1
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
2
|
Xiang J, Gong W, Liu J, Zhang H, Li M, Wang R, Lv Y, Sun P. Identification of DLL3-related genes affecting the prognosis of patients with colon adenocarcinoma. Front Genet 2023; 14:1098190. [PMID: 37274780 PMCID: PMC10233108 DOI: 10.3389/fgene.2023.1098190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/24/2023] [Indexed: 06/07/2023] Open
Abstract
Background: Delta-like ligand 3 (DLL3) is one of the NOTCH family of ligands, which plays a pro- or anti-carcinogenic role in some cancers. But the role of DLL3 in colon adenocarcinoma (COAD) has not been studied in depth. Materials and methods: First, we used Kaplan-Meier (K-M) curve to evaluate the effect of DLL3 on the prognosis of COAD in The Cancer Genome Atlas (TCGA), which was further validated in clinical samples for immunohistochemistry. Then we screened for differentially expressed genes (DEGs) of DLL3 by analyzing datasets of COAD samples from Gene Expression Omnibus (GEO) and TCGA. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and Gene Set Enrichment Analysis (GSEA) were conducted to explore the underlying mechanisms of DLL3-related in the development and prognosis of COAD. On the basis of DLL3-related signature genes, a prognostic model and a nomogram were constructed. Finally, CIBERSORT was applied to assess the proportion of immune cell types in COAD sample. Results: Survival analysis showed a significant difference in overall survival between high- and low-expression group (p = 0.0092), with COAD patients in the high-group having poorer 5-year survival rate. Gene functional enrichment analysis revealed that DLL3-related DEGs were mainly enriched in tumor- and immunity-related signaling pathways, containing AMPK pathway and mitophagy-animal. The comparison of COAD tumor and normal, DLL3 high- and low-expression groups by GSEA found that AMPK signaling pathway and mitophagy-animal were inhibited. Nomogram constructed from DLL3-related signature genes had a good predictive effect on the prognosis of COAD. We found the highest correlation between DLL3 and interstitial dendritic cell (iDC), natural killer (NK) cell and Interstitial dendritic cell (Tem). DLL3 was also revealed to be diagnostic for COAD. In clinical sample, we identified higher DLL3 expression in colon cancer tissue than in adjacent control (p < 0.0001) and in metastasis than in primary lesion (p = 0.0056). DLL3 expression was associated with stage and high DLL3 expression was observed to predict poorer overall survival (p = 0.004). Conclusion: It suggested that DLL3 may offer prognostic value and therapeutic potential for individualized treatment of COAD, and that it may has a diagnostic role in COAD.
Collapse
Affiliation(s)
- Jinyu Xiang
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Wenjing Gong
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Jiannan Liu
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Huijuan Zhang
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Ming Li
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Rujian Wang
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Yaodong Lv
- Departments of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| | - Ping Sun
- Departments of Oncology, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, China
| |
Collapse
|
3
|
Dao Trong P, Kilian S, Jesser J, Reuss D, Aras FK, Von Deimling A, Herold-Mende C, Unterberg A, Jungk C. Risk Estimation in Non-Enhancing Glioma: Introducing a Clinical Score. Cancers (Basel) 2023; 15:cancers15092503. [PMID: 37173969 PMCID: PMC10177456 DOI: 10.3390/cancers15092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The preoperative grading of non-enhancing glioma (NEG) remains challenging. Herein, we analyzed clinical and magnetic resonance imaging (MRI) features to predict malignancy in NEG according to the 2021 WHO classification and developed a clinical score, facilitating risk estimation. A discovery cohort (2012-2017, n = 72) was analyzed for MRI and clinical features (T2/FLAIR mismatch sign, subventricular zone (SVZ) involvement, tumor volume, growth rate, age, Pignatti score, and symptoms). Despite a "low-grade" appearance on MRI, 81% of patients were classified as WHO grade 3 or 4. Malignancy was then stratified by: (1) WHO grade (WHO grade 2 vs. WHO grade 3 + 4) and (2) molecular criteria (IDHmut WHO grade 2 + 3 vs. IDHwt glioblastoma + IDHmut astrocytoma WHO grade 4). Age, Pignatti score, SVZ involvement, and T2/FLAIR mismatch sign predicted malignancy only when considering molecular criteria, including IDH mutation and CDKN2A/B deletion status. A multivariate regression confirmed age and T2/FLAIR mismatch sign as independent predictors (p = 0.0009; p = 0.011). A "risk estimation in non-enhancing glioma" (RENEG) score was derived and tested in a validation cohort (2018-2019, n = 40), yielding a higher predictive value than the Pignatti score or the T2/FLAIR mismatch sign (AUC of receiver operating characteristics = 0.89). The prevalence of malignant glioma was high in this series of NEGs, supporting an upfront diagnosis and treatment approach. A clinical score with robust test performance was developed that identifies patients at risk for malignancy.
Collapse
Affiliation(s)
- Philip Dao Trong
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Samuel Kilian
- Institute of Medical Biometry, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - David Reuss
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Fuat Kaan Aras
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Von Deimling
- Division of Neuropathology, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), CCU Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Khan AS, Parvez N, Ahsan T, Shoily SS, Sajib AA. A comprehensive in silico exploration of the impacts of missense variants on two different conformations of human pirin protein. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:225. [PMID: 35967515 PMCID: PMC9362109 DOI: 10.1186/s42269-022-00917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pirin, a member of the cupin superfamily, is an iron-binding non-heme protein. It acts as a coregulator of several transcription factors, especially the members of NFκB transcription factor family. Based on the redox state of its iron cofactor, it can assume two different conformations and thereby act as a redox sensor inside the nucleus. Previous studies suggested that pirin may be associated with cancer, inflammatory diseases as well as COVID-19 severities. Hence, it is important to explore the pathogenicity of its missense variants. In this study, we used a number of in silico tools to investigate the effects of missense variants of pirin on its structure, stability, metal cofactor binding affinity and interactions with partner proteins. In addition, we used protein dynamics simulation to elucidate the effects of selected variants on its dynamics. Furthermore, we calculated the frequencies of haplotypes containing pirin missense variants across five major super-populations (African, Admixed American, East Asian, European and South Asian). RESULTS Among a total of 153 missense variants of pirin, 45 were uniformly predicted to be pathogenic. Of these, seven variants can be considered for further experimental studies. Variants R59P and L116P were predicted to significantly destabilize and damage pirin structure, substantially reduce its affinity to its binding partners and alter pirin residue fluctuation profile via changing the flexibility of several key residues. Additionally, variants R59Q, F78V, G98D, V151D and L220P were found to impact pirin structure and function in multiple ways. As no haplotype was identified to be harboring more than one missense variant, further interrogation of the individual effects of these seven missense variants is highly recommended. CONCLUSIONS Pirin is involved in the transcriptional regulation of several genes and can play an important role in inflammatory responses. The variants predicted to be pathogenic in this study may thus contribute to a better understanding of the underlying molecular mechanisms of various inflammatory diseases. Future studies should be focused on clarifying if any of these variants can be used as disease biomarkers. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s42269-022-00917-7.
Collapse
Affiliation(s)
- Auroni Semonti Khan
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, 1100 Bangladesh
| | - Nahid Parvez
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, 1100 Bangladesh
| | - Tamim Ahsan
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka, 1349 Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
5
|
Adeberg S, Knoll M, Koelsche C, Bernhardt D, Schrimpf D, Sahm F, König L, Harrabi SB, Hörner-Rieber J, Verma V, Bewerunge-Hudler M, Unterberg A, Sturm D, Jungk C, Herold-Mende C, Wick W, von Deimling A, Debus J, Rieken S, Abdollahi A. DNA-methylome-assisted classification of patients with poor prognostic subventricular zone associated IDH-wildtype glioblastoma. Acta Neuropathol 2022; 144:129-142. [PMID: 35660939 PMCID: PMC9217840 DOI: 10.1007/s00401-022-02443-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) derived from the “stem cell” rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35–4.58], p = 0.004 vs. 1.83 [1.0–3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81–5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24–7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM– and gains on chromosome 19 in SVZM– tumors. SVZM– tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Sebastian Adeberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Denise Bernhardt
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, TUM, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Laila König
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Semi Ben Harrabi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Vivek Verma
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center Houston, Houston, TX, USA
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Angelika Lautenschläger Children's Hospital, University Medical Center for Children and Adolescents, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Christine Jungk
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christel Herold-Mende
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neurooncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juergen Debus
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Rieken
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), UKHD and DKFZ, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Ranallo N, Bocchini M, Menis J, Pilotto S, Severi S, Liverani C, Bongiovanni A. Delta-like ligand 3 (DLL3): an attractive actionable target in tumors with neuroendocrine origin. Expert Rev Anticancer Ther 2022; 22:597-603. [PMID: 35477310 DOI: 10.1080/14737140.2022.2071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Neuroendocrine carcinomas are very aggressive tumors with few treatment options. DLL3 seems to be an optimal target for therapeutic intervention, as it is expressed mainly on the membrane of tumor cells with neuroendocrine origin. AREAS COVERED In this article, we outline the preclinical and clinical studies published in the last years on DLL3 in neuroendocrine neoplasm, above all of lung origin. Furthermore, we review the current literature on the interaction between DLL3 and the tumor microenvironment. EXPERT OPINION Several DLL3-targeting strategies have been proposed in the last years with mixed results. Understanding the influence of DLL3 on the tumor (immune) microenvironment and developing adoptive therapies directed against this optimal target might represent the key strategy. Building on the clinical data obtained so far, future trials on in vivo diagnostic tools for predictive purpose and new specific therapies are needed.
Collapse
Affiliation(s)
- Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Martine Bocchini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Sara Pilotto
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Bioscience Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
7
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
8
|
DLL3 expression and methylation are associated with lower-grade glioma immune microenvironment and prognosis. Genomics 2022; 114:110289. [DOI: 10.1016/j.ygeno.2022.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
|
9
|
Ye JB, Wen JJ, Wu DL, Hu BX, Luo MQ, Lin YQ, Ning YS, Li Y. Elevated DLL3 in stomach cancer by tumor-associated macrophages enhances cancer-cell proliferation and cytokine secretion of macrophages. Gastroenterol Rep (Oxf) 2021; 10:goab052. [PMID: 35382168 PMCID: PMC8973010 DOI: 10.1093/gastro/goab052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/13/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The notch signal pathway is important in the development of both tumor-associated macrophages (TAMs) and stomach cancer, but how Notch signaling affects TAMs in stomach cancer is barely understood.
Methods
The expressions of Notch1, Notch2, Notch3, Notch4, hes family bHLH transcription factor 1 (Hes1), and delta-like canonical Notch ligand 3 (DLL3) were detected by Western blot and the expressions of interleukin (IL)-10, IL-12, and IL1-β were detected using enzyme-linked immunosorbent assay after the co-culture of macrophages and stomach-cancer cells. The proliferation and migration of cancer cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and scratch assay, respectively, and the cell cycle was detected using Annexin V/propidium iodide assay. The protein interactions with DLL3 were detected using co-immunoprecipitation and mass spectrometry.
Results
The co-culture of macrophages and stomach-cancer cells MKN45 and BGC823 could enhance cell proliferation accompanied by the activation of Notch1/Notch2 signaling and upregulation of DLL3. Notch signaling gamma-secretase inhibitor (DAPT) blocked this process. The overexpression of DLL3 in stomach-cancer cells could promote the proliferation of cancer cells, enhance the activation of Notch1/Notch2 signaling, induce the expression of IL-33, lead to the degradation of galectin-3–binding protein (LG3BP) and heat shock cognate 71 kDa protein (HSPA8), and result in elevated IL-1β, IL-12, and IL-10 secretion by macrophages. Higher expression of DLL3 or IL-33 could lead to a lower survival rate based on University of California, Santa Cruz Xena Functional Genomics Explorer and The Cancer Genome Atlas data set.
Conclusions
This is evidence that DLL3 regulates macrophages in stomach cancer, suggesting that DLL3 may be a novel and potential target for stomach-cancer therapy.
Collapse
Affiliation(s)
- Jian-Bin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jun-Jie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Dan-Lin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bing-Xin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mei-Qun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yan-Qing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yun-Shan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Service Union Medicine, Southern Medical University, Zhuhai, Guangdong, P.R. China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
10
|
Reséndiz-Castillo LJ, Minjarez B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:781-793. [PMID: 34810139 DOI: 10.1016/j.nrleng.2019.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/08/2019] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.
Collapse
Affiliation(s)
- L J Reséndiz-Castillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - B Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - M A Hernández-Sapiéns
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
11
|
HSD17B6 downregulation predicts poor prognosis and drives tumor progression via activating Akt signaling pathway in lung adenocarcinoma. Cell Death Discov 2021; 7:341. [PMID: 34750355 PMCID: PMC8576029 DOI: 10.1038/s41420-021-00737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Lung adenocarcinoma is one of the most frequent tumor subtypes, involving changes in a variety of oncogenes and tumor suppressor genes. Hydroxysteroid 17-Beta Dehydrogenase 6 (HSD17B6) could synthetize dihydrotestosterone, abnormal levels of which are associated with progression of multiple tumors. Previously, we showed that HSD17B6 inhibits malignant progression of hepatocellular carcinoma. However, the mechanisms underlying inhibiting tumor development by HSD17B6 are not clear. Moreover, its role in lung adenocarcinoma (LUAD) is yet unknown. Here, we investigated its expression profile and biological functions in LUAD. Analysis of data from the LUAD datasets of TCGA, CPTAC, Oncomine, and GEO revealed that HSD17B6 mRNA and protein expression was frequently lower in LUAD than in non-neoplastic lung tissues, and its low expression correlated significantly with advanced tumor stage, large tumor size, poor tumor differentiation, high tumor grade, smoking, and poor prognosis in LUAD. In addition, its expression was negatively regulated by miR-31-5p in LUAD. HSD17B6 suppressed LUAD cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and radioresistance. Furthermore, HSD17B6 overexpression in LUAD cell lines enhanced PTEN expression and inhibited AKT phosphorylation, inactivating downstream oncogenes like GSK3β, β-catenin, and Cyclin-D independent of dihydrotestosterone, revealing an underlying antitumor mechanism of HSD17B6 in LUAD. Our findings indicate that HSD17B6 may function as a tumor suppressor in LUAD and could be a promising prognostic indicator for LUAD patients, especially for those receiving radiotherapy.
Collapse
|
12
|
Glioblastomas within the Subventricular Zone Are Region-Specific Enriched for Mesenchymal Transition Markers: An Intratumoral Gene Expression Analysis. Cancers (Basel) 2021; 13:cancers13153764. [PMID: 34359668 PMCID: PMC8345101 DOI: 10.3390/cancers13153764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. In this study, we demonstrate that patient-derived glioblastoma samples from within the SVZ region show increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling as compared to glioblastoma samples from the same patient from outside the SVZ. These results suggest that intratumoral alterations in oncogenic signaling could be mediated by the SVZ microenvironment. Our findings offer rationale for specific targeting of the SVZ in the development of glioblastoma therapy. Abstract Background: Involvement of the subventricular zone (SVZ) in glioblastoma is associated with poor prognosis and is associated with specific tumor-biological characteristics. The SVZ microenvironment can influence gene expression in glioblastoma cells in preclinical models. We aimed to investigate whether the SVZ microenvironment has any influence on intratumoral gene expression patterns in glioblastoma patients. Methods: The publicly available Ivy Glioblastoma database contains clinical, radiological and whole exome sequencing data from multiple regions from resected glioblastomas. SVZ involvement of the various tissue samples was evaluated on MRI scans. In tumors that contacted the SVZ, we performed gene expression analyses and gene set enrichment analyses to compare gene (set) expression in tumor regions within the SVZ to tumor regions outside the SVZ. We also compared these samples to glioblastomas that did not contact the SVZ. Results: Within glioblastomas that contacted the SVZ, tissue samples within the SVZ showed enrichment of gene sets involved in (epithelial-)mesenchymal transition, NF-κB and STAT3 signaling, angiogenesis and hypoxia, compared to the samples outside of the SVZ region from the same tumors (p < 0.05, FDR < 0.25). Comparison of glioblastoma samples within the SVZ region to samples from tumors that did not contact the SVZ yielded similar results. In contrast, we observed no differences when comparing the samples outside of the SVZ from SVZ-contacting glioblastomas with samples from glioblastomas that did not contact the SVZ at all. Conclusion: Glioblastoma samples in the SVZ region are enriched for increased (epithelial-)mesenchymal transition and angiogenesis/hypoxia signaling, possibly mediated by the SVZ microenvironment.
Collapse
|
13
|
Li M, Ren X, Dong G, Wang J, Jiang H, Yang C, Zhao X, Zhu Q, Cui Y, Yu K, Lin S. Distinguishing Pseudoprogression From True Early Progression in Isocitrate Dehydrogenase Wild-Type Glioblastoma by Interrogating Clinical, Radiological, and Molecular Features. Front Oncol 2021; 11:627325. [PMID: 33959496 PMCID: PMC8093388 DOI: 10.3389/fonc.2021.627325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Pseudoprogression (PsP) mimics true early progression (TeP) in conventional imaging, which poses a diagnostic challenge in glioblastoma (GBM) patients who undergo standard concurrent chemoradiation (CCRT). This study aimed to investigate whether perioperative markers could distinguish and predict PsP from TeP in de novo isocitrate dehydrogenase (IDH) wild-type GBM patients. Methods: New or progressive gadolinium-enhancing lesions that emerged within 12 weeks after CCRT were defined as early progression. Lesions that remained stable or spontaneously regressed were classified as PsP, otherwise persistently enlarged as TeP. Clinical, radiological, and molecular information were collected for further analysis. Patients in the early progression subgroup were divided into derivation and validation sets (7:3, according to operation date). Results: Among 234 consecutive cases enrolled in this retrospective study, the incidences of PsP, TeP, and neither patterns of progression (nP) were 26.1% (61/234), 37.6% (88/234), and 36.3% (85/234), respectively. In the early progression subgroup, univariate analysis demonstrated female (OR: 2.161, P = 0.026), gross total removal (GTR) of the tumor (OR: 6.571, P < 001), located in the frontal lobe (OR: 2.561, P = 0.008), non-subventricular zone (SVZ) infringement (OR: 10.937, P < 0.001), and methylated O-6-methylguanine-DNA methyltransferase (MGMT) promoter (mMGMTp) (OR: 9.737, P < 0.001) were correlated with PsP, while GTR, non-SVZ infringement, and mMGMTp were further validated in multivariate analysis. Integrating quantitative MGMTp methylation levels from pyrosequencing, GTR, and non-SVZ infringement showed the best discriminative ability in the random forest model for derivation and validation set (AUC: 0.937, 0.911, respectively). Furthermore, a nomogram could effectively evaluate the importance of those markers in developing PsP (C-index: 0.916) and had a well-fitted calibration curve. Conclusion: Integrating those clinical, radiological, and molecular features provided a novel and robust method to distinguish PsP from TeP, which was crucial for subsequent clinical decision making, clinical trial enrollment, and prognostic assessment. By in-depth interrogation of perioperative markers, clinicians could distinguish PsP from TeP independent from advanced imaging.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Center of Brain Tumor, Institute for Brain Disorders, Beijing, China
| |
Collapse
|
14
|
Kalita-de Croft P, Sadeghi Rad H, Gasper H, O'Byrne K, Lakhani SR, Kulasinghe A. Spatial profiling technologies and applications for brain cancers. Expert Rev Mol Diagn 2021; 21:323-332. [PMID: 33685321 DOI: 10.1080/14737159.2021.1900735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Malignant primary and secondary brain tumors pose a major health challenge, and the incidence of these tumors is rising. The brain tumor microenvironment (TME) is highly complex and thought to impact treatment resistance and failure. To enable a greater understanding of the milieu of cells in the brain TME, advances in imaging and sequential profiling of proteins/mRNA have given rise to the field of spatial transcriptomics. These technologies provide a greater depth of understanding of the tissue architecture, cellular and spatial profiles, including cellular activation status, which may provide insights into effective therapies for brain cancers. AREAS COVERED In this review, we provide an overview of spatial profiling technologies at the forefront in the field and describe the applications for brain cancer. EXPERT OPINION Brain tumors are often resistant to treatment, and display both an immunosuppressive and heterogeneous tumor microenvironment. Next-generation imaging and multi-omics technologies are providing a tool for intricately characterizing their tissue biology. This information will aid in the design of effective therapies and begin to provide an understanding of therapy resistance.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Habib Sadeghi Rad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Harry Gasper
- Department of Medical Oncology, Royal Brisbane and Women's Hospital, Herston, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Ken O'Byrne
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University ofTechnology, Woolloongabba, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia.,Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital Herston, Queensland, Australia
| | - Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University ofTechnology, Woolloongabba, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Furuta T, Sugita Y, Komaki S, Ohshima K, Morioka M, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T, Nakada M. The Multipotential of Leucine-Rich α-2 Glycoprotein 1 as a Clinicopathological Biomarker of Glioblastoma. J Neuropathol Exp Neurol 2021; 79:873-879. [PMID: 32647893 DOI: 10.1093/jnen/nlaa058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Leucine-rich α-2 glycoprotein 1 (LRG1) is a diagnostic marker candidate for glioblastoma. Although LRG1 has been associated with angiogenesis, it has been suggested that its biomarker role differs depending on the type of tumor. In this study, a clinicopathological examination of LRG1's role as a biomarker for glioblastoma was performed. We used tumor tissues of 155 cases with diffuse gliomas (27 astrocytomas, 14 oligodendrogliomas, 114 glioblastomas). The immunohistochemical LRG1 intensity scoring was classified into 2 groups: low expression and high expression. Mutations of IDH1, IDH2, and TERT promoter were analyzed through the Sanger method. We examined the relationship between LRG1 expression level in glioblastoma and clinical parameters, such as age, preoperative Karnofsky performance status, tumor location, extent of resection, O6-methylguanine DNA methyltransferase promoter, and prognosis. LRG1 high expression rate was 41.2% in glioblastoma, 3.7% in astrocytoma, and 21.4% in oligodendroglioma. Glioblastoma showed a significantly higher LRG1 expression than lower-grade glioma (p = 0.0003). High expression of LRG1 was an independent favorable prognostic factor (p = 0.019) in IDH-wildtype glioblastoma and correlated with gross total resection (p = 0.002) and the tumor location on nonsubventricular zone (p = 0.00007). LRG1 demonstrated multiple potential as a diagnostic, prognostic, and regional biomarker for glioblastoma.
Collapse
Affiliation(s)
- Takuya Furuta
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yasuo Sugita
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Kurume University School of Medicine; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Satoru Komaki
- Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Koichi Ohshima
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Motohiro Morioka
- Department of Neurosurgery; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai.,Graduate School of Biomedical Sciences, Tokushima University, Tokushima
| | - Sumio Ohtsuki
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai
| | - Mitsutoshi Nakada
- From the Department of Pathology; Department of Neuropathology, St. Mary's Hospita, Kurume, Japan.,Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
16
|
Role of Pirin, an Oxidative Stress Sensor Protein, in Epithelial Carcinogenesis. BIOLOGY 2021; 10:biology10020116. [PMID: 33557375 PMCID: PMC7915911 DOI: 10.3390/biology10020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Pirin is an oxidative stress (OS) sensor belonging to the functionally diverse cupin superfamily of proteins. Pirin is a suggested quercetinase and transcriptional activator of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Its biological role in cancer development remains a novel area of study. This review presents accumulating evidence on the contribution of Pirin in epithelial cancers, involved signaling pathways, and as a suggested therapeutic target. Finally, we propose a model in which Pirin is upregulated by physical, chemical or biological factors involved in OS and cancer development.
Collapse
|
17
|
Chiang GC, Pisapia DJ, Liechty B, Magge R, Ramakrishna R, Knisely J, Schwartz TH, Fine HA, Kovanlikaya I. The Prognostic Value of MRI Subventricular Zone Involvement and Tumor Genetics in Lower Grade Gliomas. J Neuroimaging 2020; 30:901-909. [PMID: 32721076 DOI: 10.1111/jon.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/20/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Glioblastomas (GBMs) that involve the subventricular zone (SVZ) have a poor prognosis, possibly due to recruitment of neural stem cells. The purpose of this study was to evaluate whether SVZ involvement by lower grade gliomas (LGG), WHO grade II and III, similarly predicts poorer outcomes. We further assessed whether tumor genetics and cellularity are associated with SVZ involvement and outcomes. METHODS Forty-five consecutive LGG patients with preoperative imaging and next generation sequencing were included in this study. Regional SVZ involvement and whole tumor apparent diffusion coefficient (ADC) values, as a measure of cellularity, were assessed on magnetic resonance imaging. Progression was determined by RANO criteria. Kaplan-Meier curves and Cox regression analyses were used to determine the hazard ratios (HR) for progression and survival. RESULTS Frontal, parietal, temporal, and overall SVZ involvement and ADC values were not associated with progression or survival (P ≥ .05). However, occipital SVZ involvement, seen in two patients, was associated with a higher risk of tumor progression (HR = 6.6, P = .016) and death (HR = 31.5, P = .015), CDKN2A/B mutations (P = .03), and lower ADC histogram values at the 5th (P = .026) and 10th percentiles (P = .046). Isocitrate dehydrogenase, phosphatase and tensin homolog, epidermal growth factor receptor, and cyclin-dependent kinase 4 mutations were also prognostic (P ≤ .05). CONCLUSIONS Unlike in GBM, overall SVZ involvement was not found to strongly predict poor prognosis in LGGs. However, occipital SVZ involvement, though uncommon, was prognostic and found to be associated with CDKN2A/B mutations and tumor hypercellularity. Further investigation into these molecular mechanisms underlying occipital SVZ involvement in larger cohorts is warranted.
Collapse
Affiliation(s)
- Gloria C Chiang
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Benjamin Liechty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Rohan Ramakrishna
- Department of Neurosurgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Jonathan Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Howard A Fine
- Department of Neurology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| | - Ilhami Kovanlikaya
- Department of Radiology, Division of Neuroradiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, NY
| |
Collapse
|
18
|
Gan C, Pierscianek D, El Hindy N, Ahmadipour Y, Keyvani K, Sure U, Zhu Y. The predominant expression of cancer stem cell marker ALDH1A3 in tumor infiltrative area is associated with shorter overall survival of human glioblastoma. BMC Cancer 2020; 20:672. [PMID: 32680476 PMCID: PMC7368792 DOI: 10.1186/s12885-020-07153-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background ALDH1A3 is a cancer stem cell marker in neoplasms including glioblastoma (GBM). However, the comprehensive role of ALDH1A3 in GBM remains unclear. This study attempted to investigate the expression of ALDH1A3 in human GBM tissues and its association with clinical parameters. Methods Thirty primary GBM and 9 control were enrolled in this study. ALDH1A3 mRNA and protein expression levels were detected by RT2-PCR and western blot, respectively. Immunohistochemistry and immunofluorescence staining were performed to evaluate the regional and cellular expression manner of ALDH1A3. The association of ALDH1A3 expression with multiple clinical parameters was analyzed. Results ALDH1A3 protein level, but not mRNA level, in a subgroup of GBM was significantly higher than that in the control group. ALDH1A3 immunoreactivity was detected heterogeneously in individual GBMs. Fifteen of 30 cases showed a positive of ALDH1A3 immunoreactivity which was predominantly observed in the tumor infiltrative area (TI). Double immunofluorescence staining revealed a co-localization of ALDH1A3 with GFAP in glial-shaped cells and in tumor cells. ALDH1A3 immunoreactivity was often merged with CD44, but not with CD68. Moreover, ALDH1A3 expression was positively associated with the tumor edema grade and inversely with overall survival (OS) (median OS: 16 months vs 10 months), but with neither MGMT promoter methylation status nor Ki67 index in GBM. An upregulation of ALDH1A3 was accompanied by a reduced expression of STAT3β and p-STAT3β. Conclusions Inter- and intra-tumoral heterogeneous expression of ALDH1A3 was exhibited in GBMs. A high immunoreactivity of ALDH1A3 in tumor infiltrative area was associated with shorter OS, especially in patients with MGMT promoter methylation. Our findings propose ALDH1A3 not only as a predictive biomarker but also as a potential target for personalized therapy of GBM.
Collapse
Affiliation(s)
- Chao Gan
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Present Address: Department of Spine- and Peripheral Nerve-Surgery, St. Christophorus 625 Hospital, Werne, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
19
|
Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther 2020; 13:3881-3901. [PMID: 32440154 PMCID: PMC7213894 DOI: 10.2147/ott.s244860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Delta-like ligands (DLLs) control Notch signaling. DLL1, DLL3 and DLL4 are frequently deregulated in cancer and influence tumor growth, the tumor vasculature and tumor immunity, which play different roles in cancer progression. DLLs have attracted intense research interest as anti-cancer therapeutics. In this review, we discuss the role of DLLs in cancer and summarize the emerging DLL-relevant targeting methods to aid future studies.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
20
|
Reséndiz-Castillo LJ, Minjarez-Vega B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. Neurologia 2020; 37:S0213-4853(19)30137-9. [PMID: 31959491 DOI: 10.1016/j.nrl.2019.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/14/2019] [Accepted: 07/08/2019] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.
Collapse
Affiliation(s)
- L J Reséndiz-Castillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - B Minjarez-Vega
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, México
| | - E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - M A Hernández-Sapiéns
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México.
| |
Collapse
|
21
|
Berendsen S, van Bodegraven E, Seute T, Spliet WGM, Geurts M, Hendrikse J, Schoysman L, Huiszoon WB, Varkila M, Rouss S, Bell EH, Kroonen J, Chakravarti A, Bours V, Snijders TJ, Robe PA. Adverse prognosis of glioblastoma contacting the subventricular zone: Biological correlates. PLoS One 2019; 14:e0222717. [PMID: 31603915 PMCID: PMC6788733 DOI: 10.1371/journal.pone.0222717] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The subventricular zone (SVZ) in the brain is associated with gliomagenesis and resistance to treatment in glioblastoma. In this study, we investigate the prognostic role and biological characteristics of subventricular zone (SVZ) involvement in glioblastoma. METHODS We analyzed T1-weighted, gadolinium-enhanced MR images of a retrospective cohort of 647 primary glioblastoma patients diagnosed between 2005-2013, and performed a multivariable Cox regression analysis to adjust the prognostic effect of SVZ involvement for clinical patient- and tumor-related factors. Protein expression patterns of a.o. markers of neural stem cellness (CD133 and GFAP-δ) and (epithelial-) mesenchymal transition (NF-κB, C/EBP-β and STAT3) were determined with immunohistochemistry on tissue microarrays containing 220 of the tumors. Molecular classification and mRNA expression-based gene set enrichment analyses, miRNA expression and SNP copy number analyses were performed on fresh frozen tissue obtained from 76 tumors. Confirmatory analyses were performed on glioblastoma TCGA/TCIA data. RESULTS Involvement of the SVZ was a significant adverse prognostic factor in glioblastoma, independent of age, KPS, surgery type and postoperative treatment. Tumor volume and postoperative complications did not explain this prognostic effect. SVZ contact was associated with increased nuclear expression of the (epithelial-) mesenchymal transition markers C/EBP-β and phospho-STAT3. SVZ contact was not associated with molecular subtype, distinct gene expression patterns, or markers of stem cellness. Our main findings were confirmed in a cohort of 229 TCGA/TCIA glioblastomas. CONCLUSION In conclusion, involvement of the SVZ is an independent prognostic factor in glioblastoma, and associates with increased expression of key markers of (epithelial-) mesenchymal transformation, but does not correlate with stem cellness, molecular subtype, or specific (mi)RNA expression patterns.
Collapse
Affiliation(s)
- Sharon Berendsen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Emma van Bodegraven
- UMC Utrecht Brain Center, Department of Translational Neuroscience, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Tatjana Seute
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Wim G. M. Spliet
- Department of Pathology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Marjolein Geurts
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Laurent Schoysman
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
- Department of Radiology, Liège University Hospital, Liège, Belgium
| | - Willemijn B. Huiszoon
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Meri Varkila
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Soufyan Rouss
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Erica H. Bell
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Jérôme Kroonen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
| | - Arnab Chakravarti
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
| | - Tom J. Snijders
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
| | - Pierre A. Robe
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center of Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, GIGA Research Center, Liège University Hospital, Liège, Belgium
- Department of Radiation Oncology, Wexner Medical Center, James Cancer Center, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
22
|
Deluche E, Bessette B, Durand S, Caire F, Rigau V, Robert S, Chaunavel A, Forestier L, Labrousse F, Jauberteau MO, Durand K, Lalloué F. CHI3L1, NTRK2, 1p/19q and IDH Status Predicts Prognosis in Glioma. Cancers (Basel) 2019; 11:cancers11040544. [PMID: 30991699 PMCID: PMC6521129 DOI: 10.3390/cancers11040544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to identify relevant biomarkers for the prognosis of glioma considering current molecular changes such as IDH mutation and 1p19q deletion. Gene expression profiling was performed using the TaqMan Low Density Array and hierarchical clustering using 96 selected genes in 64 patients with newly diagnosed glioma. The expression dataset was validated on a large independent cohort from The Cancer Genome Atlas (TCGA) database. A differential expression panel of 26 genes discriminated two prognostic groups regardless of grade and molecular groups of tumors: Patients having a poor prognosis with a median overall survival (OS) of 23.0 ± 9.6 months (group A) and patients having a good prognosis with a median OS of 115.0 ± 6.6 months (group B) (p = 0.007). Hierarchical clustering of the glioma TCGA cohort supported the prognostic value of these 26 genes (p < 0.0001). Among these genes, CHI3L1 and NTRK2 were identified as factors that can be associated with IDH status and 1p/19q co-deletion to distinguish between prognostic groups of glioma from the TCGA cohort. Therefore, CHI3L1 associated with NTRK2 seemed to be able to provide new information on glioma prognosis.
Collapse
Affiliation(s)
- Elise Deluche
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Medical Oncology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Barbara Bessette
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
| | - Stephanie Durand
- Bioinformatics Team, BISCEM Platform, CBRS, University of Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France.
- EA7500 PEREINE, University of Limoges, 123 av. Albert Thomas, 87060 Limoges, France.
| | - François Caire
- Department of Neurosurgery, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Valérie Rigau
- Department of Neuropathology and INSERM U1051, Hospital Saint Eloi-Gui de Chauliac, 80 av. Augustin Fliche, 34090 Montpellier, France.
| | - Sandrine Robert
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Alain Chaunavel
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Lionel Forestier
- Bioinformatics Team, BISCEM Platform, CBRS, University of Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France.
| | - François Labrousse
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Marie-Odile Jauberteau
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Immunology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Karine Durand
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
- Department of Pathology, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges, France.
| | - Fabrice Lalloué
- EA3842 CAPTuR, Faculty of Medicine, University of Limoges, 2 Rue du Docteur Marcland, 87025 Limoges, France.
| |
Collapse
|
23
|
Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 2019; 11:cancers11030292. [PMID: 30832246 PMCID: PMC6468848 DOI: 10.3390/cancers11030292] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1–4) and five ligands (Dll1-3–4, Jagged1–2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma. Glioblastoma remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to Glioblastoma tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to Glioblastoma and its possible implication as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy.
- Program in Clinical and Experimental Biomedical Sciences, University of Verona, 37134 Verona, Italy.
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Angela Bentivegna
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
24
|
Ventricular-Subventricular Zone Contact by Glioblastoma is Not Associated with Molecular Signatures in Bulk Tumor Data. Sci Rep 2019; 9:1842. [PMID: 30755636 PMCID: PMC6372607 DOI: 10.1038/s41598-018-37734-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 12/10/2018] [Indexed: 01/25/2023] Open
Abstract
Whether patients with glioblastoma that contacts the ventricular-subventricular zone stem cell niche (VSVZ + GBM) have a distinct survival profile from VSVZ - GBM patients independent of other known predictors or molecular profiles is unclear. Using multivariate Cox analysis to adjust survival for widely-accepted predictors, hazard ratios (HRs) for overall (OS) and progression free (PFS) survival between VSVZ + GBM and VSVZ - GBM patients were calculated in 170 single-institution patients and 254 patients included in both The Cancer Genome (TCGA) and Imaging (TCIA) atlases. An adjusted, multivariable analysis revealed that VSVZ contact was independently associated with decreased survival in both datasets. TCGA molecular data analyses revealed that VSVZ contact by GBM was independent of mutational, DNA methylation, gene expression, and protein expression signatures in the bulk tumor. Therefore, while survival of GBM patients is independently stratified by VSVZ contact, with VSVZ + GBM patients displaying a poor prognosis, the VSVZ + GBMs do not possess a distinct molecular signature at the bulk sample level. Focused examination of the interplay between the VSVZ microenvironment and subsets of GBM cells proximal to this region is warranted.
Collapse
|
25
|
Location-Dependent Patient Outcome and Recurrence Patterns in IDH1-Wildtype Glioblastoma. Cancers (Basel) 2019; 11:cancers11010122. [PMID: 30669568 PMCID: PMC6356480 DOI: 10.3390/cancers11010122] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent studies suggest that glioblastomas (GBMs) contacting the subventricular zone (SVZ) as the main adult neurogenic niche confer a dismal prognosis but disregard the unique molecular and prognostic phenotype associated with isocitrate dehydrogenase 1 (IDH1) mutations. We therefore examined location-dependent prognostic factors, growth, and recurrence patterns in a consecutive cohort of 285 IDH1-wildtype GBMs. Based on pre-operative contrast-enhanced MRI, patients were allotted to four location-dependent groups with (SVZ+; groups I, II) and without (SVZ-; groups III, IV) SVZ involvement or with (cortex+; groups I, III) and without (cortex-; groups II, IV) cortical involvement and compared for demographic, treatment, imaging, and survival data at first diagnosis and recurrence. SVZ involvement was associated with lower Karnofsky performance score (p < 0.001), lower frequency of complete resections at first diagnosis (p < 0.0001), and lower non-surgical treatment intensity at recurrence (p < 0.001). Multivariate survival analysis employing a Cox proportional hazards model identified SVZ involvement as an independent prognosticator of inferior overall survival (p < 0.001) and survival after relapse (p = 0.041). In contrast, multifocal growth at first diagnosis (p = 0.031) and recurrence (p < 0.001), as well as distant recurrences (p < 0.0001), was more frequent in cortex+ GBMs. These findings offer the prospect for location-tailored prognostication and treatment based on factors assessable on pre-operative MRI.
Collapse
|
26
|
Bardella C, Al-Shammari AR, Soares L, Tomlinson I, O'Neill E, Szele FG. The role of inflammation in subventricular zone cancer. Prog Neurobiol 2018; 170:37-52. [PMID: 29654835 DOI: 10.1016/j.pneurobio.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/10/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
The adult subventricular zone (SVZ) stem cell niche has proven vital for discovering neurodevelopmental mechanisms and holds great potential in medicine for neurodegenerative diseases. Yet the SVZ holds a dark side - it can become tumorigenic. Glioblastomas can arise from the SVZ via cancer stem cells (CSCs). Glioblastoma and other brain cancers often have dismal prognoses since they are resistant to treatment. In this review we argue that the SVZ is susceptible to cancer because it contains stem cells, migratory progenitors and unusual inflammation. Theoretically, SVZ stem cells can convert to CSCs more readily than can postmitotic neural cells. Additionally, the robust long-distance migration of SVZ progenitors can be subverted upon tumorigenesis to an infiltrative phenotype. There is evidence that the SVZ, even in health, exhibits chronic low-grade cellular and molecular inflammation. Its inflammatory response to brain injuries and disease differs from that of other brain regions. We hypothesize that the SVZ inflammatory environment can predispose cells to novel mutations and exacerbate cancer phenotypes. This can be studied in animal models in which human mutations related to cancer are knocked into the SVZ to induce tumorigenesis and the CSC immune interactions that precede full-blown cancer. Importantly inflammation can be pharmacologically modulated providing an avenue to brain cancer management and treatment. The SVZ is accessible by virtue of its location surrounding the lateral ventricles and CSCs in the SVZ can be targeted with a variety of pharmacotherapies. Thus, the SVZ can yield aggressive tumors but can be targeted via several strategies.
Collapse
Affiliation(s)
- Chiara Bardella
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Abeer R Al-Shammari
- Research and Development, Qatar Research Leadership Program, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luana Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| | - Ian Tomlinson
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Zhang D, Wang C, Li Z, Li Y, Dai D, Han K, Lv L, Lu Y, Hou L, Wang J. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells. Front Neurol 2018; 9:255. [PMID: 29720957 PMCID: PMC5915460 DOI: 10.3389/fneur.2018.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 01/22/2023] Open
Abstract
The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue (N = 31), whereas the lowest expression was in high-grade glioma tissue (N = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yiming Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dawei Dai
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yicheng Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Connolly NP, Shetty AC, Stokum JA, Hoeschele I, Siegel MB, Miller CR, Kim AJ, Ho CY, Davila E, Simard JM, Devine SE, Rossmeisl JH, Holland EC, Winkles JA, Woodworth GF. Cross-species transcriptional analysis reveals conserved and host-specific neoplastic processes in mammalian glioma. Sci Rep 2018; 8:1180. [PMID: 29352201 PMCID: PMC5775420 DOI: 10.1038/s41598-018-19451-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023] Open
Abstract
Glioma is a unique neoplastic disease that develops exclusively in the central nervous system (CNS) and rarely metastasizes to other tissues. This feature strongly implicates the tumor-host CNS microenvironment in gliomagenesis and tumor progression. We investigated the differences and similarities in glioma biology as conveyed by transcriptomic patterns across four mammalian hosts: rats, mice, dogs, and humans. Given the inherent intra-tumoral molecular heterogeneity of human glioma, we focused this study on tumors with upregulation of the platelet-derived growth factor signaling axis, a common and early alteration in human gliomagenesis. The results reveal core neoplastic alterations in mammalian glioma, as well as unique contributions of the tumor host to neoplastic processes. Notable differences were observed in gene expression patterns as well as related biological pathways and cell populations known to mediate key elements of glioma biology, including angiogenesis, immune evasion, and brain invasion. These data provide new insights regarding mammalian models of human glioma, and how these insights and models relate to our current understanding of the human disease.
Collapse
Affiliation(s)
- Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ina Hoeschele
- Virginia Bioinformatics Institute and Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Marni B Siegel
- Departments of Pathology and Laboratory Medicine, Neurology, and Pharmacology, Lineberger Comprehensive Cancer Center and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - C Ryan Miller
- Departments of Pathology and Laboratory Medicine, Neurology, and Pharmacology, Lineberger Comprehensive Cancer Center and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eduardo Davila
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Scott E Devine
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA.,Wake Forest University Baptist Health Comprehensive Cancer Center, Brain Tumor Center of Excellence, Winston-Salem, North Carolina, USA
| | - Eric C Holland
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
29
|
Sinnaeve J, Mobley BC, Ihrie RA. Space Invaders: Brain Tumor Exploitation of the Stem Cell Niche. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:29-38. [PMID: 29024634 PMCID: PMC5745521 DOI: 10.1016/j.ajpath.2017.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/22/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.
Collapse
Affiliation(s)
- Justine Sinnaeve
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bret C Mobley
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca A Ihrie
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
30
|
Mistry AM. Clinical correlates of subventricular zone-contacting glioblastomas: a meta-analysis. J Neurosurg Sci 2017; 63:581-587. [PMID: 29205011 DOI: 10.23736/s0390-5616.17.04274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The clinical and molecular correlates of glioblastomas (GBMs) contacting the subventricular zone (SVZ+ GBM) are unknown. This work aimed to reveal any such correlates that may help explain their increased GBM malignancy. EVIDENCE ACQUISITION A meta-analysis was, therefore, conducted to assess whether tumor's MGMT promoter methylation status, isocitrate dehydrogenase (IDH) mutation status, volume, and extent of resection as well as patients' age at diagnosis and preoperative Karnofsky performance status score (KPS) correlate with SVZ contact by GBM. In addition, available imaging of GBM patients in The Cancer Imaging Archive was assessed for SVZ contact and their corresponding clinical and molecular variables were obtained through The Cancer Genome Atlas (TCGA) database. EVIDENCE SYNTHESIS Twenty-one studies were identified through PubMed and EMBASE database search. This review included 257 patients identified from the TCIA/TCGA database. MGMT promoter methylation status (summary odds ratio [OD], 1.18 [0.84-1.66], P=0.34), IDH mutation status (OD: 0.63 [0.20-1.99], P=0.43), and patients' age of diagnosis (summary mean difference, MD, 0.10 years [-1.85, 2.05], P=0.92) did not associated with SVZ contact of the GBM. However, SVZ+ GBMs were significantly larger than SVZ- GBMs (MD: 17.3 cm3 [8.70-25.8], P<0.0001). SVZ+ GBM patients had lower KPS scores (MD: -3.33 [-5.31-(-1.35)], P=0.001) and were half as likely to receive a gross total resection (OD: 0.50 [0.40-0.64], P<0.00001). CONCLUSIONS Additional, large studies that rigorously control for all the known clinical and molecular prognosticators, especially extent of resection and preoperative KPS scores, are needed to evaluate whether SVZ contact by GBM independently influences survival.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA -
| |
Collapse
|
31
|
Altieri R, Zenga F, Ducati A, Melcarne A, Cofano F, Mammi M, Di Perna G, Savastano R, Garbossa D. Tumor location and patient age predict biological signatures of high-grade gliomas. Neurosurg Rev 2017; 41:599-604. [PMID: 28856492 DOI: 10.1007/s10143-017-0899-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/12/2017] [Accepted: 08/23/2017] [Indexed: 11/26/2022]
Abstract
Prognostic factors for high-grade gliomas include patient age, IDH1 mutation, MGMT methylation, and Ki67 value. We assessed the predictive role of topographic location of gliomas for their biological signatures. Collecting all neuroradiological and histological data of patients with histologically proven HGG, we performed a retrospective monocentric study. A predictive value of frontal location for a lower Ki67 value (especially in the left hemisphere) and mutation of IDH1 (especially in the right hemisphere) was found. Temporal location was predictive for IDH1 wild-type. Involvement of the parietal lobe was found to be predictive of methylated MGMT, while insular lobe involvement predicted an unmethylated MGMT. There was no statistically significant difference of IDH1 mutation and MGMT methylation between left and right sides.
Collapse
Affiliation(s)
- Roberto Altieri
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy.
| | - Francesco Zenga
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Ducati
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Melcarne
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Fabio Cofano
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Marco Mammi
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Diego Garbossa
- Neurosurgical Unit, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|