1
|
Li C, Meng Y, Zhou B, Zhang Y, Xia Q, Huang Y, Meng L, Shan C, Xia J, Zhang X, Wang Q, Lv M, Long W. ITGB3 is reduced in pregnancies with preeclampsia and its influence on biological behavior of trophoblast cells. Mol Med 2024; 30:275. [PMID: 39721996 DOI: 10.1186/s10020-024-01050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Preeclampsia (PE) is a serious pregnancy complication associated with impaired trophoblast function. Integrin β3 (ITGB3) is a cell adhesion molecule that plays a role in cell movement. The objective of this study was to identify the biological function and expression level of ITGB3 in PE. METHODS Cell proliferation, migration, invasion, adhesion, and apoptosis were estimated by CCK8 assay, transwell, scratch assays, and flow cytometry, respectively. The expression levels of ITGB3 were determined by qRT-PCR, western blot, and immunohistochemistry (IHC). Co-immunoprecipitation and Alphafold-Multimer protein complex structure prediction software were employed to identify the molecules that interact with ITGB3. RESULTS Cell functional experiments conducted on HTR8/SVneo cells demonstrated that ITGB3 significantly enhanced proliferation, migration, invasion, and adhesion, while simultaneously inhibiting apoptosis. Relative ITGB3 expression levels were observed to be lower in PE placental tissue than in normal tissue and similarly reduced in hypoxic HTR8/SVneo cells. RNA-sequencing data from PE placental samples in the GEO database were analyzed to identify differentially expressed genes associated with the disease. We identified a total of 1460 mRNAs that were significantly differentially expressed in PE patients. Specifically, 798 mRNAs were significantly upregulated, and 662 mRNAs were significantly downregulated. Notably, the ITGB3 exhibited a pronounced down-regulation among the differential expression mRNA. CONCLUSIONS This study suggested that ITGB3 plays an important role in promoting the proliferative, migratory, invasive, and adhesive capabilities of trophoblast cells. These findings may facilitate a more in-depth understanding of the molecular mechanisms that promote PE progression.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yanan Meng
- Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Beibei Zhou
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yanrong Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Qing Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Yu Huang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Li Meng
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Chunjian Shan
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Jiaai Xia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Xiangdi Zhang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China
| | - Qiuhong Wang
- Department of Clinical Laboratory, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, 226018, China
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.
| |
Collapse
|
2
|
Sun L, Shi M, Wang J, Han X, Wei J, Huang Z, Yang X, Ding Y, Zhang P, He A, Liu M, Yan R, Yang X, Li R, Wang G. Overexpressed Trophoblast Glycoprotein Contributes to Preeclampsia Development by Inducing Abnormal Trophoblast Migration and Invasion Toward the Uterine Spiral Artery. Hypertension 2024; 81:1524-1536. [PMID: 38716674 DOI: 10.1161/hypertensionaha.124.22923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Preeclampsia is a significant pregnancy disorder with an unknown cause, mainly attributed to impaired spiral arterial remodeling. METHODS Using RNA sequencing, we identified key genes in placental tissues from healthy individuals and preeclampsia patients. Placenta and plasma samples from pregnant women were collected to detect the expression of TPBG (trophoblast glycoprotein). Pregnant rats were injected with TPBG-carrying adenovirus to detect preeclamptic features. HTR-8/SVneo cells transfected with a TPBG overexpression lentiviral vector were used in cell function experiments. The downstream molecular mechanisms of TPBG were explored using RNA sequencing and single-cell RNA sequencing data. TPBG expression was knocked down in the lipopolysaccharide-induced preeclampsia-like rat model to rescue the preeclampsia features. We also assessed TPBG's potential as an early preeclampsia predictor using clinical plasma samples. RESULTS TPBG emerged as a crucial differentially expressed gene, expressed specifically in syncytiotrophoblasts and extravillous trophoblasts. Subsequently, we established a rat model with preeclampsia-like phenotypes by intravenously injecting TPBG-expressing adenoviruses, observing impaired spiral arterial remodeling, thus indicating a causal correlation between TPBG overexpression and preeclampsia. Studies with HTR-8/SVneo cells, chorionic villous explants, and transwell assays showed TPBG overexpression disrupts trophoblast/extravillous trophoblast migration/invasion and chemotaxis. Notably, TPBG knockdown alleviated the lipopolysaccharide-induced preeclampsia-like rat model. We enhanced preeclampsia risk prediction in early gestation by combining TPBG expression with established clinical predictors. CONCLUSIONS These findings are the first to show that TPBG overexpression contributes to preeclampsia development by affecting uterine spiral artery remodeling. We propose TPBG levels in maternal blood as a predictor of preeclampsia risk. The proposed mechanism by which TPBG overexpression contributes to the occurrence of preeclampsia via its disruptive effect on trophoblast and extravillous trophoblast migration/invasion on uterine spiral artery remodeling, thereby increasing the risk of preeclampsia.
Collapse
Affiliation(s)
- Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Mengyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Ruiling Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education (X.Y., G.W.), Jinan University, Guangzhou, China
- Clinical Research Center, Clifford Hospital, Guangzhou, China (X.Y.)
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University (L.S., M.S., J.W., X.H., J.W., Z.H., X.Y., Y.D., P.Z., A.H., M.L., R.Y., R.L.), Jinan University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine (P.Z., X.Y., G.W.), Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education (X.Y., G.W.), Jinan University, Guangzhou, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine (G.W.), Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
4
|
Liu Y, Gu F, Gao J, Gu Y, Li Z, Lu D, Zhang Y. PPP2R2A inhibition contributes to preeclampsia by regulating the proliferation, apoptosis, and angiogenesis modulation potential of mesenchymal stem cells. Cell Div 2024; 19:18. [PMID: 38734666 PMCID: PMC11088123 DOI: 10.1186/s13008-024-00118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The precise mechanisms underlying preeclampsia (PE) pathogenesis remain unclear. Mesenchymal stem cells (MSCs) are involved in the pathology of PE. The aim of our study was to identify the effects of protein phosphatase 2 regulatory subunit B α (PPP2R2A) on MSCs and ascertain its latent role in the progression of PE. METHODS Reverse-transcription quantitative polymerase chain reaction and western blot analyses were performed to determine the expression of PPP2R2A in decidual tissue and decidual (d)MSCs from healthy pregnant women and patients with PE as well as the expression levels of Bax and Bcl-2 in dMSCs. The levels of p-PI3K, PI3K, p-AKT, and AKT were determined using western blotting. Cell growth, apoptosis, and migration were analyzed using MTT, flow cytometry, and Transwell assays, respectively. Human umbilical vein endothelial cell (HUVEC) tube formation ability was assayed using a HUVEC capillary-like tube formation assay. RESULTS PPP2R2A was downregulated in decidual tissues and dMSCs of patients with PE when compared with that in healthy pregnant women. Moreover, upregulation of PPP2R2A enhanced cell proliferation, reduced apoptotic dMSC, inhibited Bax expression, and increased Bcl-2 levels. Conditioned medium from PPP2R2A-overexpressing dMSCs promoted HTR-8/SVneo cell migration and angiogenesis of HUVEC. Furthermore, the PPP2R2A plasmid suppressed PI3K/AKT pathway activation in dMSCs. However, these effects were partially reversed by LY2940002 treatment. CONCLUSION PPP2R2A inhibition contributes to PE by regulating the proliferation, apoptosis, and angiogenesis of MSCs, providing a new therapeutic target for PE diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Fangle Gu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Jun Gao
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Yingyan Gu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Zhiyue Li
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China.
| | - Yanxin Zhang
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
5
|
朱 奇, 路 云, 彭 优, 何 嘉, 韦 泽, 李 智, 陈 郁. [α2-macroglobulin alleviates glucocorticoid-induced avascular necrosis of the femoral head in mice by promoting proliferation, migration and angiogenesis of vascular endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:712-719. [PMID: 38708505 PMCID: PMC11073947 DOI: 10.12122/j.issn.1673-4254.2024.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.
Collapse
Affiliation(s)
- 奇 朱
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 云翔 路
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 优 彭
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 嘉乐 何
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 泽宇 韦
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 智勇 李
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - 郁鲜 陈
- />中山大学附属第三医院关节外科创伤骨科,广东 广州 510630Department of Joint Surgery, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
6
|
Zeng J, Qian Y, Yang J, Chen X, Fu C, Che Z, Feng Y, Yin J. Nutritional therapy bridges the critical cut-off point for the closed-loop role of type 2 diabetes and bone homeostasis: A narrative review. Heliyon 2024; 10:e28229. [PMID: 38689978 PMCID: PMC11059410 DOI: 10.1016/j.heliyon.2024.e28229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Currently, osteoporosis-related fractures become the most cutting-edge problem of diabetes-related complications. Rational diet is not only the basis of glycemic management in type 2 diabetes patients, but also the direction of diabetic bone health. This review highlights the importance of micronutrient supplementation (including calcium, magnesium, zinc, vitamin D, vitamin K, and vitamin C) for patients with T2DM, as well as describing the constructive intermediary role of gut flora between T2DM and bone through nutrients predominantly high in dietary fiber. In addition, it is recommended to combine the Mediterranean dietary pattern with other diversified management approaches to prevent OP. Therefore, this provides a theoretical basis for the potential role of islet β-cells in promoting bone health.
Collapse
Affiliation(s)
- Jia Zeng
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Ying Qian
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jizhuo Yang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Xinqiang Chen
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Chuanwen Fu
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Zhuohang Che
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, 650500, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, 678000, China
- Yunnan Provincial Key Laboratary of Public Health and Biosafety, Kunming, 650500, China
| |
Collapse
|
7
|
Sun J, Xu C, Wo K, Wang Y, Zhang J, Lei H, Wang X, Shi Y, Fan W, Zhao B, Wang J, Su B, Yang C, Luo Z, Chen L. Wireless Electric Cues Mediate Autologous DPSC-Loaded Conductive Hydrogel Microspheres to Engineer the Immuno-Angiogenic Niche for Homologous Maxillofacial Bone Regeneration. Adv Healthc Mater 2024; 13:e2303405. [PMID: 37949452 DOI: 10.1002/adhm.202303405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Stem cell therapy serves as an effective treatment for bone regeneration. Nevertheless, stem cells from bone marrow and peripheral blood are still lacking homologous properties. Dental pulp stem cells (DPSCs) are derived from neural crest, in coincidence with maxillofacial tissues, thus attracting great interest in in situ maxillofacial regenerative medicine. However, insufficient number and heterogenous alteration of seed cells retard further exploration of DPSC-based tissue engineering. Electric stimulation has recently attracted great interest in tissue regeneration. In this study, a novel DPSC-loaded conductive hydrogel microspheres integrated with wireless electric generator is fabricated. Application of exogenous electric cues can promote stemness maintaining and heterogeneity suppression for unpredictable differentiation of encapsulated DPSCs. Further investigations observe that electric signal fine-tunes regenerative niche by improvement on DPSC-mediated paracrine pattern, evidenced by enhanced angiogenic behavior and upregulated anti-inflammatory macrophage polarization. By wireless electric stimulation on implanted conductive hydrogel microspheres, loaded DPSCs facilitates the construction of immuno-angiogenic niche at early stage of tissue repair, and further contributes to advanced autologous mandibular bone defect regeneration. This novel strategy of DPSC-based tissue engineering exhibits promising translational and therapeutic potential for autologous maxillofacial tissue regeneration.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Keqi Wo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Haoqi Lei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaohan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Baoying Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
8
|
Zhang X, Sun L. Inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration: A promising target for the treatment of preeclampsia. Chem Biol Interact 2023; 386:110752. [PMID: 37806381 DOI: 10.1016/j.cbi.2023.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Preeclampsia (PE) is a complex disease of pregnancy, and an important cause of this disease is insufficient trophoblast invasion and migration. However, the underlying mechanism of PE remains largely unknown. Here, transcriptome sequencing analysis found the high expression of hepatocyte nuclear factor 4 alpha (HNF4A) in PE placentas. Meanwhile, we found that HNF4A expression was up-regulated in the placentas of PE patients. Thus, we assumed that HNF4A might be involved in PE progression. To validate our hypothesis, l-arginine methyl ester (l-NAME) or lipopolysaccharide (LPS)-treated rats were used to mimic the pathological status of PE in vivo. Consistently, HTR8/SVneo cells were treated with hypoxia/reoxygenation (H/R) or LPS to simulate PE progression in vitro. The results observed an increase in elevated urine protein levels, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which indicated that the PE-like rat model was successfully established. Meanwhile, the expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-1β was increased in PE placentas. HTR8/SVneo cells were used to further explore the underlying mechanism of PE in vitro. H/R conditions up-regulated the acetylation level of HNF4A. Further analysis showed that HNF4A overexpression inhibited trophoblast invasion and migration, while HNF4A knockdown promoted the progression. Additionally, inhibiting HNF4A was found to reduce the levels of IL-6 and IL-1β secretion in HTR8/SVneo cells following H/R or LPS exposure. Conclusively, these findings suggest that inhibiting HNF4A suppresses inflammation whilst promoting trophoblast invasion and migration in PE, providing a promising target for the treatment of PE.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
9
|
Starodubtseva NL, Tokareva AO, Volochaeva MV, Kononikhin AS, Brzhozovskiy AG, Bugrova AE, Timofeeva AV, Kukaev EN, Tyutyunnik VL, Kan NE, Frankevich VE, Nikolaev EN, Sukhikh GT. Quantitative Proteomics of Maternal Blood Plasma in Isolated Intrauterine Growth Restriction. Int J Mol Sci 2023; 24:16832. [PMID: 38069155 PMCID: PMC10706154 DOI: 10.3390/ijms242316832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.
Collapse
Affiliation(s)
- Natalia L. Starodubtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O. Tokareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Maria V. Volochaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Alexey S. Kononikhin
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Alexander G. Brzhozovskiy
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Anna E. Bugrova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Evgenii N. Kukaev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victor L. Tyutyunnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Natalia E. Kan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N. Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| |
Collapse
|