1
|
Rappaport BI, Shankman SA, Glazer JE, Buchanan SN, Weinberg A, Letkiewicz AM. Psychometrics of drift-diffusion model parameters derived from the Eriksen flanker task: Reliability and validity in two independent samples. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01222-8. [PMID: 39443415 DOI: 10.3758/s13415-024-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The flanker task is a widely used measure of cognitive control abilities. Drift-diffusion modeling of flanker task behavior can yield separable parameters of cognitive control-related subprocesses, but the parameters' psychometrics are not well-established. We examined the reliability and validity of four behavioral measures: (1) raw accuracy, (2) reaction time (RT) interference, (3) NIH Toolbox flanker score, and (4) two drift-diffusion model (DDM) parameters-drift rate and boundary separation-capturing evidence accumulation efficiency and speed-accuracy trade-off, respectively. Participants from two independent studies - one cross-sectional (N = 381) and one with three timepoints (N = 83) - completed the flanker task while electroencephalography data were collected. Across both studies, drift rate and boundary separation demonstrated comparable split-half and test-retest reliability to accuracy, RT interference, and NIH Toolbox flanker score, but better incremental convergent validity with psychophysiological measures (i.e., the error-related negativity; ERN) and neuropsychological measures of cognitive control than the other behavioral indices. Greater drift rate (i.e., faster and more accurate responses) to congruent and incongruent stimuli, and smaller boundary separation to incongruent stimuli were related to 1) larger ERN amplitudes (in both studies) and 2) faster and more accurate inhibition and set-shifting over and above raw accuracy, reaction time, and NIH Toolbox flanker scores (in Study 1). Computational models, such as DDM, can parse behavioral performance into subprocesses that exhibit comparable reliability to other scoring approaches, but more meaningful relationships with other measures of cognitive control. The application of these computational models may be applied to existing data and enhance the identification of cognitive control deficits in psychiatric disorders.
Collapse
Affiliation(s)
- Brent Ian Rappaport
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Stewart A Shankman
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James E Glazer
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Savannah N Buchanan
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Weinberg
- Department of Psychology, McGill University, Montreal, Canada
| | - Allison M Letkiewicz
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Marder MA, Miller GA. The future of psychophysiology, then and now. Biol Psychol 2024; 189:108792. [PMID: 38588815 DOI: 10.1016/j.biopsycho.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Since its founding in 1973, Biological Psychology has showcased and provided invaluable support to psychophysiology, a field that has grown and changed enormously. This article discusses some constancies that have remained fundamental to the journal and to the field as well as some important trends. Some aspects of our science have not received due consideration, affecting not only the generalizability of our findings but the way we develop and evaluate our research questions and the potential of our field to contribute to the common good. The article offers a number of predictions and recommendations for the next period of growth of psychophysiology.
Collapse
Affiliation(s)
| | - Gregory A Miller
- University of Illinois Urbana-Champaign, USA; University of California, Los Angeles, USA
| |
Collapse
|
3
|
Harhen NC, Bornstein AM. Interval Timing as a Computational Pathway From Early Life Adversity to Affective Disorders. Top Cogn Sci 2024; 16:92-112. [PMID: 37824831 PMCID: PMC10842617 DOI: 10.1111/tops.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Adverse early life experiences can have remarkably enduring negative consequences on mental health, with numerous, varied psychiatric conditions sharing this developmental origin. Yet, the mechanisms linking adverse experiences to these conditions remain poorly understood. Here, we draw on a principled model of interval timing to propose that statistically optimal adaptation of temporal representations to an unpredictable early life environment can produce key characteristics of anhedonia, a transdiagnostic symptom associated with affective disorders like depression and anxiety. The core observation is that early temporal unpredictability produces broader, more imprecise temporal expectations. As a result, reward anticipation is diminished, and associative learning is slowed. When agents with such representations are later introduced to more stable environments, they demonstrate a negativity bias, responding more to the omission of reward than its receipt. Increased encoding of negative events has been proposed to contribute to disorders with anhedonia as a symptom. We then examined how unpredictability interacts with another form of adversity, low reward availability. We found that unpredictability's effect was most strongly felt in richer environments, potentially leading to categorically different phenotypic expressions. In sum, our formalization suggests a single mechanism can help to link early life adversity to a range of behaviors associated with anhedonia, and offers novel insights into the interactive impacts of multiple adversities.
Collapse
Affiliation(s)
- Nora C. Harhen
- Department of Cognitive Sciences, University of California, Irvine
| | - Aaron M. Bornstein
- Department of Cognitive Sciences, University of California, Irvine
- Center for the Neurobiology of Learning and Memory, University of California, Irvine
| |
Collapse
|
4
|
Sandhu TR, Xiao B, Lawson RP. Transdiagnostic computations of uncertainty: towards a new lens on intolerance of uncertainty. Neurosci Biobehav Rev 2023; 148:105123. [PMID: 36914079 DOI: 10.1016/j.neubiorev.2023.105123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
People radically differ in how they cope with uncertainty. Clinical researchers describe a dispositional characteristic known as "intolerance of uncertainty", a tendency to find uncertainty aversive, reported to be elevated across psychiatric and neurodevelopmental conditions. Concurrently, recent research in computational psychiatry has leveraged theoretical work to characterise individual differences in uncertainty processing. Under this framework, differences in how people estimate different forms of uncertainty can contribute to mental health difficulties. In this review, we briefly outline the concept of intolerance of uncertainty within its clinical context, and we argue that the mechanisms underlying this construct may be further elucidated through modelling how individuals make inferences about uncertainty. We will review the evidence linking psychopathology to different computationally specified forms of uncertainty and consider how these findings might suggest distinct mechanistic routes towards intolerance of uncertainty. We also discuss the implications of this computational approach for behavioural and pharmacological interventions, as well as the importance of different cognitive domains and subjective experiences in studying uncertainty processing.
Collapse
Affiliation(s)
- Timothy R Sandhu
- Department of Psychology, Downing Place, University of Cambridge, CB2 3EB, UK; MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF, UK.
| | - Bowen Xiao
- Department of Psychology, Downing Place, University of Cambridge, CB2 3EB, UK
| | - Rebecca P Lawson
- Department of Psychology, Downing Place, University of Cambridge, CB2 3EB, UK; MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, CB2 7EF, UK
| |
Collapse
|
5
|
Gómez-Carrillo A, Kirmayer LJ. A cultural-ecosocial systems view for psychiatry. Front Psychiatry 2023; 14:1031390. [PMID: 37124258 PMCID: PMC10133725 DOI: 10.3389/fpsyt.2023.1031390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
While contemporary psychiatry seeks the mechanisms of mental disorders in neurobiology, mental health problems clearly depend on developmental processes of learning and adaptation through ongoing interactions with the social environment. Symptoms or disorders emerge in specific social contexts and involve predicaments that cannot be fully characterized in terms of brain function but require a larger social-ecological view. Causal processes that result in mental health problems can begin anywhere within the extended system of body-person-environment. In particular, individuals' narrative self-construal, culturally mediated interpretations of symptoms and coping strategies as well as the responses of others in the social world contribute to the mechanisms of mental disorders, illness experience, and recovery. In this paper, we outline the conceptual basis and practical implications of a hierarchical ecosocial systems view for an integrative approach to psychiatric theory and practice. The cultural-ecosocial systems view we propose understands mind, brain and person as situated in the social world and as constituted by cultural and self-reflexive processes. This view can be incorporated into a pragmatic approach to clinical assessment and case formulation that characterizes mechanisms of pathology and identifies targets for intervention.
Collapse
Affiliation(s)
- Ana Gómez-Carrillo
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Laurence J. Kirmayer
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
6
|
Karvelis P, Paulus MP, Diaconescu AO. Individual differences in computational psychiatry: a review of current challenges. Neurosci Biobehav Rev 2023; 148:105137. [PMID: 36940888 DOI: 10.1016/j.neubiorev.2023.105137] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Bringing precision to the understanding and treatment of mental disorders requires instruments for studying clinically relevant individual differences. One promising approach is the development of computational assays: integrating computational models with cognitive tasks to infer latent patient-specific disease processes in brain computations. While recent years have seen many methodological advancements in computational modelling and many cross-sectional patient studies, much less attention has been paid to basic psychometric properties (reliability and construct validity) of the computational measures provided by the assays. In this review, we assess the extent of this issue by examining emerging empirical evidence. We find that many computational measures suffer from poor psychometric properties, which poses a risk of invalidating previous findings and undermining ongoing research efforts using computational assays to study individual (and even group) differences. We provide recommendations for how to address these problems and, crucially, embed them within a broader perspective on key developments that are needed for translating computational assays to clinical practice.
Collapse
Affiliation(s)
- Povilas Karvelis
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Andreea O Diaconescu
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Kao CH, Feng GW, Hur JK, Jarvis H, Rutledge RB. Computational models of subjective feelings in psychiatry. Neurosci Biobehav Rev 2023; 145:105008. [PMID: 36549378 PMCID: PMC9990828 DOI: 10.1016/j.neubiorev.2022.105008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Research in computational psychiatry is dominated by models of behavior. Subjective experience during behavioral tasks is not well understood, even though it should be relevant to understanding the symptoms of psychiatric disorders. Here, we bridge this gap and review recent progress in computational models for subjective feelings. For example, happiness reflects not how well people are doing, but whether they are doing better than expected. This dependence on recent reward prediction errors is intact in major depression, although depressive symptoms lower happiness during tasks. Uncertainty predicts subjective feelings of stress in volatile environments. Social prediction errors influence feelings of self-worth more in individuals with low self-esteem despite a reduced willingness to change beliefs due to social feedback. Measuring affective state during behavioral tasks provides a tool for understanding psychiatric symptoms that can be dissociable from behavior. When smartphone tasks are collected longitudinally, subjective feelings provide a potential means to bridge the gap between lab-based behavioral tasks and real-life behavior, emotion, and psychiatric symptoms.
Collapse
Affiliation(s)
- Chang-Hao Kao
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Gloria W Feng
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Jihyun K Hur
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Huw Jarvis
- Department of Psychology, Yale University, New Haven, CT, USA; Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Robb B Rutledge
- Department of Psychology, Yale University, New Haven, CT, USA; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| |
Collapse
|
8
|
Dombrovski AY, Hallquist MN. Search for solutions, learning, simulation, and choice processes in suicidal behavior. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1561. [PMID: 34008338 PMCID: PMC9285563 DOI: 10.1002/wcs.1561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/06/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Suicide may be viewed as an unfortunate outcome of failures in decision processes. Such failures occur when the demands of a crisis exceed a person's capacity to (i) search for options, (ii) learn and simulate possible futures, and (iii) make advantageous value-based choices. Can individual-level decision deficits and biases drive the progression of the suicidal crisis? Our overview of the evidence on this question is informed by clinical theory and grounded in reinforcement learning and behavioral economics. Cohort and case-control studies provide strong evidence that limited cognitive capacity and particularly impaired cognitive control are associated with suicidal behavior, imposing cognitive constraints on decision-making. We conceptualize suicidal ideation as an element of impoverished consideration sets resulting from a search for solutions under cognitive constraints and mood-congruent Pavlovian influences, a view supported by mostly indirect evidence. More compelling is the evidence of impaired learning in people with a history of suicidal behavior. We speculate that an inability to simulate alternative futures using one's model of the world may undermine alternative solutions in a suicidal crisis. The hypothesis supported by the strongest evidence is that the selection of suicide over alternatives is facilitated by a choice process undermined by randomness. Case-control studies using gambling tasks, armed bandits, and delay discounting support this claim. Future experimental studies will need to uncover real-time dynamics of choice processes in suicidal people. In summary, the decision process framework sheds light on neurocognitive mechanisms that facilitate the progression of the suicidal crisis. This article is categorized under: Economics > Individual Decision-Making Psychology > Emotion and Motivation Psychology > Learning Neuroscience > Behavior.
Collapse
Affiliation(s)
| | - Michael N. Hallquist
- Department of Psychology and NeuroscienceUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Wang S, Feng SF, Bornstein AM. Mixing memory and desire: How memory reactivation supports deliberative decision-making. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1581. [PMID: 34665529 DOI: 10.1002/wcs.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Memories affect nearly every aspect of our mental life. They allow us to both resolve uncertainty in the present and to construct plans for the future. Recently, renewed interest in the role memory plays in adaptive behavior has led to new theoretical advances and empirical observations. We review key findings, with particular emphasis on how the retrieval of many kinds of memories affects deliberative action selection. These results are interpreted in a sequential inference framework, in which reinstatements from memory serve as "samples" of potential action outcomes. The resulting model suggests a central role for the dynamics of memory reactivation in determining the influence of different kinds of memory in decisions. We propose that representation-specific dynamics can implement a bottom-up "product of experts" rule that integrates multiple sets of action-outcome predictions weighted based on their uncertainty. We close by reviewing related findings and identifying areas for further research. This article is categorized under: Psychology > Reasoning and Decision Making Neuroscience > Cognition Neuroscience > Computation.
Collapse
Affiliation(s)
- Shaoming Wang
- Department of Psychology, New York University, New York, New York, USA
| | - Samuel F Feng
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, UAE.,Khalifa University Centre for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California-Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning & Memory, University of California-Irvine, Irvine, California, USA.,Institute for Mathematical Behavioral Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
10
|
|