2
|
Elliehausen CJ, Olszewski SS, Shult CG, Ailiani AR, Trautman ME, Babygirija R, Lamming DW, Hornberger TA, Minton DM, Konopka AR. Rapamycin does not compromise physical performance or muscle hypertrophy after PoWeR while intermittent rapamycin alleviates glucose disruptions by frequent rapamycin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642477. [PMID: 40161678 PMCID: PMC11952434 DOI: 10.1101/2025.03.10.642477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
An increasing number of physically active adults are taking the mTOR inhibitor rapamycin off label with the goal of extending healthspan. However, frequent rapamycin dosing disrupts metabolic health during sedentary conditions and abates the anabolic response to exercise. Intermittent once weekly rapamycin dosing minimizes many negative metabolic side effects of frequent rapamycin in sedentary mice. However, it remains unknown how different rapamycin dosing schedules impact metabolic, physical, and skeletal muscle adaptations to voluntary exercise training. Therefore, we tested the hypothesis that intermittent rapamycin (2mg/kg; 1x/week) would avoid detrimental effects on adaptations to 8 weeks of progressive weighted wheel running (PoWeR) in adult female mice (5-month-old) by evading the sustained inhibitory effects on mTOR signaling by more frequent dosing schedules (2mg/kg; 3x/week). Frequent but not intermittent rapamycin suppressed skeletal muscle mTORC1 signaling in PoWeR trained mice. PoWeR improved maximal exercise capacity, absolute grip strength, and myofiber hypertrophy with no differences between vehicle or rapamycin treated mice. Conversely, frequent and intermittent rapamycin treated mice had impaired glucose tolerance and insulin sensitivity compared to vehicle treated mice after PoWeR; however, intermittent rapamycin reduced the impact on glucose intolerance versus frequent rapamycin. Collectively, these data in adult female mice suggest that 1) rapamycin is largely compatible with the physical and skeletal muscle benefits of PoWeR and 2) the detrimental effects of rapamycin on body composition and glucose metabolism in the context of voluntary exercise may be reduced by intermittent dosing.
Collapse
|
3
|
Reader BF, Rosas L, Knopf BA, Liu Y, Alzate-Correa D, Bhat A, Carey A, Cuervo AM, Dayal S, Demarco RS, Elliehausen CJ, Englund DA, Hamilton HL, Johnston M, Kang P, Konopka AR, Lepola N, Presley CJ, Schafer MJ, Serrano J, Singer BD, Song MA, Stanford KI, Taylor J, Wei W, Yeh CY, Zhang L, Zhang L, Anderson RM, Bai H, Robbins PD, Lamming DW, Mihaylova MM, Rojas M, Mora AL. The Fifth Annual Symposium of the Midwest Aging Consortium. J Gerontol A Biol Sci Med Sci 2025; 80:glae296. [PMID: 39704343 PMCID: PMC11772560 DOI: 10.1093/gerona/glae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Indexed: 12/21/2024] Open
Abstract
As the healthcare burden caused by an increasingly aging population rapidly rises, a pressing need exists for innovative geroscience research that can elucidate aging mechanisms and precipitate the development of therapeutic interventions to support healthy aging. The Fifth Annual Midwest Aging Consortium Aging Research symposium, held from April 28 to 30, 2024, was hosted by The Ohio State University in Columbus, Ohio, and featured presentations from investigators across the Midwestern United States. This report summarizes the research presented at the symposium, whose topics included cellular senescence and the aging brain, metabolism and metabolic interventions, nutrition, redox mechanisms and biomarkers, and stress mechanisms. Abstract presentations and short talks highlighted early-stage and young investigators, whereas 2 keynote presentations anchored the symposium. Overall, this symposium showed the robustness of aging research in the Midwest and underscored the advantages of a collaborative approach to geroscience research.
Collapse
Affiliation(s)
- Brenda F Reader
- Division of Transplantation Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lorena Rosas
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bailey Anna Knopf
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Yang Liu
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Diego Alzate-Correa
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ajay Bhat
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna Carey
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rafael S Demarco
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Davis A Englund
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Haylee L Hamilton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Johnston
- Biomedical Sciences Department, University of North Dakota, Grand Forks, North Dakota, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Noah Lepola
- Departments of Molecular Genetics, Cancer Biology, and Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Carolyn J Presley
- Division of Medical Oncology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joan Serrano
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Kristin I Stanford
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jackson Taylor
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rozalyn M Anderson
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Mauricio Rojas
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ana L Mora
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Austad SN, Smith JR, Hoffman JM. Amino acid restriction, aging, and longevity: an update. FRONTIERS IN AGING 2024; 5:1393216. [PMID: 38757144 PMCID: PMC11096585 DOI: 10.3389/fragi.2024.1393216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Various so-called dietary restriction paradigms have shown promise for extending health and life. All such paradigms rely on ad libitum (hereafter ad lib) feeding, something virtually never employed in animals whose long-term health we value, either as a control or, except for food restriction itself, for both control and treatment arms of the experiment. Even though the mechanism(s) remain only vaguely understood, compared to ad lib-fed animals a host of dietary manipulations, including calorie restriction, low protein, methionine, branched-chain amino acids, and even low isoleucine have demonstrable health benefits in laboratory species in a standard laboratory environment. The remaining challenge is to determine whether these health benefits remain in more realistic environments and how they interact with other health enhancing treatments such as exercise or emerging geroprotective drugs. Here we review the current state of the field of amino acid restriction on longevity of animal models and evaluate its translational potential.
Collapse
Affiliation(s)
- S. N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. R. Smith
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. M. Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Dubey SK, Dubey R, Kleinman ME. Unraveling Histone Loss in Aging and Senescence. Cells 2024; 13:320. [PMID: 38391933 PMCID: PMC10886805 DOI: 10.3390/cells13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
As the global population experiences a notable surge in aging demographics, the need to understand the intricate molecular pathways exacerbated by age-related stresses, including epigenetic dysregulation, becomes a priority. Epigenetic mechanisms play a critical role in driving age-related diseases through altered gene expression, genomic instability, and irregular chromatin remodeling. In this review, we focus on histones, a central component of the epigenome, and consolidate the key findings of histone loss and genome-wide redistribution as fundamental processes contributing to aging and senescence. The review provides insights into novel histone expression profiles, nucleosome occupancy, disruptions in higher-order chromatin architecture, and the emergence of noncanonical histone variants in the aging cellular landscape. Furthermore, we explore the current state of our understanding of the molecular mechanisms of histone deficiency in aging cells. Specific emphasis is placed on highlighting histone degradation pathways in the cell and studies that have explored potential strategies to mitigate histone loss or restore histone levels in aging cells. Finally, in addressing future perspectives, the insights gained from this review hold profound implications for advancing strategies that actively intervene in modulating histone expression profiles in the context of cellular aging and identifying potential therapeutic targets for alleviating a multitude of age-related diseases.
Collapse
Affiliation(s)
| | | | - Mark Ellsworth Kleinman
- Department of Surgery, East Tennessee State University, Johnson City, TN 37614, USA; (S.K.D.); (R.D.)
| |
Collapse
|