1
|
Yang G, Mason AM, Gill D, Schooling CM, Burgess S. Multi-biobank Mendelian randomization analyses identify opposing pathways in plasma low-density lipoprotein-cholesterol lowering and gallstone disease. Eur J Epidemiol 2024; 39:857-867. [PMID: 39009924 PMCID: PMC11410903 DOI: 10.1007/s10654-024-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Plasma low-density lipoprotein (LDL)-cholesterol is positively associated with coronary artery disease risk while biliary cholesterol promotes gallstone formation. Different plasma LDL-cholesterol lowering pathways may have distinct effects on biliary cholesterol and thereby gallstone disease risk. We conducted a Mendelian randomization (MR) study using data from the UK Biobank (30,547 gallstone disease cases/336,742 controls), FinnGen (34,461 cases/301,383 controls) and Biobank Japan (9,305 cases/168,253 controls). We first performed drug-target MR analyses substantiated by colocalization to investigate the effects of plasma LDL-cholesterol lowering therapies on gallstone disease risk. We then performed clustered MR analyses and pathway analyses to identify distinct mechanisms underlying the association of plasma LDL-cholesterol with gallstone disease risk. For a 1-standard deviation reduction in plasma LDL-cholesterol, genetic mimics of statins were associated with lower gallstone disease risk (odds ratio 0.72 [95% confidence interval 0.62, 0.83]), but genetic mimics of PCSK9 inhibitors and targeting apolipoprotein B were associated with higher risk (1.11 [1.03, 1.19] and 1.23 [1.13, 1.35]). The association for statins was supported by colocalization (posterior probability 98.7%). Clustered MR analyses identified variant clusters showing opposing associations of plasma LDL-cholesterol with gallstone disease risk, with some evidence for ancestry-and sex-specific associations. Among variants lowering plasma LDL-cholesterol, those associated with lower gallstone disease risk were mapped to glycosphingolipid biosynthesis pathway, while those associated with higher risk were mapped to pathways relating to plasma lipoprotein assembly, remodelling, and clearance and ATP-binding cassette transporters. This MR study provides genetic evidence that different plasma LDL-cholesterol lowering pathways have opposing effects on gallstone disease risk.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Graduate School of Public Health and Health Policy, City University of New York, New York City, NY, USA
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Yang G, Mason AM, Wood AM, Schooling CM, Burgess S. Dose-Response Associations of Lipid Traits With Coronary Artery Disease and Mortality. JAMA Netw Open 2024; 7:e2352572. [PMID: 38241044 PMCID: PMC10799266 DOI: 10.1001/jamanetworkopen.2023.52572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Importance Apolipoprotein B (apoB), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) are associated with coronary artery disease (CAD). However, trial evidence for the association of intensive LDL-C lowering and TG lowering with mortality is less definitive. Objectives To investigate the associations of apoB, LDL-C, and TG with CAD and mortality, both overall and by sex and age, and to characterize the shapes of these associations. Design, Setting, and Participants This genetic association study used linear and nonlinear mendelian randomization (MR) to analyze a population-based cohort of individuals of European ancestry from the UK Biobank, which recruited participants from 2006 to 2010 with follow-up information updated until September 2021. Data analysis occurred from December 2022 to November 2023. Exposures Genetically predicted apoB, LDL-C, and TG. Main Outcomes and Measures The primary outcomes were CAD, all-cause mortality, and cause-specific mortality. Genetic associations with CAD were calculated using logistic regression, associations with all-cause mortality using Cox proportional hazards regression, and associations with cause-specific mortality using cause-specific Cox proportional hazards regression with censoring for other causes of mortality. Results This study included 347 797 participants (mean [SD] age, 57.2 [8.0] years; 188 330 female [54.1%]). There were 23 818 people who developed CAD and 23 848 people who died. Genetically predicted apoB was positively associated with risk of CAD (odds ratio [OR], 1.65 per SD increase; 95% CI 1.57-1.73), all-cause mortality (hazard ratio [HR], 1.11; 95% CI, 1.06-1.16), and cardiovascular mortality (HR, 1.36; 95% CI, 1.24-1.50), with some evidence for larger associations in male participants than female participants. Findings were similar for LDL-C. Genetically predicted TG was positively associated with CAD (OR, 1.60; 95% CI 1.52-1.69), all-cause mortality (HR, 1.08; 95% CI, 1.03-1.13), and cardiovascular mortality (HR, 1.21; 95% CI, 1.09-1.34); however, sensitivity analyses suggested evidence of pleiotropy. The association of genetically predicted TG with CAD persisted but it was no longer associated with mortality outcomes after controlling for apoB. Nonlinear MR suggested that all these associations were monotonically increasing across the whole observed distribution of each lipid trait, with no diminution at low lipid levels. Such patterns were observed irrespective of sex or age. Conclusions and relevance In this genetic association study, apoB (or, equivalently, LDL-C) was associated with increased CAD risk, all-cause mortality, and cardiovascular mortality, all in a dose-dependent way. TG may increase CAD risk independent of apoB, although the possible presence of pleiotropy is a limitation. These insights highlight the importance of apoB (or, equivalently, LDL-C) lowering for reducing cardiovascular morbidity and mortality across its whole distribution.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Amy M. Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - C. Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Graduate School of Public Health and Health Policy, City University of New York, New York
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Kwok MK, Schooling CM. Unraveling Potential Sex-Specific Effects of Cardiovascular Medications on Longevity Using Mendelian Randomization. J Am Heart Assoc 2023; 12:e030943. [PMID: 38108247 PMCID: PMC10863757 DOI: 10.1161/jaha.123.030943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Establishing the sex-specific efficacy of cardiovascular medications is pivotal to evidence-based clinical practice, potentially closing the gender gap in longevity. Trials large enough to establish sex differences are unavailable. This study evaluated sex-specific effects of commonly prescribed cardiovascular medications on lifespan. METHODS AND RESULTS In a two-sample Mendelian randomization study, established genetic variants mimicking effects of lipid-lowering drugs, antihypertensives, and diabetes drugs were applied to genetic associations with lifespan proxied by UK Biobank maternal (n=412 937) and paternal (n=415 311) attained age. Estimates were obtained using inverse variance weighting, with sensitivity analyses where possible. For lipid-lowering drugs, genetically mimicked PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors were associated with longer lifespan, particularly in men (2.39 years per SD low-density lipoprotein cholesterol reduction [95% CI, 0.42-4.36], P for interaction=0.14). Genetically mimicked treatments targeting APOC3, LPL, or possibly LDLR were associated with longer lifespan in both sexes. For antihypertensives, genetically mimicked β-blockers and calcium channel blockers were associated with longer lifespan, particularly in men (P for interaction=0.17 for β-blockers and 0.31 for calcium channel blockers). For diabetes drugs, genetically mimicked metformin was associated with longer lifespan in both sexes. No associations were found for genetically mimicked statins, ezetimibe, or angiotensin-converting enzyme inhibitors. CONCLUSIONS PCSK9 inhibitors, β-blockers, and calcium channel blockers may prolong lifespan in the general population, particularly men. Treatments targeting APOC3, LPL, or LDLR and metformin may be relevant to both sexes. Whether other null findings are attributable to lack of efficacy requires investigation. Further investigation of repurposing should be conducted.
Collapse
Affiliation(s)
- Man Ki Kwok
- School of Nursing and Health Studies, Hong Kong Metropolitan UniversityHong KongChina
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - C. Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- City University of New York Graduate School of Public Health and Health PolicyNew YorkNY
| |
Collapse
|
5
|
Wang J, Zhang S, Hu L, Wang Y, Liu K, Le J, Tan Y, Li T, Xue H, Wei Y, Zhong O, He J, Zi D, Lei X, Deng R, Luo Y, Tang M, Su M, Cao Y, Liu Q, Tang Z, Lei X. Pyrroloquinoline quinone inhibits PCSK9-NLRP3 mediated pyroptosis of Leydig cells in obese mice. Cell Death Dis 2023; 14:723. [PMID: 37935689 PMCID: PMC10630350 DOI: 10.1038/s41419-023-06162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.
Collapse
Affiliation(s)
- Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Ke Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yongpeng Tan
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tianlong Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanhong Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junhui He
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Zi
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Renhe Deng
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yafei Luo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Masong Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Mingxuan Su
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yichang Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zhihan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Yang G, Schooling CM. Genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and health outcomes: a drug-target Mendelian randomization study and a phenome-wide association study. BMC Med 2023; 21:235. [PMID: 37400795 DOI: 10.1186/s12916-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Asialoglycoprotein receptor 1 (ASGR1) is emerging as a potential drug target to reduce low-density lipoprotein (LDL)-cholesterol and coronary artery disease (CAD) risk. Here, we investigated genetically mimicked ASGR1 inhibitors on all-cause mortality and any possible adverse effects. METHODS We conducted a drug-target Mendelian randomization study to assess genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and 25 a priori outcomes relevant to lipid traits, CAD, and possible adverse effects, i.e. liver function, cholelithiasis, adiposity and type 2 diabetes. We also performed a phenome-wide association study of 1951 health-related phenotypes to identify any novel effects. Associations found were compared with those for currently used lipid modifiers, assessed using colocalization, and replicated where possible. RESULTS Genetically mimicked ASGR1 inhibitors were associated with a longer lifespan (3.31 years per standard deviation reduction in LDL-cholesterol, 95% confidence interval 1.01 to 5.62). Genetically mimicked ASGR1 inhibitors were inversely associated with apolipoprotein B (apoB), triglycerides (TG) and CAD risk. Genetically mimicked ASGR1 inhibitors were positively associated with alkaline phosphatase, gamma glutamyltransferase, erythrocyte traits, insulin-like growth factor 1 (IGF-1) and C-reactive protein (CRP), but were inversely associated with albumin and calcium. Genetically mimicked ASGR1 inhibitors were not associated with cholelithiasis, adiposity or type 2 diabetes. Associations with apoB and TG were stronger for ASGR1 inhibitors compared with currently used lipid modifiers, and most non-lipid effects were specific to ASGR1 inhibitors. The probabilities for colocalization were > 0.80 for most of these associations, but were 0.42 for lifespan and 0.30 for CAD. These associations were replicated using alternative genetic instruments and other publicly available genetic summary statistics. CONCLUSIONS Genetically mimicked ASGR1 inhibitors reduced all-cause mortality. Beyond lipid-lowering, genetically mimicked ASGR1 inhibitors increased liver enzymes, erythrocyte traits, IGF-1 and CRP, but decreased albumin and calcium.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| |
Collapse
|
7
|
Jiang JC, Hu C, McIntosh AM, Shah S. Investigating the potential anti-depressive mechanisms of statins: a transcriptomic and Mendelian randomization analysis. Transl Psychiatry 2023; 13:110. [PMID: 37015906 PMCID: PMC10073189 DOI: 10.1038/s41398-023-02403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
Observational studies and randomized controlled trials presented inconsistent findings on the effects of cholesterol-lowering statins on depression. It therefore remains unclear whether statins have any beneficial effects on depression, and if so, what the underlying molecular mechanisms are. Here, we aimed to use genomic approaches to investigate this further. Using Connectivity Map (CMap), we first investigated whether statins and antidepressants shared pharmacological effects by interrogating gene expression responses to drug exposure in human cell lines. Second, using Mendelian randomization analysis, we investigated both on-target (through HMGCR inhibition) and potential off-target (through ITGAL and HDAC2 inhibition) causal effects of statins on depression risk and depressive symptoms, and traits related to the shared biological pathways identified from CMap analysis. Compounds inducing highly similar gene expression responses to statins in HA1E cells (indicated by an average connectivity score with statins > 90) were found to be enriched for antidepressants (12 out of 38 antidepressants; p = 9E-08). Genes perturbed in the same direction by both statins and antidepressants were significantly enriched for diverse cellular and metabolic pathways, and various immune activation, development and response processes. MR analysis did not identify any significant associations between statin exposure and depression risk or symptoms after multiple testing correction. However, genetically proxied HMGCR inhibition was strongly associated with alterations in platelets (a prominent serotonin reservoir) and monocyte percentage, which have previously been implicated in depression. Genetically proxied ITGAL inhibition was strongly associated with basophil, monocyte and neutrophil counts. We identified biological pathways that are commonly perturbed by both statins and antidepressants, and haematological biomarkers genetically associated with statin targets. Our findings warrant pre-clinical investigation of the causal role of these shared pathways in depression and potential as therapeutic targets, and investigation of whether blood biomarkers may be important considerations in clinical trials investigating effects of statins on depression.
Collapse
Affiliation(s)
- Jiayue-Clara Jiang
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Chenwen Hu
- The University of Queensland, St Lucia, QLD, Australia
| | | | - Sonia Shah
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
8
|
Yang G, Schooling CM. Statins, Type 2 Diabetes, and Body Mass Index: A Univariable and Multivariable Mendelian Randomization Study. J Clin Endocrinol Metab 2023; 108:385-396. [PMID: 36184662 DOI: 10.1210/clinem/dgac562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT Statins and possibly other lipid modifiers increase type 2 diabetes risk and body mass index (BMI). However, to what extent BMI mediates the diabetogenic effects of lipid modifiers remains unclear. OBJECTIVE We used Mendelian randomization (MR) to investigate the effects of commonly used lipid modifiers on type 2 diabetes risk and glycemic traits, and any mediation by BMI. METHODS Using established genetic variants to mimic commonly used lipid modifiers (ie, statins, PCSK9 inhibitors, and ezetimibe), we assessed their associations with type 2 diabetes risk, glycated hemoglobin (HbA1c), fasting insulin, fasting glucose, and BMI in the largest relevant genome-wide association studies (GWAS) in people of European ancestry, and where possible, in East Asians. We used multivariable MR to examine the role of lipid modifiers independent of BMI. RESULTS Genetically mimicked effects of statins and ezetimibe, but not PCSK9 inhibitors were associated with higher risk of type 2 diabetes (odds ratio [OR] 1.74 [95% CI, 1.49 to 2.03]; 1.92 [1.22 to 3.02]; 1.06 [0.87 to 1.29] per SD reduction in low-density lipoprotein (LDL)-cholesterol). Of these lipid modifiers, only genetic mimics of statins were associated with higher BMI (0.33 SD [0.29 to 0.38] per SD reduction in LDL-cholesterol), which explained 54% of the total effect of statins on type 2 diabetes risk. CONCLUSION Higher BMI mediated more than half of the diabetogenic effects of statins, which did not extend to other commonly used lipid modifiers. Further investigations are needed to clarify drug-specific mechanisms underlying the effects of lipid modifiers on type 2 diabetes.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Graduate School of Public Health and Health Policy, City University of New York, New York 10027, USA
| |
Collapse
|
9
|
Ma Y, Patil S, Zhou X, Mukherjee B, Fritsche LG. ExPRSweb: An online repository with polygenic risk scores for common health-related exposures. Am J Hum Genet 2022; 109:1742-1760. [PMID: 36152628 PMCID: PMC9606385 DOI: 10.1016/j.ajhg.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Complex traits are influenced by genetic risk factors, lifestyle, and environmental variables, so-called exposures. Some exposures, e.g., smoking or lipid levels, have common genetic modifiers identified in genome-wide association studies. Because measurements are often unfeasible, exposure polygenic risk scores (ExPRSs) offer an alternative to study the influence of exposures on various phenotypes. Here, we collected publicly available summary statistics for 28 exposures and applied four common PRS methods to generate ExPRSs in two large biobanks: the Michigan Genomics Initiative and the UK Biobank. We established ExPRSs for 27 exposures and demonstrated their applicability in phenome-wide association studies and as predictors for common chronic conditions. Especially the addition of multiple ExPRSs showed, for several chronic conditions, an improvement compared to prediction models that only included traditional, disease-focused PRSs. To facilitate follow-up studies, we share all ExPRS constructs and generated results via an online repository called ExPRSweb.
Collapse
Affiliation(s)
- Ying Ma
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Snehal Patil
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Center for Precision Health Data Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Zhu Z, Wang K, Hao X, Chen L, Liu Z, Wang C. Causal Graph Among Serum Lipids and Glycemic Traits: A Mendelian Randomization Study. Diabetes 2022; 71:1818-1826. [PMID: 35622003 DOI: 10.2337/db21-0734] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022]
Abstract
We systematically investigated the bidirectional causality among HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglycerides (TGs), fasting insulin (FI), and glycated hemoglobin A1c (HbA1c) based on genome-wide association summary statistics of Europeans (n = 1,320,016 for lipids, 151,013 for FI, and 344,182 for HbA1c). We applied multivariable Mendelian randomization (MR) to account for the correlation among different traits and constructed a causal graph with 13 significant causal effects after adjusting for multiple testing (P < 0.0025). Remarkably, we found that the effects of lipids on glycemic traits were through FI from TGs (β = 0.06 [95% CI 0.03, 0.08] in units of 1 SD for each trait) and HDL-C (β = -0.02 [-0.03, -0.01]). On the other hand, FI had a strong negative effect on HDL-C (β = -0.15 [-0.21, -0.09]) and positive effects on TGs (β = 0.22 [0.14, 0.31]) and HbA1c (β = 0.15 [0.12, 0.19]), while HbA1c could raise LDL-C (β = 0.06 [0.03, 0.08]) and TGs (β = 0.08 [0.06, 0.10]). These estimates derived from inverse-variance weighting were robust when using different MR methods. Our results suggest that elevated FI was a strong causal factor of high TGs and low HDL-C, which in turn would further increase FI. Therefore, early control of insulin resistance is critical to reduce the risk of type 2 diabetes, dyslipidemia, and cardiovascular complications.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Liu
- Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Olaniyi KS, Areloegbe SE. Suppression of PCSK9/NF-kB-dependent pathways by acetate ameliorates cardiac inflammation in a rat model of polycystic ovarian syndrome. Life Sci 2022; 300:120560. [PMID: 35452635 DOI: 10.1016/j.lfs.2022.120560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
AIM Endocrinometabolic disorders in women of reproductive age, including polycystic ovarian syndrome (PCOS) has contributed to increased prevalence of cardiovascular disease (CVD) risk and its attendant complications. Acetate, the most abundant endogenously produced short chain fatty acid has been linked to metabolic health. However, the impact of acetate on CVD-driven pathologies in PCOS is unknown. The present study therefore investigated the effects of acetate on cardiometabolic abnormalities associated with PCOS in rat model, and the possible involvement of PCSK9/NF-kB-dependent pathways. MATERIALS AND METHODS Eight-week-old female Wistar rats were allotted into four groups (n = 6) and the groups received vehicle, acetate (200 mg/kg), letrozole (1 mg/kg) and letrozole plus acetate respectively. The administrations were done once daily by oral gavage and lasted for 21 days. KEY FINDINGS In letrozole-induced PCOS rats characterized with insulin resistance, glucose dysregulation, elevated plasma testosterone and decreased 17-β estradiol as well as degenerated ovarian follicles, there was a significant increase in plasma and cardiac lipid/lipoproteins, lipid peroxidation, inflammatory mediators (NF-kB and TNF-α), γ-glutamyl transferase/lactate dehydrogenase and lactate content, PCSK9 and reduction in plasma and cardiac antioxidants (glutathione peroxidase and reduced glutathione) and plasma nitric oxide synthesis (eNOS and NO) compared with the control rats. In addition, immunohistochemical assessment of cardiac tissue showed severe expression of inflammasome in letrozole-induced PCOS rats compared with the control rats. Nevertheless, supplementation with acetate significantly attenuated these alterations. SIGNIFICANCE The present results suggest that acetate protects against cardiac inflammation in a rat model of PCOS by suppression of PCSK9 and NF-kB-dependent mechanisms.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| |
Collapse
|