1
|
Liu B, Liu R, Zhang X, Tian L, Li Z, Yu J. Ubiquitin-conjugating enzyme E2T confers chemoresistance of colorectal cancer by enhancing the signal propagation of Wnt/β-catenin pathway in an ERK-dependent manner. Chem Biol Interact 2025; 406:111347. [PMID: 39667421 DOI: 10.1016/j.cbi.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy is a major therapeutic option for colorectal cancer; however, the frequently acquired chemoresistance greatly limits the treatment efficacy of chemotherapeutic agents. Ubiquitin-conjugating enzyme E2T (UBE2T) is emerging as a key player in the development of therapy resistance. However, whether UBE2T participates in the acquisition of chemoresistance in colorectal cancer remains undetermined. The present work aimed to specify the role of UBE2T in the development of chemoresistance in colorectal cancer and decipher any potential underlying mechanisms. Significant up-regulation of UBE2T was observed in the clinical specimens of chemoresistant colorectal cancer patients compared with chemosensitive patients. Compared with parental cells, the levels of UBE2T were also dramatically elevated in oxaliplatin (OXA)- and 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Knockout of UBE2T rendered OXA- and 5-FU-resistant cells sensitive to OXA and 5-FU, respectively. Re-expression of UBE2T restored the chemoresistance of UBE2T-knockout OXA- and 5-FU-resistant cells. Mechanistically, phosphorylated GSK-3β, active β-catenin, c-myc and cyclin D1 levels were decreased in UBE2T-knockout OXA- and 5-FU-resistant cells, which were reversed by the re-expression of UBE2T. Moreover, knockout of UBE2T reduced the activation of ERK. The inhibition of ERK reversed the promotion effect of UBE2T on Wnt/β-catenin pathway. In vivo xenograft experiments demonstrated that knockout of UBE2T rendered the subcutaneous tumors formed by OXA-resistant cells sensitive to OXA. To conclude, UBE2T confers chemoresistance of colorectal cancer by boosting the signal propagation of the Wnt/β-catenin pathway in an ERK-dependent manner. Therefore, UBE2T could be a potential target for overcoming chemoresistance in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ultrasound, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China.
| | - Xiaolong Zhang
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| |
Collapse
|
2
|
Liu J, Luo D, Chen X, Liu J, Chen J, Shi M, Dong H, Xu Y, Wang X, Yu Z, Liu H, Feng Y. 4'-Demethylpodophyllotoxin functions as a mechanism-driven therapy by targeting the PI3K-AKT pathway in Colorectal cancer. Transl Oncol 2025; 51:102199. [PMID: 39631206 DOI: 10.1016/j.tranon.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/24/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
The treatment of colorectal cancer (CRC) poses significant challenges in terms of drug resistance and poor prognosis, necessitating the exploration of effective therapeutic strategies. In this study, high-throughput drug screening was utilized to identify Chinese herbal medicines with notable therapeutic effects on CRC. Among the compounds identified, 4'-demethylpodophyllotoxin (DOP), a derivative of podophyllotoxin, emerged as a potent anti-cancer compound. DOP exhibited time- and dose-dependent growth inhibition on CRC cell lines and tumor organoids derived from patients. RNA-seq revealed that DOP activated the PI3K-AKT pathway, leading to tumor cell apoptosis and cell cycle arrest at the G2/M phase. Additionally, DOP induced DNA damage in CRC cells. To further validate its therapeutic efficacy in CRC, the DLD1-derived xenograft model demonstrated that DOP effectively suppressed CRC growth in vivo. In conclusion, these findings highlight the significant therapeutic potential of DOP as an anti-tumor drug for treating CRC, thereby opening new avenues for investigating Podophyllotoxin derivatives in this specific field.
Collapse
Affiliation(s)
- Jun Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Dandong Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Xiaochuan Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of Obstetrics and Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Jiaqi Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Junxiong Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Mengchen Shi
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Haiyan Dong
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Yucheng Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Xinyou Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Stomach Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China.
| | - Yanchun Feng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, PR China.
| |
Collapse
|
3
|
Zhang J, Zhu H, Li L, Gao Y, Yu B, Ma G, Jin X, Sun Y. New mechanism of LncRNA: In addition to act as a ceRNA. Noncoding RNA Res 2024; 9:1050-1060. [PMID: 39022688 PMCID: PMC11254507 DOI: 10.1016/j.ncrna.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Long non-coding RNAs (LncRNAs) are a class of RNA molecules with nucleic acid lengths ranging from 200 bp to 100 kb that cannot code for proteins, which are diverse and widely expressed in both animals and plants. Scholars have found that lncRNAs can regulate human physiological processes at the gene and protein levels, mainly through the regulation of epigenetic, transcriptional and post-transcriptional levels of genes and proteins, as well as in the immune response by regulating the expression of immune cells and inflammatory factors, and thus participate in the occurrence and development of a variety of diseases. From the downstream targets of lncRNAs, we summarize the new research progress of lncRNA mechanisms other than miRNA sponges in recent years, aiming to provide new ideas and directions for the study of lncRNA mechanisms.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Linjing Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuting Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, Northwest Normal University, Gansu Province, Lanzhou, 730070, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorong Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Zhang N, Wen K. The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 2024; 52:142. [PMID: 39219266 PMCID: PMC11378159 DOI: 10.3892/or.2024.8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
Collapse
Affiliation(s)
- Nianjie Zhang
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
5
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
6
|
Lin H, Luo Y, Gong T, Fang H, Li H, Ye G, Zhang Y, Zhong M. GDF15 induces chemoresistance to oxaliplatin by forming a reciprocal feedback loop with Nrf2 to maintain redox homeostasis in colorectal cancer. Cell Oncol (Dordr) 2024; 47:1149-1165. [PMID: 38386232 DOI: 10.1007/s13402-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE Growth differentiating Factor 15 (GDF15) is linked to several cancers, but its effect on chemoresistance in colorectal cancer (CRC) remains unclear. Here, we investigated the role of GDF15 in the chemotherapeutic response of CRC patients to oxaliplatin (L-OHP). METHODS GDF15 levels in serum and tumour tissues were detected in CRC patients have received L-OHP-based neoadjuvant chemotherapy. The effects of GDF15 neutralization or GDF15 knockdown on cell proliferation, apoptosis and intracellular reactive oxygen species (ROS) levels were analysed in vitro and in vivo. Co-immunoprecipitation (Co-IP), Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays were used to explore the interaction between GDF15 and Nrf2. RESULTS In this study, we found that GDF15 alleviates oxidative stress to induce chemoresistance of L-OHP in CRC. Mechanically, GDF15 posttranscriptionally regulates protein stability of Nrf2 through the canonical PI3K/AKT/GSK3β signaling pathway, and in turn, Nrf2 acts as a transcription factor to regulate GDF15 expression to form a positive feedback loop, resulting in the maintenance of redox homeostasis balance in CRC. Furthermore, a positive correlation between GDF15 and Nrf2 was observed in clinical CRC samples, and simultaneous overexpression of both GDF15 and Nrf2 was associated with poor prognosis in CRC patients treated with L-OHP. Simultaneous inhibition of both GDF15 and Nrf2 significantly increases the response to L-OHP in an L-OHP-resistant colorectal cancer cells-derived mouse xenograft model. CONCLUSION This study identified a novel GDF15-Nrf2 positive feedback loop that drives L-OHP resistance and suggested that the GDF15-Nrf2 axis is a potential therapeutic target for the treatment of L-OHP-resistant CRC.
Collapse
Affiliation(s)
- Haiping Lin
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyue Gong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
8
|
Chang L, Ding J, Pu J, Zhu J, Zhou X, Luo Q, Li J, Qian M, Lin S, Li J, Wang K. A novel lncRNA LOC101928222 promotes colorectal cancer angiogenesis by stabilizing HMGCS2 mRNA and increasing cholesterol synthesis. J Exp Clin Cancer Res 2024; 43:185. [PMID: 38965575 PMCID: PMC11223299 DOI: 10.1186/s13046-024-03095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Affiliated Hospital of Kangda college, Nanjing Medical University, Huaian, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhou
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengsen Qian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhui Lin
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Feng Z, Zhang S, Han Q, Chu T, Wang H, Yu L, Zhang W, Liu J, Liang W, Xue J, Wu X, Zhang C, Wang Y. Liensinine sensitizes colorectal cancer cells to oxaliplatin by targeting HIF-1α to inhibit autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155647. [PMID: 38703660 DOI: 10.1016/j.phymed.2024.155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Oxaliplatin is the most common chemotherapeutic agent for patients with colorectal cancer. However, its anti-cancer efficacy is restricted by drug resistance occurring through several mechanisms, including autophagy. Liensinine exerts a considerable anti-tumor effect and can regulate autophagy. Inhibition of autophagy is a strategy to reverse resistance to oxaliplatin. The aim of this study was to check if liensinine can enhance the therapeutic efficacy of oxaliplatin in colorectal cancer and if so, elucidate its mechanism. METHODS Two colorectal cancer cell lines, HCT116 and LoVo, and one normal intestinal epithelial cell, NCM-460 were used for in vitro experiments. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the cytotoxicity of liensinine and oxaliplatin. Network pharmacology analysis and Human XL Oncology Array were used to screen targets of liensinine. Transfections and autophagy regulators were used to confirm these targets. The relationship between the target and clinical effect of oxaliplatin was analyzed. Patient-derived xenograft (PDX) models were used to validate the effects of liensinine and oxaliplatin. RESULTS CCK-8 and colony formation assays both showed that the combination treatment of liensinine and oxaliplatin exerted synergistic effects. Results of the network pharmacology analysis and Human XL Oncology Array suggested that liensinine can inhibit autophagy by targeting HIF-1α/eNOS. HIF-1α was identified as the key factor modulated by liensinine in autophagy and induces resistance to oxaliplatin. HIF-1α levels in tumor cells and prognosis for FOLFOX were negatively correlated in clinical data. The results from three PDX models with different HIF-1α levels showed their association with intrinsic and acquired resistance to oxaliplatin in these models, which could be reversed by liensinine. CONCLUSIONS Research on the relationship between HIF-1α levels and the clinical effect of oxaliplatin is lacking, and whether liensinine regulates HIF-1α is unknown. Our findings suggest that liensinine overcomes the resistance of colorectal cancer cells to oxaliplatin by suppressing HIF-1α levels to inhibit autophagy. Our findings can contribute to improving prognosis following colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Shuai Zhang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Qiurong Han
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Tianhao Chu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, PR China
| | - Huaqing Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Li Yu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | | | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, PR China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Jun Xue
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Xueliang Wu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China; Tianjin Institute of Coloproctology, Tianjin, PR China.
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, PR China.
| |
Collapse
|
10
|
Zhang H, Liu W, Wu Y, Chen C. USP3: Key deubiquitylation enzyme in human diseases. Cancer Sci 2024; 115:2094-2106. [PMID: 38651282 PMCID: PMC11247611 DOI: 10.1111/cas.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Ubiquitination and deubiquitylation are pivotal posttranslational modifications essential for regulating cellular protein homeostasis and are implicated in the development of human diseases. Ubiquitin-specific protease 3 (USP3), a member of the ubiquitin-specific protease family, serves as a key deubiquitylation enzyme, playing a critical role in diverse cellular processes including the DNA damage response, cell cycle regulation, carcinogenesis, tumor cell proliferation, migration, and invasion. Despite notable research efforts, our current understanding of the intricate and context-dependent regulatory networks governing USP3 remains incomplete. This review aims to comprehensively synthesize existing published works on USP3, elucidating its multifaceted roles, functions, and regulatory mechanisms, while offering insights for future investigations. By delving into the complexities of USP3, this review strives to provide a foundation for a more nuanced understanding of its specific roles in various cellular processes. Furthermore, the exploration of USP3's regulatory networks may uncover novel therapeutic strategies targeting this enzyme in diverse human diseases, thereby holding promising clinical implications. Overall, an in-depth comprehension of USP3's functions and regulatory pathways is crucial for advancing our knowledge and developing targeted therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Hongyan Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
- Academy of Biomedical EngineeringKunming Medical UniversityKunmingChina
| |
Collapse
|
11
|
Tao R, Liu Z, Zhang Z, Zhang Z. USP3 promotes cisplatin resistance in non-small cell lung cancer cells by suppressing ACOT7-regulated ferroptosis. Anticancer Drugs 2024; 35:483-491. [PMID: 38502867 DOI: 10.1097/cad.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
This study aims to investigate the role and mechanism of ubiquitin-specific protease 3 (USP3) in cisplatin (DDP) in non-small cell lung cancer (NSCLC). USP3 expression in NSCLC cells was detected using reverse transcription quantitative PCR and Western blot. DDP-resistant cells were constructed and cell counting kit-8 assay determined the IC 50 of cells to DDP. USP3 expression was silenced in DDP-resistant cells, followed by detection of cell proliferation by clone formation assay, iron ion contents, ROS, MDA, and GSH levels by kits, GPX4 and ACSL4 protein expressions by Western blot. The binding between USP3 and ACOT7 was analyzed using Co-IP, and the ubiquitination level of ACOT7 was measured. USP3 and ACOT7 were highly expressed in NSCLC cells and further increased in drug-resistant cells. USP3 silencing reduced the IC 50 of cells to DDP and diminished the number of cell clones. Moreover, USP3 silencing suppressed GSH and GPX4 levels, upregulated iron ion contents, ROS, MDA, and ACSL4 levels, and facilitated ferroptosis. Mechanistically, USP3 upregulated ACOT7 protein expression through deubiquitination. ACOT7 overexpression alleviated the promoting effect of USP7 silencing on ferroptosis in NSCLC cells and enhanced DDP resistance. To conclude, USP3 upregulated ACOT7 protein expression through deubiquitination, thereby repressing ferroptosis in NSCLC cells and enhancing DDP resistance.
Collapse
Affiliation(s)
- Rancen Tao
- Department of Pulmonary Surgery, Tianjin Cancer Hospital, Tianjin, China
| | | | | | | |
Collapse
|
12
|
Wang Y, Shi Y, Niu K, Yang R, Lv Q, Zhang W, Feng K, Zhang Y. Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases. Cell Death Discov 2024; 10:243. [PMID: 38773075 PMCID: PMC11109179 DOI: 10.1038/s41420-024-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis. Ubiquitin specific peptidase 3 (USP3) is a member of the DUBs that has received increasing attention in recent years. USP3 is a novel chromatin modifier that tightly regulates the DNA damage response (DDR) and maintains genome integrity. Meanwhile, USP3 acts as a key regulator of inflammatory vesicles and sustains the normal operation of the innate immune system. In addition, USP3 is aberrantly expressed in a wide range of cancers, such as gastric cancer, glioblastoma and neuroblastoma, implicating that USP3 could be an effective target for targeted therapies. In this review, we retrace all the current researches of USP3, describe the structure of USP3, elucidate its functions in DNA damage, immune and inflammatory responses and the cell cycle, and summarize the important role of USP3 in multiple cancers and diseases.
Collapse
Affiliation(s)
- Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
13
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
14
|
Yao Y, Zhang F, Liu F, Xia D. Propofol-induced LINC01133 inhibits the progression of colorectal cancer via miR-186-5p/NR3C2 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2265-2284. [PMID: 38146619 DOI: 10.1002/tox.24104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Colorectal cancer (CRC) is a formidable threat to human well-being, characterized by a largely enigmatic occurrence and progression mechanism. A growing body of literature has underscored the potential influence of propofol, a frequently administered anesthetic, on clinical outcomes in malignant tumor patients. However, the precise molecular mechanisms underlying the impact of propofol on the progression of CRC have yet to be fully elucidated. This study reveals a notable upregulation of LINC01133 expression in CRC cells subsequent to propofol treatment, which is mediated by FOXO1. Subsequently, a series of experiments were conducted to elucidate the role and mechanisms underlying propofol-induced LINC01133 in CRC development. Our study uncovers that the upregulation of LINC01133 exerts a substantial inhibitory effect on the proliferation, migration, and invasion of CRC cells. Further investigation revealed that LINC01133 can attenuate the proliferation, invasion, and migration of CRC cell lines through the miR-186-5p/NR3C2 axis. Results from in vivo experiments unequivocally demonstrated a significant reduction in the growth rate of subcutaneous implant tumors upon LINC01133 overexpression in CRC cells. These findings posit that propofol induces LINC01133 expression, leading to the inhibition of CRC progression. This revelation offers a novel perspective on propofol's antitumor properties and underscores the potential of LINC01133 as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yingying Yao
- Department of Anesthesiology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Fang Zhang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| | - Feiyu Liu
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| | - Daolin Xia
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Jiangsu, China
| |
Collapse
|
15
|
Weng X, Ma T, Chen Q, Chen BW, Shan J, Chen W, Zhi X. Decreased expression of H19/miR-675 ameliorates hypoxia-induced oxaliplatin resistance in colorectal cancer. Heliyon 2024; 10:e27027. [PMID: 38449593 PMCID: PMC10915565 DOI: 10.1016/j.heliyon.2024.e27027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Hypoxic microenvironment, a hallmark of solid tumors, contributes to chemoresistance, and long noncoding (lnc) RNAs are involved in hypoxia-induced drug resistance. However, the role of lncRNAs in hypoxic tumor chemotherapy resistance remains unclear. Here, we aimed to elucidate the effects of lncRNAs in hypoxia-mediated resistance in colorectal cancer (CRC), as well as the underlying mechanisms. The results indicated that the expression of lncRNA H19 was enhanced in hypoxia- or oxaliplatin-treated CRC cells; moreover, H19 contributed to drug resistance in CRC cells both in vitro and in vivo. Mechanistically, H19 was noted to act as a competitive endogenous RNA of miR-675-3p to regulate epithelial-mesenchymal transition (EMT). Notably, an miR-675-3p mimic could attenuate the effects of H19 deficiency in CRC cells with hypoxia-induced chemoresistance. In conclusion, H19 downregulation may counteract hypoxia-induced chemoresistance by sponging miR-675-3p to regulate EMT; as such, the H19/miR-675-3p axis might be a promising therapeutic target for drug resistance in CRC.
Collapse
Affiliation(s)
- Xingyue Weng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Qi Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Bryan Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79, Qingchun Road, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
16
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
17
|
Wang K, Lu Y, Li H, Zhang J, Ju Y, Ouyang M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int 2024; 24:15. [PMID: 38184562 PMCID: PMC10770979 DOI: 10.1186/s12935-023-03194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Metabolic reprogramming, which is recognized as a hallmark of cancer, refers to the phenomenon by which cancer cells change their metabolism to support their increased biosynthetic demands. Tumor cells undergo substantial alterations in metabolic pathways, such as glycolysis, oxidative phosphorylation, pentose phosphate pathway, tricarboxylic acid cycle, fatty acid metabolism, and amino acid metabolism. Latest studies have revealed that long non-coding RNAs (lncRNAs), a group of non-coding RNAs over 200 nucleotides long, mediate metabolic reprogramming in tumor cells by regulating the transcription, translation and post-translational modification of metabolic-related signaling pathways and metabolism-related enzymes through transcriptional, translational, and post-translational modifications of genes. In addition, lncRNAs are closely related to the tumor microenvironment, and they directly or indirectly affect the proliferation and migration of tumor cells, drug resistance and other processes. Here, we review the mechanisms of lncRNA-mediated regulation of glucose, lipid, amino acid metabolism and tumor immunity in gastrointestinal tumors, aiming to provide more information on effective therapeutic targets and drug molecules for gastrointestinal tumors.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- Guangdong Medical University, Dongguan, 523808, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Yang Y, Xiong Z, Li W, Lin Y, Huang W, Zhang S. FHIP1A-DT is a potential novel diagnostic, prognostic, and therapeutic biomarker of colorectal cancer: A pan-cancer analysis. Biochem Biophys Res Commun 2023; 679:191-204. [PMID: 37703762 DOI: 10.1016/j.bbrc.2023.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND FHIP1A-DT is a long non-coding RNA (lncRNA) obtained by divergent transcription whose mechanism in pan-cancer and colorectal cancer (CRC) is unclear. We elucidated the molecular mechanism of FHIP1A-DT through bioinformatics analysis and in vitro experiments. METHODS Pan-cancer and CRC data were downloaded from the University of California, Santa Cruz (UCSC) Genome Browser and the Cancer Genome Atlas (TCGA). We analyzed FHIP1A-DT expression and its relationship with clinical stage, diagnosis, prognosis, and immunity characteristics in pan-cancer. We also analyzed FHIP1A-DT expression in CRC and explored the relationship between FHIP1A-DT and CRC diagnosis and prognosis. Then, we analyzed the correlation between FHIP1A-DT and drug sensitivity, immune cell infiltration, and the biological processes involved in FHIP1A-DT. The competing endogenous RNA (ceRNA) regulatory network associated with FHIP1A-DT was explored. External validation was conducted using external data sets GSE17538 and GSE39582 and in vitro experiments. RESULTS FHIP1A-DT expression was different in pan-cancer and had excellent diagnostic and prognostic capability for pan-cancer. FHIP1A-DT was also related to the pan-cancer tumor mutation burden (TMB), microsatellite instability (MSI), and immune cell content. FHIP1A-DT was downregulated in CRC, where patients with CRC with low FHIP1A-DT expression had a worse prognosis. A nomogram combined with FHIP1A-DT expression demonstrated excellent predictive ability for prognosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that FHIP1A-DT was associated with epigenetic modification and regulated many cancer-related pathways. The ceRNA network demonstrated the potential gene regulation of FHIP1A-DT. FHIP1A-DT was related to many chemotherapeutic drug sensitivities and immune cell infiltration such as CD4 memory resting T cells, monocytes, plasma cells, neutrophils, and M2 macrophages. The FHIP1A-DT expression and prognostic analysis of GSE17538 and GSE39582, and qPCR yielded similar external verification results. CONCLUSION FHIP1A-DT was a novel CRC-related lncRNA related to CRC diagnosis, prognosis, and treatment sensitivity. It could be used as a significant CRC biomarker in the future.
Collapse
Affiliation(s)
- Yongjun Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Zuming Xiong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Wenxin Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Yirong Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|