1
|
Bellamy KKL, Skedsmo FS, Hultman J, Jansen JH, Lingaas F. Neuronal ceroid lipofuscinosis in a Schapendoes dog is caused by a missense variant in CLN6. Anim Genet 2024; 55:612-620. [PMID: 38866396 DOI: 10.1111/age.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders that occur in humans, dogs, and several other species. NCL is characterised clinically by progressive deterioration of cognitive and motor function, epileptic seizures, and visual impairment. Most forms present early in life and eventually lead to premature death. Typical pathological changes include neuronal accumulation of autofluorescent, periodic acid-Schiff- and Sudan black B-positive lipopigments, as well as marked loss of neurons in the central nervous system. Here, we describe a 19-month-old Schapendoes dog, where clinical signs were indicative of lysosomal storage disease, which was corroborated by pathological findings consistent with NCL. Whole genome sequencing of the affected dog and both parents, followed by variant calling and visual inspection of known NCL genes, identified a missense variant in CLN6 (c.386T>C). The variant is located in a highly conserved region of the gene and predicted to be harmful, which supports a causal relationship. The identification of this novel CLN6 variant enables pre-breeding DNA-testing to prevent future cases of NCL6 in the Schapendoes breed, and presents a potential natural model for NCL6 in humans.
Collapse
Affiliation(s)
| | - Fredrik S Skedsmo
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Josefin Hultman
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Johan Høgset Jansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Frode Lingaas
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Mhlanga-Mutangadura T, Bullock G, Cerda-Gonzalez S, Katz ML. Neuronal Ceroid Lipofuscinosis in a Mixed-Breed Dog with a Splice Site Variant in CLN6. Genes (Basel) 2024; 15:661. [PMID: 38927597 PMCID: PMC11203140 DOI: 10.3390/genes15060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
A 23-month-old neutered male dog of unknown ancestry presented with a history of progressive neurological signs that included anxiety, cognitive impairment, tremors, seizure activity, ataxia, and pronounced visual impairment. The clinical signs were accompanied by global brain atrophy. Due to progression in the severity of disease signs, the dog was euthanized at 26 months of age. An examination of the tissues collected at necropsy revealed dramatic intracellular accumulations of autofluorescent inclusions in the brain, retina, and cardiac muscle. The inclusions were immunopositive for subunit c of mitochondrial ATP synthase, and their ultrastructural appearances were similar to those of lysosomal storage bodies that accumulate in some neuronal ceroid lipofuscinosis (NCL) diseases. The dog also exhibited widespread neuroinflammation. Based on these findings, the dog was deemed likely to have suffered from a form of NCL. A whole genome sequence analysis of the proband's DNA revealed a homozygous C to T substitution that altered the intron 3-exon 4 splice site of CLN6. Other mutations in CLN6 cause NCL diseases in humans and animals, including dogs. The CLN6 protein was undetectable with immunolabeling in the tissues of the proband. Based on the clinical history, fluorescence and electron-microscopy, immunohistochemistry, and molecular genetic findings, the disorder in this dog was classified as an NCL resulting from the absence of the CLN6 protein. Screening the dog's genome for a panel of breed-specific polymorphisms indicated that its ancestry included numerous breeds, with no single breed predominating. This suggests that the CLN6 disease variant is likely to be present in other mixed-breed dogs and at least some ancestral breeds, although it is likely to be rare since other cases have not been reported to date.
Collapse
Affiliation(s)
- Tendai Mhlanga-Mutangadura
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (T.M.-M.); (G.B.)
| | - Garrett Bullock
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (T.M.-M.); (G.B.)
| | | | - Martin L. Katz
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (T.M.-M.); (G.B.)
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Katz ML, Cook J, Vite CH, Campbell RS, Coghill LM, Lyons LA. Beta-mannosidosis in a domestic cat associated with a missense variant in MANBA. Gene 2024; 893:147941. [PMID: 37913889 PMCID: PMC10841995 DOI: 10.1016/j.gene.2023.147941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
A 6-month-old cat of unknown ancestry presented for a neurologic evaluation due to progressive motor impairment. Complete physical and neurologic examinations suggested the disorder was likely to be hereditary, although the signs were not consistent with any previously described inherited disorders in cats. Due to the progression of disease signs including severely impaired motor function and cognitive decline, the cat was euthanized at approximately 10.5 months of age. Whole genome sequence analysis identified a homozygous missense variant c.2506G > A in MANBA that predicts a p.Gly836Arg alteration in the encoded lysosomal enzyme β -mannosidase. This variant was not present in the whole genome or whole exome sequences of any of the 424 cats represented in the 99 Lives Cat Genome dataset. β -Mannosidase enzyme activity was undetectable in brain tissue homogenates from the affected cat, whereas α-mannosidase enzyme activities were elevated compared to an unaffected cat. Postmortem examination of brain and retinal tissues revealed massive accumulations of vacuolar inclusions in most cells, similar to those reported in animals of other species with hereditary β -mannosidosis. Based on these findings, the cat likely suffered from β -mannosidosis due to the abolition of β -mannosidase activity associated with the p.Gly836Arg amino acid substitution. p.Gly836 is located in the C-terminal region of the protein and was not previously known to be involved in modulating enzyme activity. In addition to the vacuolar inclusions, some cells in the brain of the affected cat contained inclusions that exhibited lipofuscin-like autofluorescence. Electron microscopic examinations suggested these inclusions formed via an autophagy-like process.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO 65212, USA.
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Rebecca S Campbell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lyndon M Coghill
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Leslie A Lyons
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Cocostîrc V, Paștiu AI, Pusta DL. An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals (Basel) 2023; 13:3568. [PMID: 38003185 PMCID: PMC10668755 DOI: 10.3390/ani13223568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hereditary neurological conditions documented in dogs encompass congenital, neonatal, and late-onset disorders, along with both progressive and non-progressive forms. In order to identify the causal variant of a disease, the main two approaches are genome-wide investigations and candidate gene investigation. Online Mendelian Inheritance in Animals currently lists 418 Mendelian disorders specific to dogs, of which 355 have their likely causal genetic variant identified. This review aims to summarize the current knowledge on the canine nervous system phenes and their genetic causal variant. It has been noted that the majority of these diseases have an autosomal recessive pattern of inheritance. Additionally, the dog breeds that are more prone to develop such diseases are the Golden Retriever, in which six inherited neurological disorders with a known causal variant have been documented, and the Belgian Shepherd, in which five such disorders have been documented. DNA tests can play a vital role in effectively managing and ultimately eradicating inherited diseases.
Collapse
Affiliation(s)
- Vlad Cocostîrc
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.I.P.); (D.L.P.)
| | | | | |
Collapse
|
5
|
Bullock G, Johnson GS, Pattridge SG, Mhlanga-Mutangadura T, Guo J, Cook J, Campbell RS, Vite CH, Katz ML. A Homozygous MAN2B1 Missense Mutation in a Doberman Pinscher Dog with Neurodegeneration, Cytoplasmic Vacuoles, Autofluorescent Storage Granules, and an α-Mannosidase Deficiency. Genes (Basel) 2023; 14:1746. [PMID: 37761886 PMCID: PMC10531151 DOI: 10.3390/genes14091746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A 7-month-old Doberman Pinscher dog presented with progressive neurological signs and brain atrophy suggestive of a hereditary neurodegenerative disorder. The dog was euthanized due to the progression of disease signs. Microscopic examination of tissues collected at the time of euthanasia revealed massive accumulations of vacuolar inclusions in cells throughout the central nervous system, suggestive of a lysosomal storage disorder. A whole genome sequence generated with DNA from the affected dog contained a likely causal, homozygous missense variant in MAN2B1 that predicted an Asp104Gly amino acid substitution that was unique among whole genome sequences from over 4000 dogs. A lack of detectable α-mannosidase enzyme activity confirmed a diagnosis of a-mannosidosis. In addition to the vacuolar inclusions characteristic of α-mannosidosis, the dog exhibited accumulations of autofluorescent intracellular inclusions in some of the same tissues. The autofluorescence was similar to that which occurs in a group of lysosomal storage disorders called neuronal ceroid lipofuscinoses (NCLs). As in many of the NCLs, some of the storage bodies immunostained strongly for mitochondrial ATP synthase subunit c protein. This protein is not a substrate for α-mannosidase, so its accumulation and the development of storage body autofluorescence were likely due to a generalized impairment of lysosomal function secondary to the accumulation of α-mannosidase substrates. Thus, it appears that storage body autofluorescence and subunit c accumulation are not unique to the NCLs. Consistent with generalized lysosomal impairment, the affected dog exhibited accumulations of intracellular inclusions with varied and complex ultrastructural features characteristic of autophagolysosomes. Impaired autophagic flux may be a general feature of this class of disorders that contributes to disease pathology and could be a target for therapeutic intervention. In addition to storage body accumulation, glial activation indicative of neuroinflammation was observed in the brain and spinal cord of the proband.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Savannah G. Pattridge
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (G.B.); (G.S.J.); (S.G.P.); (T.M.-M.); (J.G.)
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA;
| | - Rebecca S. Campbell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.S.C.); (C.H.V.)
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Wu X, Zhang H, Long H, Zhang D, Yang X, Liu D, E G. Genome-Wide Selection Signal Analysis to Investigate Wide Genomic Heredity Divergence between Eurasian Wild Boar and Domestic Pig. Animals (Basel) 2023; 13:2158. [PMID: 37443955 DOI: 10.3390/ani13132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
As important livestock species, pigs provide essential meat resources for humans, so understanding the genetic evolution behind their domestic history could help with the genetic improvement of domestic pigs. This study aimed to investigate the evolution of convergence and divergence under selection in European and Asian domestic pigs by using public genome-wide data. A total of 164 and 108 candidate genes (CDGs) were obtained from the Asian group (wild boar vs. domestic pig) and the European group (wild boar vs. domestic pig), respectively, by taking the top 5% of intersected windows of a pairwise fixation index (FST) and a cross population extended haplotype homozygosity test (XPEHH). GO and KEGG annotated results indicated that most CDGs were related to reproduction and immunity in the Asian group. Conversely, rich CDGs were enriched in muscle development and digestion in the European group. Eight CDGs were subjected to parallel selection of Eurasian domestic pigs from local wild boars during domestication. These CDGs were mainly involved in olfactory transduction, metabolic pathways, and progesterone-mediated oocyte maturation. Moreover, 36 and 18 haplotypes of INPP5B and TRAK2 were identified in this study, respectively. In brief, this study did not only improve the understanding of the genetic evolution of domestication in pigs, but also provides valuable CDGs for future breeding and genetic improvement of pigs.
Collapse
Affiliation(s)
- Xinming Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Haoyuan Long
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
8
|
Pervin S, Islam MS, Tada N, Tsutsui T, Rahman MM, Yabuki A, Tacharina MR, Rakib TM, Maki S, Yamato O. Screening and Carrier Rate of Neuronal Ceroid Lipofuscinosis in Chihuahua Dogs in Japan. Animals (Basel) 2022; 12:1210. [PMID: 35565635 PMCID: PMC9106037 DOI: 10.3390/ani12091210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of rare lethal neurodegenerative lysosomal storage diseases that occur in a range of dog breeds, including Chihuahuas. Recently, a homozygous single base-pair deletion (c.846delT), which causes a frame shift generating a premature stop codon (p.Phe282Leufs13*) in the canine CLN7/MFSD8 gene, has been identified as a causative mutation for NCL in Chihuahuas. The objective of this study was to determine the frequency of the mutant allele and/or carrier rate of NCL in Chihuahuas in Japan using a newly designed real-time PCR assay. Samples of saliva were randomly collected from 1007 Chihuahua puppies during physical examinations prior to the transportation to pet shops. Screening results revealed a carrier rate of 1.29%, indicating a mutant allele frequency (0.00645) that is considered sufficiently high to warrant measures for the control and prevention of this lethal disease. The genotyping assay designed in this study could make a valuable contribution to the control and prevention of NCL.
Collapse
Affiliation(s)
- Shahnaj Pervin
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
| | - Md Shafiqul Islam
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Naomi Tada
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Japan Institute of Small Animal Reproduction (Bio Art), 3-16-9 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan;
| | - Toshihiko Tsutsui
- Japan Institute of Small Animal Reproduction (Bio Art), 3-16-9 Uchikanda, Chiyoda-ku, Tokyo 101-0047, Japan;
| | - Mohammad Mahbubur Rahman
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Akira Yabuki
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
| | - Martia Rani Tacharina
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Faculty of Veterinary Medicine, Airlangga University, Campus C, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Tofazzal Md Rakib
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Shinichiro Maki
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
| | - Osamu Yamato
- Laboratory of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (S.P.); (M.S.I.); (N.T.); (M.M.R.); (A.Y.); (M.R.T.); (T.M.R.); (S.M.)
- Faculty of Veterinary Medicine, Airlangga University, Campus C, Jl. Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
9
|
Adult-Onset Neuronal Ceroid Lipofuscinosis in a Shikoku Inu. Vet Sci 2021; 8:vetsci8100227. [PMID: 34679057 PMCID: PMC8538799 DOI: 10.3390/vetsci8100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
A two-year-and-eleven-month-old male Shikoku Inu was referred for evaluation of progressive gait abnormality that had begun three months prior. Neurological examination revealed ventral flexion of the neck, a wide-based stance in the hindlimb, wide excursions of the head from side to side, tremor in all four limbs, hypermetria in all four limbs, proprioceptive deficits in all four limbs, reduced patellar reflex in both hindlimbs, and postural vertical nystagmus. Later, behavioral and cognitive dysfunction, ataxia, and visual deficits slowly progressed. Magnetic resonance imaging revealed symmetrical progressive atrophy of the whole brain and cervical spinal cord. Bilateral retinal degeneration was observed, and both flush and flicker electroretinograms were bilaterally non-recordable at the age of five years and eight months, and the dog was euthanized. Histopathologically, faint-to-moderate deposition of light-brown pigments was frequently observed in the cytoplasm of neurons throughout the cerebrum, cerebellum, and nuclei of the brainstem. The pigments were positive for Luxol fast blue, periodic acid–Schiff, and Sudan black B, and exhibited autofluorescence. Electron microscopic examination revealed the accumulation of membranous material deposition in the neuronal cytoplasm. Small foci of pigment-containing macrophages were frequently observed around the capillary vessels. Based on these clinical and pathological findings, the animal was diagnosed with adult-onset neuronal ceroid lipofuscinosis.
Collapse
|
10
|
Cerda-Gonzalez S, Packer RA, Garosi L, Lowrie M, Mandigers PJJ, O'Brien DP, Volk HA. International veterinary canine dyskinesia task force ECVN consensus statement: Terminology and classification. J Vet Intern Med 2021; 35:1218-1230. [PMID: 33769611 PMCID: PMC8162615 DOI: 10.1111/jvim.16108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Movement disorders are a heterogeneous group of clinical syndromes in humans and animals characterized by involuntary movements without changes in consciousness. Canine movement disorders broadly include tremors, peripheral nerve hyperexcitability disorders, paroxysmal dyskinesia, and dystonia. Of these, canine paroxysmal dyskinesias remain one of the more difficult to identify and characterize in dogs. Canine paroxysmal dyskinesias include an array of movement disorders in which there is a recurrent episode of abnormal, involuntary, movement. In this consensus statement, we recommend standard terminology for describing the various movement disorders with an emphasis on paroxysmal dyskinesia, as well as a preliminary classification and clinical approach to reporting cases. In the clinical approach to movement disorders, we recommend categorizing movements into hyperkinetic vs hypokinetic, paroxysmal vs persistent, exercise‐induced vs not related to exercise, using a detailed description of movements using the recommended terminology presented here, differentiating movement disorders vs other differential diagnoses, and then finally, determining whether the paroxysmal dyskinesia is due to either inherited or acquired etiologies. This consensus statement represents a starting point for consistent reporting of clinical descriptions and terminology associated with canine movement disorders, with additional focus on paroxysmal dyskinesia. With consistent reporting and identification of additional genetic mutations responsible for these disorders, our understanding of the phenotype, genotype, and pathophysiology will continue to develop and inform further modification of these recommendations.
Collapse
Affiliation(s)
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Mark Lowrie
- Dovecote Veterinary Hospital, Derby, United Kingdom
| | - Paul J J Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Guevar J, Hug P, Giebels F, Durand A, Jagannathan V, Leeb T. A major facilitator superfamily domain 8 frameshift variant in a cat with suspected neuronal ceroid lipofuscinosis. J Vet Intern Med 2019; 34:289-293. [PMID: 31860737 PMCID: PMC6979099 DOI: 10.1111/jvim.15663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022] Open
Abstract
A 2‐year‐old male domestic shorthair cat was presented for a progressive history of abnormal posture, behavior, and mentation. Menace response was absent bilaterally, and generalized tremors were identified on neurological examination. A neuroanatomical diagnosis of diffuse brain dysfunction was made. A neurodegenerative disorder was suspected. Magnetic resonance imaging findings further supported the clinical suspicion. Whole‐genome sequencing of the affected cat with filtering of variants against a database of unaffected cats was performed. Candidate variants were confirmed by Sanger sequencing followed by genotyping of a control population. Two homozygous private (unique to individual or families and therefore absent from the breed‐matched controlled population) protein‐changing variants in the major facilitator superfamily domain 8 (MFSD8) gene, a known candidate gene for neuronal ceroid lipofuscinosis type 7 (CLN7), were identified. The affected cat was homozygous for the alternative allele at both variants. This is the first report of a pathogenic alteration of the MFSD8 gene in a cat strongly suspected to have CLN7.
Collapse
Affiliation(s)
- Julien Guevar
- Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Felix Giebels
- Division of Clinical Neurology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alexane Durand
- Division of Clinical Radiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
13
|
Guo J, Johnson GS, Cook J, Harris OK, Mhlanga-Mutangadura T, Schnabel RD, Jensen CA, Katz ML. Neuronal ceroid lipofuscinosis in a German Shorthaired Pointer associated with a previously reported CLN8 nonsense variant. Mol Genet Metab Rep 2019; 21:100521. [PMID: 31687336 PMCID: PMC6819867 DOI: 10.1016/j.ymgmr.2019.100521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Two littermate German Shorthaired Pointers, a male and a female, were adopted as puppies from an animal shelter. Both puppies developed normally until approximately 11 months of age when the male began to exhibit neurological signs including ataxia, vision loss, and behavioral changes indicative of cognitive decline. These signs increased in severity over time. The female remained neurologically normal and healthy. The affected dog was euthanized at approximately 21 months of age. Autofluorescent cytoplasmic storage bodies were detected in neurons in unstained tissue sections from the cerebellum, the cerebrum, and the retina. Electron micrographs of these storage bodies showed that they were membrane bound and that most contained tightly packed aggregates of membranous whorls along with a variety of other ultrastructural features. This ultrastructure, along with the autofluorescence and the clinical signs supported a diagnosis of neuronal ceroid lipofuscinosis (NCL). Unlike earlier investigated forms of canine NCL with causal alleles in ATP13A2, TPP1, MFSD8 and CLN5 that had autofluorescent cytoplasmic storage bodies in cardiac muscle, no autofluorescence was detected in cardiac muscle from the affected German Shorthaired Pointer. A 39-fold average coverage whole genome sequence indicated that the affected German Shorthaired Pointer was homozygous for the A allele of a G > A transversion at position 30,895,648 chromosome 37. This 37:30895648G > A mutation created a CLN8 termination codon that had been previously reported to cause NCL in a mixed breed dog with Australian Shepherd and Australian Cattle Dog ancestry. This nonsense allele was heterozygous in the clinically normal female sibling, while archived DNA samples from 512 other German Shorthaired Pointers were all homozygous for the reference allele. The affected German Shorthaired Pointer and the previously diagnosed mixed breed dog with the same nonsense mutation shaired an identical homozygous haplotype that extended for 4.41 Mb at the telomeric end of chromosome 37, indicating the both dogs inherited the nonsense mutation from a common ancestor.
Collapse
Affiliation(s)
- Juyuan Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Gary S. Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL, USA
| | - Olivia K. Harris
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Robert D. Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Cheryl A. Jensen
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| | - Martin L. Katz
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Corresponding author at: Mason Eye Institute, Room EC-203, University of Missouri School of Medicine, Columbia, MO 65121, USA.
| |
Collapse
|
14
|
Villani NA, Bullock G, Michaels JR, Yamato O, O'Brien DP, Mhlanga-Mutangadura T, Johnson GS, Katz ML. A mixed breed dog with neuronal ceroid lipofuscinosis is homozygous for a CLN5 nonsense mutation previously identified in Border Collies and Australian Cattle Dogs. Mol Genet Metab 2019; 127:107-115. [PMID: 31101435 PMCID: PMC6555421 DOI: 10.1016/j.ymgme.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by progressive declines in neurological functions following normal development. The NCLs are distinguished from similar disorders by the accumulation of autofluorescent lysosomal storage bodies in neurons and many other cell types, and are classified as lysosomal storage diseases. At least 13 genes contain pathogenic sequence variants that underlie different forms of NCL. Naturally occurring canine NCLs can serve as models to develop better understanding of the disease pathologies and for preclinical evaluation of therapeutic interventions for these disorders. To date 14 sequence variants in 8 canine orthologs of human NCL genes have been found to cause progressive neurological disorders similar to human NCLs in 12 different dog breeds. A mixed breed dog with parents of uncertain breed background developed progressive neurological signs consistent with NCL starting at approximately 11 to 12 months of age, and when evaluated with magnetic resonance imaging at 21 months of age exhibited diffuse brain atrophy. Due to the severity of neurological decline the dog was euthanized at 23 months of age. Cerebellar and cerebral cortical neurons contained massive accumulations of autofluorescent storage bodies the contents of which had the appearance of tightly packed membranes. A whole genome sequence, generated with DNA from the affected dog contained a homozygous C-to-T transition at position 30,574,637 on chromosome 22 which is reflected in the mature CLN5 transcript (CLN5: c.619C > T) and converts a glutamine codon to a termination codon (p.Gln207Ter). The identical nonsense mutation has been previously associated with NCL in Border Collies, Australian Cattle Dogs, and a German Shepherd-Australian Cattle Dog mix. The current whole genome sequence and a previously generated whole genome sequence for an Australian Cattle Dog with NCL share a rare homozygous haplotype that extends for 87 kb surrounding 22: 30, 574, 637 and includes 21 polymorphic sites. When genotyped at 7 of these polymorphic sites, DNA samples from the German Shepherd-Australian Cattle Dog mix and from 5 Border Collies with NCL that were homozygous for the CLN5: c.619 T allele also shared this homozygous haplotype, suggesting that the NCL in all of these dogs stems from the same founding mutation event that may have predated the establishment of the modern dog breeds. If so, the CLN5 nonsence allele is probably segregating in other, as yet unidentified, breeds. Thus, dogs exhibiting similar NCL-like signs should be screened for this CLN5 nonsense allele regardless of breed.
Collapse
Affiliation(s)
- Natalie A Villani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Garrett Bullock
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Osamu Yamato
- Laboratory of Clinical Pathology, Kagoshima University, Kagoshima, Japan
| | - Dennis P O'Brien
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | - Gary S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Martin L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
McBride JL, Neuringer M, Ferguson B, Kohama SG, Tagge IJ, Zweig RC, Renner LM, McGill TJ, Stoddard J, Peterson S, Su W, Sherman LS, Domire JS, Ducore RM, Colgin LM, Lewis AD. Discovery of a CLN7 model of Batten disease in non-human primates. Neurobiol Dis 2018; 119:65-78. [PMID: 30048804 PMCID: PMC6200145 DOI: 10.1016/j.nbd.2018.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/23/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7−/−). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7−/− macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course. Histological analyses showed an accumulation of cerebral, cerebellar and cardiac storage material as well as degeneration of neurons, white matter fragmentation and reactive gliosis throughout the brain of affected animals. This novel CLN7−/− macaque model recapitulates key behavioral and neuropathological features of human Batten Disease and provides novel insights into the pathophysiology linked to CLN7 mutations. These animals will be invaluable for evaluating promising therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Betsy Ferguson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States; Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, United States; Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Ian J Tagge
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Robert C Zweig
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Laurie M Renner
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Trevor J McGill
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan Stoddard
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Samuel Peterson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Jacqueline S Domire
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Rebecca M Ducore
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Lois M Colgin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Anne D Lewis
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR, United States
| |
Collapse
|
16
|
Lingaas F, Guttersrud OA, Arnet E, Espenes A. Neuronal ceroid lipofuscinosis in Salukis is caused by a single base pair insertion in CLN8. Anim Genet 2018; 49:52-58. [PMID: 29446145 DOI: 10.1111/age.12629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/09/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are heterogenic inherited lysosomal storage diseases that have been described in a number of species including humans, sheep, cattle, cats and a number of different dog breeds, including Salukis. Here we present a novel genetic variant associated with the disease in this particular breed of dog. In a clinical case, a Saluki developed progressive neurological signs, including disorientation, anxiety, difficulties in eating, seizures and loss of vision, and for welfare reasons, was euthanized at 22 months of age. Microscopy showed aggregation of autofluorescent storage material in the neurons of several brain regions and also in the retina. The aggregates showed positive staining with Sudan black B and periodic acid Schiff, all features consistent with NCL. Whole genome sequencing of the case and both its parents, followed by variant calling in candidate genes, identified a new variant in the CLN8 gene: a single bp insertion (c.349dupT) in exon 2, introducing an immediate stop codon (p.Glu117*). The case was homozygous for the insertion, and both parents were heterozygous. A retrospective study of a Saluki from Australia diagnosed with NCL identified this case as being homozygous for the same mutation. This is the fourth variant identified in CLN8 that causes NCL in dogs.
Collapse
Affiliation(s)
- F Lingaas
- Section of Genetics, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| | - O-A Guttersrud
- Section of Genetics, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| | - E Arnet
- Section of Genetics, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| | - A Espenes
- Section of Anatomy & Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
17
|
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K. Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 2017; 108:277-287. [PMID: 28860089 DOI: 10.1016/j.nbd.2017.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Eline Rustad
- Blue Star Animal Hospital, Göteborg 417 07, Sweden
| | - Grace O Robinson
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rebecca E H Whiting
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jeffrey T Student
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristina Narfstrom
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Kolicheski A, Johnson GS, Villani NA, O'Brien DP, Mhlanga-Mutangadura T, Wenger DA, Mikoloski K, Eagleson JS, Taylor JF, Schnabel RD, Katz ML. GM2 Gangliosidosis in Shiba Inu Dogs with an In-Frame Deletion in HEXB. J Vet Intern Med 2017; 31:1520-1526. [PMID: 28833537 PMCID: PMC5598891 DOI: 10.1111/jvim.14794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022] Open
Abstract
Consistent with a tentative diagnosis of neuronal ceroid lipofuscinosis (NCL), autofluorescent cytoplasmic storage bodies were found in neurons from the brains of 2 related Shiba Inu dogs with a young‐adult onset, progressive neurodegenerative disease. Unexpectedly, no potentially causal NCL‐related variants were identified in a whole‐genome sequence generated with DNA from 1 of the affected dogs. Instead, the whole‐genome sequence contained a homozygous 3 base pair (bp) deletion in a coding region of HEXB. The other affected dog also was homozygous for this 3‐bp deletion. Mutations in the human HEXB ortholog cause Sandhoff disease, a type of GM2 gangliosidosis. Thin‐layer chromatography confirmed that GM2 ganglioside had accumulated in an affected Shiba Inu brain. Enzymatic analysis confirmed that the GM2 gangliosidosis resulted from a deficiency in the HEXB encoded protein and not from a deficiency in products from HEXA or GM2A, which are known alternative causes of GM2 gangliosidosis. We conclude that the homozygous 3‐bp deletion in HEXB is the likely cause of the Shiba Inu neurodegenerative disease and that whole‐genome sequencing can lead to the early identification of potentially disease‐causing DNA variants thereby refocusing subsequent diagnostic analyses toward confirming or refuting candidate variant causality.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - N A Villani
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | - D A Wenger
- Department of Neurology, Jefferson Medical College, Philadelphia, PA
| | - K Mikoloski
- Pittsburgh Veterinary Specialty and Emergency Center, Pittsburgh, PA
| | - J S Eagleson
- Veterinary Specialty and Emergency Center, Blue Pearl Veterinary Partners, Levittown, PA
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
19
|
Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1360182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hemanth R. Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| |
Collapse
|
20
|
Hirz M, Drögemüller M, Schänzer A, Jagannathan V, Dietschi E, Goebel HH, Hecht W, Laubner S, Schmidt MJ, Steffen F, Hilbe M, Köhler K, Drögemüller C, Herden C. Neuronal ceroid lipofuscinosis (NCL) is caused by the entire deletion of CLN8 in the Alpenländische Dachsbracke dog. Mol Genet Metab 2017; 120:269-277. [PMID: 28024876 DOI: 10.1016/j.ymgme.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage diseases that have been described in a variety of dog breeds, where they are caused by different mutations in different genes. However, the causative gene defect in the breed Alpenländische Dachsbracke remained unknown so far. Here we present two confirmed cases of NCL in Alpenländische Dachsbracke dogs from different litters of the same sire with a different dam harboring the same underlying novel mutation in the CLN8 gene. Case 1, a 2-year-old male Alpenländische Dachsbracke was presented with neurological signs including disorientation, character changes including anxiety states and aggressiveness, sudden blindness and reduction of food intake. Magnetic resonance imaging (MRI) scans showed cerebral atrophy with dilation of all cerebral ventricles, thinning of the intermediate mass of the thalamus and widening of the cerebral sulci. Postmortem examination of the central nervous system (CNS) showed neuronal loss in the cerebral cortex, cerebellum and spinal cord with massive intracellular deposits of ceroid pigment. Additional ceroid-lipofuscin deposits were observed in the enteric nervous system and in macrophages within spleen, lymph nodes and lung. Ultrastructural analyses confirmed NCL with the presence of osmiophilic membrane bounded lamellar-like structures. Case 2, a 1,5-year old female Alpenländische Dachsbracke was presented with progressive generalized forebrain disease including mental changes such as fearful reactions to various kinds of external stimuli and disorientation. The dog also displayed seizures, absence of menace reactions and negative cotton-ball test with normal pupillary light reactions. The clinical and post mortem examination yielded similar results in the brain as in Case 1. Whole genome sequencing of Case 1 and PCR results of both cases revealed a homozygous deletion encompassing the entire CLN8 gene as the most likely causative mutation for the NCL form observed in both cases. The deletion follows recessive inheritance since the dam and a healthy male littermate of Case 1 were tested as heterozygous carriers. This is the first detailed description of CLN8 gene associated NCL in Alpenländische Dachsbracke dogs and thus provides a novel canine CLN8 model for this lysosomal storage disease. The presence of ceroid lipofuscin in extracerebral tissues may help to confirm the diagnosis of NCL in vivo, especially in new dog breeds where the underlying mutation is not known.
Collapse
Affiliation(s)
- M Hirz
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany.
| | - M Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - A Schänzer
- Institute of Neuropathology, Justus-Liebig-University Giessen, Germany
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - E Dietschi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - H H Goebel
- Institute of Neuropathology Charité, University Berlin, Germany
| | - W Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany
| | - S Laubner
- Clinic for Small Animals - Surgery, Justus-Liebig-University Giessen, Germany
| | - M J Schmidt
- Clinic for Small Animals - Surgery, Justus-Liebig-University Giessen, Germany
| | - F Steffen
- Clinic for Small Animals - Neurology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - M Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - K Köhler
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - C Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
21
|
Kolicheski AL, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Kinoshita T, Murakami Y, O'Brien DP. A homozygous PIGN missense mutation in Soft-Coated Wheaten Terriers with a canine paroxysmal dyskinesia. Neurogenetics 2017; 18:39-47. [PMID: 27891564 PMCID: PMC5243907 DOI: 10.1007/s10048-016-0502-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/13/2016] [Indexed: 12/26/2022]
Abstract
Hereditary paroxysmal dyskinesias (PxD) are a heterogeneous group of movement disorders classified by frequency, duration, and triggers of the episodes. A young-adult onset canine PxD has segregated as an autosomal recessive trait in Soft-Coated Wheaten Terriers. The medical records and videos of episodes from 25 affected dogs were reviewed. The episodes of hyperkinesia and dystonia lasted from several minutes to several hours and could occur as often as >10/day. They were not associated with strenuous exercise or fasting but were sometimes triggered by excitement. The canine PxD phenotype most closely resembled paroxysmal non-kinesigenic dyskinesia (PNKD) of humans. Whole genome sequences were generated with DNA from 2 affected dogs and analyzed in comparison to 100 control canid whole genome sequences. The two whole genome sequences from dogs with PxD had a rare homozygous PIGN:c.398C > T transition, which predicted the substitution of an isoleucine for a highly conserved threonine in the encoded enzyme. All 25 PxD-affected dogs were PIGN:c.398T allele homozygotes, whereas there were no c.398T homozygotes among 1185 genotyped dogs without known histories of PxD. PIGN encodes an enzyme involved in the biosynthesis of glycosylphosphatidylinositol (GPI), which anchors a variety of proteins including CD59 to the cell surface. Flow cytometry of PIGN-knockout HEK239 cells expressing recombinant human PIGN with the c.398T variant showed reduced CD59 expression. Mutations in human PIGN have been associated with multiple congenital anomalies-hypotonia-seizures syndrome-1 (MCAHS1). Movement disorders can be a part of MCAHS1, but this is the first PxD associated with altered GPI anchor function.
Collapse
Affiliation(s)
- Ana L Kolicheski
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
22
|
Kolicheski A, Barnes Heller HL, Arnold S, Schnabel RD, Taylor JF, Knox CA, Mhlanga-Mutangadura T, O'Brien DP, Johnson GS, Dreyfus J, Katz ML. Homozygous PPT1 Splice Donor Mutation in a Cane Corso Dog With Neuronal Ceroid Lipofuscinosis. J Vet Intern Med 2016; 31:149-157. [PMID: 28008682 PMCID: PMC5259623 DOI: 10.1111/jvim.14632] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
A 10‐month‐old spayed female Cane Corso dog was evaluated after a 2‐month history of progressive blindness, ataxia, and lethargy. Neurologic examination abnormalities indicated a multifocal lesion with primarily cerebral and cerebellar signs. Clinical worsening resulted in humane euthanasia. On necropsy, there was marked astrogliosis throughout white matter tracts of the cerebrum, most prominently in the corpus callosum. In the cerebral cortex and midbrain, most neurons contained large amounts of autofluorescent storage material in the perinuclear area of the cells. Cerebellar storage material was present in the Purkinje cells, granular cell layer, and perinuclear regions of neurons in the deep nuclei. Neuronal ceroid lipofuscinosis (NCL) was diagnosed. Whole genome sequencing identified a PPT1c.124 + 1G>A splice donor mutation. This nonreference assembly allele was homozygous in the affected dog, has not previously been reported in dbSNP, and was absent from the whole genome sequences of 45 control dogs and 31 unaffected Cane Corsos. Our findings indicate a novel mutation causing the CLN1 form of NCL in a previously unreported dog breed. A canine model for CLN1 disease could provide an opportunity for therapeutic advancement, benefiting both humans and dogs with this disorder.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - H L Barnes Heller
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - S Arnold
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | | | | | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Dreyfus
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
23
|
Nolte A, Bello A, Drögemüller M, Leeb T, Brockhaus E, Baumgärtner W, Wohlsein P. Neuronal ceroid lipofuscinosis in an adult American Staffordshire Terrier. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2016; 44:431-437. [PMID: 27778018 DOI: 10.15654/tpk-150766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/07/2016] [Indexed: 11/13/2022]
Abstract
A female, 5-year-old American Staffordshire Terrier with severe progressive neurological deficits, particularly in terms of ataxia and keeping balance, was examined pathomorphologically and a genetic analysis was performed. In neurons of various localizations of the central nervous system an accumulation of a finely granular pale eosinophilic or light brown material was found. In addition, the cerebellum revealed marked degeneration and loss of Purkinje and inner granule cells. The accumulated PAS-positive, argyrophilic, autofluorescent material showed ultrastructurally a lamellar appearance suggestive of lipofuscin. Genetic analysis revealed the presence of a sequence variant in the ARSG gene encoding the lysosomal enzyme arylsulfatase G. This case report describes an adult-onset of a neuronal ceroid lipofuscinosis that shows similarities with a human disorder termed Kufs disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Wohlsein
- Dr. Peter Wohlsein, Institut für Pathologie, Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, E-Mail:
| |
Collapse
|
24
|
Taylor JF, Whitacre LK, Hoff JL, Tizioto PC, Kim J, Decker JE, Schnabel RD. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals. Genet Sel Evol 2016; 48:59. [PMID: 27534529 PMCID: PMC4989351 DOI: 10.1186/s12711-016-0237-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/02/2016] [Indexed: 12/31/2022] Open
Abstract
Background Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data. Methods We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions. Results We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual’s genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms. Conclusions Assembly errors and a lack of annotation of functional elements significantly limit the utility of the current draft livestock reference assemblies. The Functional Annotation of Animal Genomes initiative seeks to annotate functional elements, while a 70X Pac-Bio assembly for cow is underway and may result in a significantly improved reference assembly. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0237-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - Lynsey K Whitacre
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.,Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Polyana C Tizioto
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.,Embrapa Southeast Livestock, São Carlos, SP, Brazil
| | - JaeWoo Kim
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.,Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.,Informatics Institute, University of Missouri, Columbia, MO, USA
| |
Collapse
|
25
|
Ashwini A, D'Angelo A, Yamato O, Giordano C, Cagnotti G, Harcourt-Brown T, Mhlanga-Mutangadura T, Guo J, Johnson GS, Katz ML. Neuronal ceroid lipofuscinosis associated with an MFSD8 mutation in Chihuahuas. Mol Genet Metab 2016; 118:326-32. [PMID: 27211611 DOI: 10.1016/j.ymgme.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are hereditary neurodegenerative disorders characterized by progressive declines in neurological functions, seizures, and premature death. NCLs result from mutations in at least 13 different genes. Canine versions of the NCLs can serve as important models in developing effective therapeutic interventions for these diseases. NCLs have been described in a number of dog breeds, including Chihuahuas. Studies were undertaken to further characterize the pathology of Chihuahua NCL and to verify its molecular genetic basis. Four unrelated client owned Chihuahuas from Japan, Italy and England that exhibited progressive neurological signs consistent with a diagnosis of NCL underwent neurological examinations. Brain and in some cases also retinal and heart tissues were examined postmortem for the presence of lysosomal storage bodies characteristic of NCL. The affected dogs exhibited massive accumulation of autofluorescent lysosomal storage bodies in the brain, retina and heart accompanied by brain atrophy and retinal degeneration. The dogs were screened for known canine NCL mutations previously reported in a variety of dog breeds. All 4 dogs were homozygous for the MFSD8 single base pair deletion (MFSD8:c.843delT) previously associated with NCL in a Chinese Crested dog and in 2 affected littermate Chihuahuas from Scotland. The dogs were all homozygous for the normal alleles at the other genetic loci known to cause different forms of canine NCL. The MFSD8:c.843delT mutation was not present in 57 Chihuahuas that were either clinically normal or suffered from unrelated diseases or in 1761 unaffected dogs representing 186 other breeds. Based on these data it is almost certain that the MFSD8:c.843delT mutation is the cause of NCL in Chihuahuas. Because the disorder occurred in widely separated geographic locations or in unrelated dogs from the same country, it is likely that the mutant allele is widespread among Chihuahuas. Genetic testing for this mutation in other Chihuahuas is therefore likely to identify intact dogs with the mutant allele that could be used to establish a research colony that could be used to test potential therapeutic interventions for the corresponding human disease.
Collapse
Affiliation(s)
- Akanksha Ashwini
- Department of Veterinary Pathobiology, University of Missouri, Columbia MO, USA
| | - Antonio D'Angelo
- Department of Veterinary Science, School of Veterinary Medicine, Turin, Italy
| | - Osamu Yamato
- Department of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Cristina Giordano
- Department of Veterinary Science, School of Veterinary Medicine, Turin, Italy
| | - Giulia Cagnotti
- Department of Veterinary Science, School of Veterinary Medicine, Turin, Italy
| | | | | | - Juyuan Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia MO, USA
| | - Martin L Katz
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
26
|
Kolicheski A, Johnson GS, O'Brien DP, Mhlanga-Mutangadura T, Gilliam D, Guo J, Anderson-Sieg TD, Schnabel RD, Taylor JF, Lebowitz A, Swanson B, Hicks D, Niman ZE, Wininger FA, Carpentier MC, Katz ML. Australian Cattle Dogs with Neuronal Ceroid Lipofuscinosis are Homozygous for a CLN5 Nonsense Mutation Previously Identified in Border Collies. J Vet Intern Med 2016; 30:1149-58. [PMID: 27203721 PMCID: PMC5084771 DOI: 10.1111/jvim.13971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease, has been diagnosed in young adult Australian Cattle Dogs. Objective Characterize the Australian Cattle Dog form of NCL and determine its molecular genetic cause. Animals Tissues from 4 Australian Cattle Dogs with NCL‐like signs and buccal swabs from both parents of a fifth affected breed member. Archived DNA samples from 712 individual dogs were genotyped. Methods Tissues were examined by fluorescence, electron, and immunohistochemical microscopy. A whole‐genome sequence was generated for 1 affected dog. A TaqMan allelic discrimination assay was used for genotyping. Results The accumulation of autofluorescent cytoplasmic storage material with characteristic ultrastructure in tissues from the 4 affected dogs supported a diagnosis of NCL. The whole‐genome sequence contained a homozygous nonsense mutation: CLN5:c.619C>T. All 4 DNA samples from clinically affected dogs tested homozygous for the variant allele. Both parents of the fifth affected dog were heterozygotes. Archived DNA samples from 346 Australian Cattle Dogs, 188 Border Collies, and 177 dogs of other breeds were homozygous for the reference allele. One archived Australian Cattle Dog sample was from a heterozygote. Conclusions and Clinical Importance The homozygous CLN5 nonsense is almost certainly causal because the same mutation previously had been reported to cause a similar form of NCL in Border Collies. Identification of the molecular genetic cause of Australian Cattle Dog NCL will allow the use of DNA tests to confirm the diagnosis of NCL in this breed.
Collapse
Affiliation(s)
- A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - D P O'Brien
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO
| | | | - D Gilliam
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - J Guo
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - T D Anderson-Sieg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | - R D Schnabel
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO
| | - J F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - A Lebowitz
- Animal Medical Center of New York, New York, NY
| | - B Swanson
- Animal Medical Center of New York, New York, NY
| | - D Hicks
- Blue Pearl Veterinary Hospital, Tacoma, WA
| | - Z E Niman
- Chicago Veterinary Specialty Group, Chicago, IL
| | - F A Wininger
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M C Carpentier
- Veterinary Specialty Services Neurology Department, Manchester, MO
| | - M L Katz
- Mason Eye Institute, University of Missouri, Columbia, MO
| |
Collapse
|
27
|
Karli P, Oevermann A, Bauer A, Jagannathan V, Leeb T. MFSD8 single-base pair deletion in a Chihuahua with neuronal ceroid lipofuscinosis. Anim Genet 2016; 47:631. [PMID: 27145727 DOI: 10.1111/age.12449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Philemon Karli
- Small Animal Referral Clinic, VET Zentrum AG, Riedäckerstrasse 7, 8422, Pfungen, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.
| |
Collapse
|
28
|
Lyons LA, Creighton EK, Alhaddad H, Beale HC, Grahn RA, Rah H, Maggs DJ, Helps CR, Gandolfi B. Whole genome sequencing in cats, identifies new models for blindness in AIPL1 and somite segmentation in HES7. BMC Genomics 2016; 17:265. [PMID: 27030474 PMCID: PMC4815086 DOI: 10.1186/s12864-016-2595-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduced cost and improved efficiency of whole genome sequencing (WGS) is drastically improving the development of cats as biomedical models. Persian cats are models for Leber's congenital amaurosis (LCA), the most severe and earliest onset form of visual impairment in humans. Cats with innocuous breed-defining traits, such as a bobbed tail, can also be models for somite segmentation and vertebral column development. METHODS The first WGS in cats was conducted on a trio segregating for LCA and the bobbed tail abnormality. Variants were identified using FreeBayes and effects predicted using SnpEff. Variants within a known haplotype block for cat LCA and specific candidate genes for both phenotypes were prioritized by the predicted variant effect on the proteins and concordant segregation within the trio. The efficiency of WGS of a single trio of domestic cats was evaluated. RESULTS A stop gain was identified at position c.577C > T in cat AIPL1, a predicted p.Arg193*. A c.5A > G variant causing a p.V2A was identified in HES7. The variants segregated concordantly in a Persian - Japanese bobtail pedigree. Over 1700 cats from 40 different breeds and populations were genotyped for the AIPL1 variant, defining an allelic frequency in only Persian -related breeds of 1.15%. A sub-set of cats was genotyped for the HES7 variant, supporting the variant as private to the Japanese bobtail breed. Approximately 18 million SNPs were identified for application in cat research. The cat AIPL1 variant would have been considered a high priority variant for evaluation, regardless of a priori knowledge from previous genetic studies. CONCLUSIONS This study represents the first effort of the 99 Lives Cat Genome Sequencing Initiative to identify disease--causing variants in the domestic cat using WGS. The current cat reference assembly is efficient for gene and variant identification. However, as the feline variant database improves, development of cats as biomedical models for human disease will be more efficient, providing an alternative, large animal model for drug and gene therapy trials. Undiagnosed human patients with early-onset blindness should be screened for this AIPL1 variant. The HES7 variant should further calibrate the somite segmentation clock.
Collapse
Affiliation(s)
- Leslie A. Lyons
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| | - Erica K. Creighton
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| | - Hasan Alhaddad
- />College of Science, Kuwait University, Safat, 13060 Kuwait
| | | | - Robert A. Grahn
- />Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - HyungChul Rah
- />Graduate School of Health Science Business Convergence, College of Medicine, Chungbuk National University, Chongju, Chungbuk Province 28644 South Korea
| | - David J. Maggs
- />Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA 95616 USA
| | - Christopher R. Helps
- />Langford Veterinary Services, University of Bristol, Langford, Bristol, BS40 5DU UK
| | - Barbara Gandolfi
- />Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 1600 E. Rollins Street, Columbia, MO 65211 USA
| |
Collapse
|
29
|
Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet 2016; 25:777-91. [PMID: 26681805 DOI: 10.1093/hmg/ddv615] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
CLN7 disease is an autosomal recessive, childhood-onset neurodegenerative lysosomal storage disorder caused by the defective lysosomal membrane protein CLN7. We have disrupted the Cln7/Mfsd8 gene in mice by targeted deletion of exon 2 generating a novel knockout (KO) mouse model for CLN7 disease, which recapitulates key features of human CLN7 disease pathology. Cln7 KO mice showed increased mortality and a neurological phenotype including hind limb clasping and myoclonus. Lysosomal dysfunction in the brain of mutant mice was shown by the storage of autofluorescent lipofuscin-like lipopigments, subunit c of mitochondrial ATP synthase and saposin D and increased expression of lysosomal cathepsins B, D and Z. By immunohistochemical co-stainings, increased cathepsin Z expression restricted to Cln7-deficient microglia and neurons was found. Ultrastructural analyses revealed large storage bodies in Purkinje cells of Cln7 KO mice containing inclusions composed of irregular, curvilinear and rectilinear profiles as well as fingerprint profiles. Generalized astrogliosis and microgliosis in the brain preceded neurodegeneration in the olfactory bulb, cerebral cortex and cerebellum in Cln7 KO mice. Increased levels of LC3-II and the presence of neuronal p62- and ubiquitin-positive protein aggregates suggested that impaired autophagy represents a major pathomechanism in the brain of Cln7 KO mice. The data suggest that loss of the putative lysosomal transporter Cln7 in the brain leads to lysosomal dysfunction, impaired constitutive autophagy and neurodegeneration late in disease.
Collapse
Affiliation(s)
| | | | - Jan Sedlacik
- Department of Diagnostics and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Jens Fiehler
- Department of Diagnostics and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | | |
Collapse
|
30
|
Faller KM, Bras J, Sharpe SJ, Anderson GW, Darwent L, Kun-Rodrigues C, Alroy J, Penderis J, Mole SE, Gutierrez-Quintana R, Guerreiro RJ. The Chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis CLN7 disease? J Neurosci Res 2016; 94:339-47. [DOI: 10.1002/jnr.23710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Kiterie M.E. Faller
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow; Glasgow United Kingdom
| | - Jose Bras
- Department of Molecular Neuroscience; Institute of Neurology, University College London; London United Kingdom
| | - Samuel J. Sharpe
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow; Glasgow United Kingdom
| | - Glenn W. Anderson
- Department of Histopathology; Great Ormond Street Hospital; London United Kingdom
| | - Lee Darwent
- Department of Molecular Neuroscience; Institute of Neurology, University College London; London United Kingdom
| | - Celia Kun-Rodrigues
- Department of Molecular Neuroscience; Institute of Neurology, University College London; London United Kingdom
| | - Joseph Alroy
- Department of Pathology; Tufts University School of Medicine and Tufts-New England Medical Center; Boston Massachusetts
| | | | - Sara E. Mole
- MRC Laboratory for Molecular Cell Biology, UCL Institute of Child Health, and Department of Genetics, Evolution and Environment, University College London; London United Kingdom
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow; Glasgow United Kingdom
| | - Rita J. Guerreiro
- Department of Molecular Neuroscience; Institute of Neurology, University College London; London United Kingdom
| |
Collapse
|
31
|
A Novel Genome-Wide Association Study Approach Using Genotyping by Exome Sequencing Leads to the Identification of a Primary Open Angle Glaucoma Associated Inversion Disrupting ADAMTS17. PLoS One 2015; 10:e0143546. [PMID: 26683476 PMCID: PMC4684296 DOI: 10.1371/journal.pone.0143546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
Closed breeding populations in the dog in conjunction with advances in gene mapping and sequencing techniques facilitate mapping of autosomal recessive diseases and identification of novel disease-causing variants, often using unorthodox experimental designs. In our investigation we demonstrate successful mapping of the locus for primary open angle glaucoma in the Petit Basset Griffon Vendéen dog breed with 12 cases and 12 controls, using a novel genotyping by exome sequencing approach. The resulting genome-wide association signal was followed up by genome sequencing of an individual case, leading to the identification of an inversion with a breakpoint disrupting the ADAMTS17 gene. Genotyping of additional controls and expression analysis provide strong evidence that the inversion is disease causing. Evidence of cryptic splicing resulting in novel exon transcription as a consequence of the inversion in ADAMTS17 is identified through RNAseq experiments. This investigation demonstrates how a novel genotyping by exome sequencing approach can be used to map an autosomal recessive disorder in the dog, with the use of genome sequencing to facilitate identification of a disease-associated variant.
Collapse
|
32
|
Parker HG, Gilbert SF. From caveman companion to medical innovator: genomic insights into the origin and evolution of domestic dogs. ACTA ACUST UNITED AC 2015; 5:239-255. [PMID: 28490917 DOI: 10.2147/agg.s57678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phenotypic and behavioral diversity of the domestic dog has yet to be matched by any other mammalian species. In their current form, which comprises more than 350 populations known as breeds, there is a size range of two orders of magnitude and morphological features reminiscent of not only different species but also different phylogenetic families. The range of both appearance and behavior found in the dog is the product of millennia of human interference, and though humans created the diversity it remains a point of fascination to both lay and scientific communities. In this review we summarize the current understanding of the history of dog domestication based on molecular data. We will examine the ways that canine genetic and genomic studies have evolved and look at examples of dog genetics in the light of human disease.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| | - Samuel F Gilbert
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| |
Collapse
|
33
|
Gilliam D, Kolicheski A, Johnson GS, Mhlanga-Mutangadura T, Taylor JF, Schnabel RD, Katz ML. Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5. Mol Genet Metab 2015; 115:101-9. [PMID: 25934231 DOI: 10.1016/j.ymgme.2015.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022]
Abstract
We studied a recessive, progressive neurodegenerative disease occurring in Golden Retriever siblings with an onset of signs at 15 months of age. As the disease progressed these signs included ataxia, anxiety, pacing and circling, tremors, aggression, visual impairment and localized and generalized seizures. A whole genome sequence, generated with DNA from one affected dog, contained a plausibly causal homozygous mutation: CLN5:c.934_935delAG. This mutation was predicted to produce a frameshift and premature termination codon and encode a protein variant, CLN5:p.E312Vfs*6, which would lack 39 C-terminal amino acids. Eighteen DNA samples from the Golden Retriever family members were genotyped at CLN5:c.934_935delAG. Three clinically affected dogs were homozygous for the deletion allele; whereas, the clinically normal family members were either heterozygotes (n = 11) or homozygous for the reference allele (n = 4). Among archived Golden Retrievers DNA samples with incomplete clinical records that were also genotyped at the CLN5:c.934_935delAG variant, 1053 of 1062 were homozygous for the reference allele, 8 were heterozygotes and one was a deletion-allele homozygote. When contacted, the owner of this homozygote indicated that their dog had been euthanized because of a neurologic disease that progressed similarly to that of the affected Golden Retriever siblings. We have collected and stored semen from a heterozygous Golden Retriever, thereby preserving an opportunity for us or others to establish a colony of CLN5-deficient dogs.
Collapse
Affiliation(s)
- D Gilliam
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - A Kolicheski
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - G S Johnson
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - T Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA.
| | - J F Taylor
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - R D Schnabel
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - M L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
34
|
Multifocal retinopathy in Dachshunds with CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2015; 134:123-32. [PMID: 25697710 DOI: 10.1016/j.exer.2015.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/24/2022]
Abstract
The CLN2 form of neuronal ceroid lipofuscinosis is an autosomal recessively inherited lysosomal storage disease that is characterized by progressive vision loss culminating in blindness, cognitive and motor decline, neurodegeneration, and premature death. CLN2 disease results from mutations in the gene that encodes the soluble lysosomal enzyme tripeptidyl peptidase-1. A null mutation in the TPP1 gene encoding this enzyme causes a CLN2-like disease in Dachshunds. Dachshunds that are homozygous for this mutation serve as a model for human CLN2 disease, exhibiting clinical signs and neuropathology similar to those of children with this disorder. Affected dogs reach end-stage terminal disease status at 10-11 months of age. In addition to retinal changes typical of CLN2 disease, a retinopathy consisting of multifocal, bullous retinal detachment lesions was identified in 65% of (TPP1-/-) dogs in an established research colony. These lesions did not occur in littermates that were heterozygous or homozygous for the normal TPP1 allele. Retinal changes and the functional effects of this multifocal retinopathy were examined objectively over time using ophthalmic examinations, fundus photography, electroretinography (ERG), quantitative pupillary light response (PLR) recording, fluorescein angiography, optical coherence tomography (OCT) and histopathology. The retinopathy consisted of progressive multifocal serous retinal detachments. The severity of the disease-related retinal thinning was no more serious in most detached areas than in adjacent areas of the retina that remained in close apposition to the retinal pigment epithelium. The retinopathy observed in these dogs was somewhat similar to canine multifocal retinopathy (CMR), a disease caused by a mutation of the bestrophin gene BEST1. ERG a-wave amplitudes were relatively preserved in the Dachshunds with CLN2 disease, whether or not they developed the multifocal retinopathy. The retinopathy also had minimal effects on the PLR. Histological evaluation indicated that the CLN2 disease-related retinal degeneration was not exacerbated in areas where the retina was detached except where the detached areas were very large. DNA sequence analysis ruled out a mutation in the BEST1 exons or splice junctions as a cause for the retinopathy. Perfect concordance between the TPP1 mutation and the retinopathy in the large number of dogs examined indicates that the retinopathy most likely occurs as a direct result of the TPP1 mutation. Therefore, inhibition of the development and progression of these lesions can be used as an indicator of the efficacy of therapeutic interventions currently under investigation for the treatment of CLN2 disease in the Dachshund model. In addition, these findings suggest that TPP1 mutations may underlie multifocal retinopathies of unknown cause in animals and humans.
Collapse
|