1
|
Kang JH, Levine E, Fleet A, Padilla MS, Lee JK, Harrison H, Usher‐Smith JA. Systematic review: risk prediction models for metachronous advanced colorectal neoplasia after polypectomy. J Gastroenterol Hepatol 2024; 39:2533-2544. [PMID: 39080790 PMCID: PMC11660205 DOI: 10.1111/jgh.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) is the fourth leading cause of cancer death globally. CRC surveillance is a common indication for colonoscopy, representing a considerable burden for endoscopy services. Accurate identification of high-risk patients who would benefit from more intensive surveillance, as well as low-risk patients suitable for less frequent follow-up, could improve the effectiveness of surveillance protocols and resource use. Our aim was to identify and critically appraise published risk models for the occurrence of metachronous advanced colorectal neoplasia (ACN), defined here as CRC or advanced adenomas detected during surveillance colonoscopy. METHODS We searched PubMed and EMBASE for primary research studies reporting the development and/or validation of multivariable models that predict metachronous ACN risk. Screening of studies for inclusion, data extraction, and risk of bias assessment were conducted by two researchers independently. RESULTS We identified nine studies describing nine risk models. Six models were internally validated and two were externally validated. No model underwent both internal and external validation. Good model discrimination (concordance index > 0.7) was reported for two models during internal validation and for one model during external validation. Calibration was acceptable when assessed (n = 4). Methodological limitations and a high risk of bias were observed for all studies. CONCLUSIONS Several published models predicting metachronous ACN risk showed some promise. However, adherence to methodological standards was limited, and only two models were externally validated. Head-to-head comparisons of existing models using populations independent from model development cohorts should be prioritized to identify models suitable for use in clinical practice.
Collapse
Affiliation(s)
- James H‐E Kang
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Emma Levine
- University of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Alex Fleet
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Mc Stephen Padilla
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Jeffrey K Lee
- Kaiser Permanente Northern California Division of ResearchOaklandCaliforniaUSA
| | - Hannah Harrison
- Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
2
|
Obón-Santacana M, Moratalla-Navarro F, Guinó E, Carreras-Torres R, Díez-Obrero V, Bars-Cortina D, Ibáñez-Sanz G, Rodríguez-Alonso L, Mata A, García-Rodríguez A, Devall M, Casey G, Li L, Moreno V. Diet Impacts on Gene Expression in Healthy Colon Tissue: Insights from the BarcUVa-Seq Study. Nutrients 2024; 16:3131. [PMID: 39339731 PMCID: PMC11434945 DOI: 10.3390/nu16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Introduction: The global rise of gastrointestinal diseases, including colorectal cancer and inflammatory bowel diseases, highlights the need to understand their causes. Diet is a common risk factor and a crucial regulator of gene expression, with alterations observed in both conditions. This study aims to elucidate the specific biological mechanisms through which diet influences the risk of bowel diseases. (2) Methods: We analyzed data from 436 participants from the BarcUVa-Seq population-based cross-sectional study utilizing gene expression profiles (RNA-Seq) from frozen colonic mucosal biopsies and dietary information from a semi-quantitative food frequency questionnaire. Dietary variables were evaluated based on two dietary patterns and as individual variables. Differential expression gene (DEG) analysis was performed for each dietary factor using edgeR. Protein-protein interaction (PPI) analysis was conducted with STRINGdb v11 for food groups with more than 10 statistically significant DEGs, followed by Reactome-based enrichment analysis for the resulting networks. (3) Results: Our findings reveal that food intake, specifically the consumption of blue fish, alcohol, and potatoes, significantly influences gene expression in the colon of individuals without tumor pathology, particularly in pathways related to DNA repair, immune system function, and protein glycosylation. (4) Discussion: These results demonstrate how these dietary components may influence human metabolic processes and affect the risk of bowel diseases.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Department of Gastroenterology, Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr. Josep Trueta, 17190 Salt, Girona, Spain
| | - Virginia Díez-Obrero
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - David Bars-Cortina
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Ibáñez-Sanz
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Rodríguez-Alonso
- Gastroenterology Department, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Alfredo Mata
- Digestive System Service, Moisés Broggi Hospital, 08970 Sant Joan Despí, Spain
| | - Ana García-Rodríguez
- Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, 08840 Viladecans, Barcelona, Spain
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Graham Casey
- Department of Genome Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), 08908 L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
3
|
Fu R, Chen X, Niedermaier T, Seum T, Hoffmeister M, Brenner H. Excess Weight, Polygenic Risk Score, and Findings of Colorectal Neoplasms at Screening Colonoscopy. Am J Gastroenterol 2024; 119:1913-1920. [PMID: 38704818 PMCID: PMC11365593 DOI: 10.14309/ajg.0000000000002853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Excess weight is an established risk factor of colorectal cancer (CRC). However, evidence is lacking on how its impact varies by polygenic risk at different stages of colorectal carcinogenesis. METHODS We assessed the individual and joint associations of body mass index (BMI) and polygenic risk scores (PRSs) with findings of colorectal neoplasms among 4,784 participants of screening colonoscopy. Adjusted odds ratios (aORs) for excess weight derived by multiple logistic regression were converted to genetic risk equivalents (GREs) to quantify the impact of excess weight compared with genetic predisposition. RESULTS Overweight and obesity (BMI 25-<30 and ≥30 kg/m 2 ) were associated with increased risk of any colorectal neoplasm (aOR [95% confidence interval, CI] 1.26 [1.09-1.45] and 1.47 [1.24-1.75]). Obesity was associated with increased risk of advanced colorectal neoplasm (aOR [95% CI] 1.46 [1.16-1.84]). Dose-response relationships were seen for the PRS (stronger for advanced neoplasms than any neoplasms), with no interaction with BMI, suggesting multiplicative effects of both factors. Obese participants with a PRS in the highest tertile had a 2.3-fold (95% CI 1.7-3.1) and 2.9-fold (95% CI 1.9-4.3) increased risk of any colorectal neoplasm and advanced colorectal neoplasm, respectively. The aOR of obesity translated into a GRE of 38, meaning that its impact was estimated to be equivalent to the risk caused by 38 percentiles higher PRS for colorectal neoplasm. DISCUSSION Excess weight and polygenic risk are associated with increased risk of colorectal neoplasms in a multiplicative manner. Maintaining normal weight is estimated to have an equivalent effect as having 38 percentiles lower PRS.
Collapse
Affiliation(s)
- Ruojin Fu
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tobias Niedermaier
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Teresa Seum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
4
|
Zhang Y, Sheng C, Lyu Z, Dai H, Song F, Song F, Huang Y, Chen K. Effectiveness of colorectal cancer screening integrating non-genetic and genetic risk: a prospective study based on UK Biobank data. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0096. [PMID: 38899940 PMCID: PMC11359493 DOI: 10.20892/j.issn.2095-3941.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE Few studies have evaluated the benefits of colorectal cancer (CRC) screening integrating both non-genetic and genetic risk factors. Here, we aimed to integrate an existing non-genetic risk model (QCancer-10) and a 139-variant polygenic risk score to evaluate the effectiveness of screening on CRC incidence and mortality. METHODS We applied the integrated model to calculate 10-year CRC risk for 430,908 participants in the UK Biobank, and divided the participants into low-, intermediate-, and high-risk groups. We calculated the screening-associated hazard ratios (HRs) and absolute risk reductions (ARRs) for CRC incidence and mortality according to risk stratification. RESULTS During a median follow-up of 11.03 years and 12.60 years, we observed 5,158 CRC cases and 1,487 CRC deaths, respectively. CRC incidence and mortality were significantly lower among screened than non-screened participants in both the intermediate- and high-risk groups [incidence: HR: 0.87, 95% confidence interval (CI): 0.81-0.94; 0.81, 0.73-0.90; mortality: 0.75, 0.64-0.87; 0.70, 0.58-0.85], which composed approximately 60% of the study population. The ARRs (95% CI) were 0.17 (0.11-0.24) and 0.43 (0.24-0.61), respectively, for CRC incidence, and 0.08 (0.05-0.11) and 0.24 (0.15-0.33), respectively, for mortality. Screening did not significantly reduce the relative or absolute risk of CRC incidence and mortality in the low-risk group. Further analysis revealed that screening was most effective for men and individuals with distal CRC among the intermediate to high-risk groups. CONCLUSIONS After integrating both genetic and non-genetic factors, our findings provided priority evidence of risk-stratified CRC screening and valuable insights for the rational allocation of health resources.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Chao Sheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Zhangyan Lyu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Human Major Diseases, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| |
Collapse
|
5
|
Dueñas N, Klinkhammer H, Bonifaci N, Spier I, Mayr A, Hassanin E, Diez-Villanueva A, Moreno V, Pineda M, Maj C, Capellà G, Aretz S, Brunet J. Ability of a polygenic risk score to refine colorectal cancer risk in Lynch syndrome. J Med Genet 2023; 60:1044-1051. [PMID: 37321833 DOI: 10.1136/jmg-2023-109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Polygenic risk scores (PRSs) have been used to stratify colorectal cancer (CRC) risk in the general population, whereas its role in Lynch syndrome (LS), the most common type of hereditary CRC, is still conflicting. We aimed to assess the ability of PRS to refine CRC risk prediction in European-descendant individuals with LS. METHODS 1465 individuals with LS (557 MLH1, 517 MSH2/EPCAM, 299 MSH6 and 92 PMS2) and 5656 CRC-free population-based controls from two independent cohorts were included. A 91-SNP PRS was applied. A Cox proportional hazard regression model with 'family' as a random effect and a logistic regression analysis, followed by a meta-analysis combining both cohorts were conducted. RESULTS Overall, we did not observe a statistically significant association between PRS and CRC risk in the entire cohort. Nevertheless, PRS was significantly associated with a slightly increased risk of CRC or advanced adenoma (AA), in those with CRC diagnosed <50 years and in individuals with multiple CRCs or AAs diagnosed <60 years. CONCLUSION The PRS may slightly influence CRC risk in individuals with LS in particular in more extreme phenotypes such as early-onset disease. However, the study design and recruitment strategy strongly influence the results of PRS studies. A separate analysis by genes and its combination with other genetic and non-genetic risk factors will help refine its role as a risk modifier in LS.
Collapse
Affiliation(s)
- Nuria Dueñas
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
| | - Hannah Klinkhammer
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nuria Bonifaci
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Isabel Spier
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Andreas Mayr
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Emadeldin Hassanin
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Diez-Villanueva
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Colorectal Cancer Group (ONCOBELL), Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Instituto Salud Carlos III, Madrid, Spain
| | - Victor Moreno
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Colorectal Cancer Group (ONCOBELL), Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Instituto Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gabriel Capellà
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
| | - Stefan Aretz
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, Girona, Spain
| |
Collapse
|
6
|
Li GS, Chen G, Liu J, Tang D, Zheng JH, Luo J, Jin MH, Lu HS, Bao CX, Tian J, Deng WS, Fu JW, Feng Y, Zeng NY, Zhou HF, Kong JL. Clinical significance of cyclin-dependent kinase inhibitor 2C expression in cancers: from small cell lung carcinoma to pan-cancers. BMC Pulm Med 2022; 22:246. [PMID: 35751045 PMCID: PMC9233395 DOI: 10.1186/s12890-022-02036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cyclin-dependent kinase inhibitor 2C (CDKN2C) was identified to participate in the occurrence and development of multiple cancers; however, its roles in small cell lung carcinoma (SCLC) remain unclear. Methods Differential expression analysis of CDKN2C between SCLC and non-SCLC were performed based on 937 samples from multiple centers. The prognosis effects of CDKN2C in patients with SCLC were detected using both Kaplan–Meier curves and log-rank tests. Using receiver-operating characteristic curves, whether CDKN2C expression made it feasible to distinguish SCLC was determined. The potential mechanisms of CDKN2C in SCLC were investigated by gene ontology terms and signaling pathways (Kyoto Encyclopedia of Genes and Genomes). Based on 10,080 samples, a pan-cancer analysis was also performed to determine the roles of CDKN2C in multiple cancers. Results For the first time, upregulated CDKN2C expression was detected in SCLC samples at both the mRNA and protein levels (p of Wilcoxon rank-sum test < 0.05; standardized mean difference = 2.86 [95% CI 2.20–3.52]). Transcription factor FOXA1 expression may positively regulate CDKN2C expression levels in SCLC. High CDKN2C expression levels were related to the poor prognosis of patients with SCLC (hazard ratio > 1, p < 0.05) and showed pronounced effects for distinguishing SCLC from non-SCLC (sensitivity, specificity, and area under the curve ≥ 0.95). CDKN2C expression may play a role in the development of SCLC by affecting the cell cycle. Furthermore, the first pan-cancer analysis revealed the differential expression of CDKN2C in 16 cancers (breast invasive carcinoma, etc.) and its independent prognostic significance in nine cancers (e.g., adrenocortical carcinoma). CDKN2C expression was related to the immune microenvironment, suggesting its potential usefulness as a prognostic marker in immunotherapy. Conclusions This study identified upregulated CDKN2C expression and its clinical significance in SCLC and other multiple cancers, suggesting its potential usefulness as a biomarker in treating and differentiating cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02036-5.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Hua Zheng
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing Luo
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Mei-Hua Jin
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Song Lu
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chong-Xi Bao
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia Tian
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wu-Sheng Deng
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing-Wei Fu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yue Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Neng-Yong Zeng
- Department of Respiratory and Critical Care Medicine, The Second People's Hospital of Qinzhou, Qinzhou, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|