaki, 1920). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1043-1056. [PMID: 37878213 DOI: 10.1007/s10126-023-10258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Octopus minor is an economically important species, but little is known about the histological pattern and regulatory mechanisms during gonadal development. In this study, we investigated the annual changes in total body weight (TW), gonad somatic index (GSI), gonadal histological features, and transcriptome of O. minor. The results indicated that both females and males showed a similar TW trend. The GSI peaked in June in females, while it remained constant at around 3% in males. Nine and four histological stages were observed in ovaries and testes, respectively. Our field sampling results implied that O. minor might have overwintering periods for both eggs and larvae. Transcriptome analysis revealed that a total of 1095 and 2468 genes were significantly expressed during ovarian and testicular development, separately. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis displayed that 126 GO terms and 5 KEGG pathways were significantly enriched in the ovarian group of advanced vitellogenic oocytes vs vitellogenic oocytes (AVO vs VO). The pathways "Ribosomal", "Cell cycle", and "Progesterone-mediated oocyte maturation" were predicted to promote yolk deposition. Additionally, the testicular comparison group of spent vs mature (Spent vs Mature) showed significant enrichment in 674 GO terms and 13 KEGG pathways, suggesting that energy metabolism and cell repair pathways may be involved in the spermatogenesis process. This work revealed the development process of the gonads and shed light on the potential regulatory pathways of O. minor, providing novel insights and laying a molecular basis for artificial breeding.
Collapse
Affiliation(s)
- Jiahua Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|