1
|
Charalambous M, Muñana K, Patterson EE, Platt SR, Volk HA. ACVIM Consensus Statement on the management of status epilepticus and cluster seizures in dogs and cats. J Vet Intern Med 2024; 38:19-40. [PMID: 37921621 PMCID: PMC10800221 DOI: 10.1111/jvim.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Seizure emergencies (ie, status epilepticus [SE] and cluster seizures [CS]), are common challenging disorders with complex pathophysiology, rapidly progressive drug-resistant and self-sustaining character, and high morbidity and mortality. Current treatment approaches are characterized by considerable variations, but official guidelines are lacking. OBJECTIVES To establish evidence-based guidelines and an agreement among board-certified specialists for the appropriate management of SE and CS in dogs and cats. ANIMALS None. MATERIALS AND METHODS A panel of 5 specialists was formed to assess and summarize evidence in the peer-reviewed literature with the aim to establish consensus clinical recommendations. Evidence from veterinary pharmacokinetic studies, basic research, and human medicine also was used to support the panel's recommendations, especially for the interventions where veterinary clinical evidence was lacking. RESULTS The majority of the evidence was on the first-line management (ie, benzodiazepines and their various administration routes) in both species. Overall, there was less evidence available on the management of emergency seizure disorders in cats in contrast to dogs. Most recommendations made by the panel were supported by a combination of a moderate level of veterinary clinical evidence and pharmacokinetic data as well as studies in humans and basic research studies. CONCLUSIONS AND CLINICAL RELEVANCE Successful management of seizure emergencies should include an early, rapid, and stage-based treatment approach consisting of interventions with moderate to preferably high ACVIM recommendations; management of complications and underlying causes related to seizure emergencies should accompany antiseizure medications.
Collapse
Affiliation(s)
| | - Karen Muñana
- North Carolina State UniversityRaleighNorth CarolinaUSA
| | | | | | - Holger A. Volk
- University of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
2
|
Mastrocco A, Prittie J, West C, Clark M. A review of the pharmacology and clinical applications of levetiracetam in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2024; 34:9-22. [PMID: 37987141 DOI: 10.1111/vec.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To review and summarize the pharmacology of the antiepileptic drug (AED), levetiracetam (LEV), and to discuss its clinical utility in dogs and cats. DATA SOURCES Veterinary and human peer-reviewed medical literature and the authors' clinical experience. SUMMARY LEV is an AED with mechanisms of action distinct from those of other AEDs. In people and small animals, LEV exhibits linear kinetics, excellent oral bioavailability, and minimal drug-drug interactions. Serious side effects are rarely reported in any species. LEV use is gaining favor for treating epilepsy in small animals and may have wider clinical applications in patients with portosystemic shunts, neuroglycopenia, and traumatic brain injury. In people, LEV may improve cognitive function in patients with dementia. CONCLUSION LEV is a well-tolerated AED with well-documented efficacy in human patients. Although its use is becoming more common in veterinary medicine, its role as a first-line monotherapy in small animal epileptics remains to be determined. This review of the human and animal literature regarding LEV describes its role in epileptic people and animals as well as in other disease states and provides recommendations for clinical usage.
Collapse
Affiliation(s)
- Alicia Mastrocco
- Department of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Jennifer Prittie
- Department of Emergency and Critical Care, The Animal Medical Center, New York, New York, USA
| | - Chad West
- Department of Neurology, The Animal Medical Center, New York, New York, USA
| | - Melissa Clark
- Department of Internal Medicine, Gulf Coast Veterinary Specialists, Houston, Texas, USA
| |
Collapse
|
3
|
Kajin F, Meyerhoff N, Charalambous M, Volk HA. "Resistance Is Futile": A Pilot Study into Pseudoresistance in Canine Epilepsy. Animals (Basel) 2023; 13:3125. [PMID: 37835731 PMCID: PMC10571656 DOI: 10.3390/ani13193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a common neurological disorder in veterinary practice, complicated by frequent occurrence of medication-resistant epilepsy. In human medicine, it has been noted that some patients with medication-resistant epilepsy have in fact other reasons for their apparent medication-resistance. The aim of this retrospective study was to describe the issue of pseudoresistance using as an example a population of dogs presented with presumed medication-resistant epilepsy and provide an in-depth review of what is known in human medicine about pseudoresistant epilepsy. One-hundred fifty-two cases were identified with medication-resistant epilepsy, of which 73% had true medication-resistant epilepsy and 27% patients had pseudoresistance. Low serum anti-seizure medication levels were the most common cause of pseudoresistance, present in almost half of the cases (42%), followed by inadequate choice of drugs or dosages (22%), misclassification (22%) or misdiagnosis (9%) of epilepsy and poor compliance (9%). All cases of pseudoresistance, except for one, responded to a modification of the initial therapy protocol. Pseudoresistance can bias clinical trials, misinform the clinical decision-making process, delay diagnosis and treatment, and misinform owners about their pets' prognosis. A substantial proportion of these cases can have improvement of their seizure frequency or achieve seizure freedom upon modification of their therapeutic protocol.
Collapse
Affiliation(s)
- Filip Kajin
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, 30559 Hannover, Germany; (F.K.); (N.M.); (M.C.)
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, 30559 Hannover, Germany; (F.K.); (N.M.); (M.C.)
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, 30559 Hannover, Germany; (F.K.); (N.M.); (M.C.)
| | - Holger Andreas Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, 30559 Hannover, Germany; (F.K.); (N.M.); (M.C.)
| |
Collapse
|
4
|
Ostermann TE, Nessler JN, Urankar H, Bachmann N, Fechler C, Bathen-Nöthen A, Tipold A. Phenotype of Idiopathic Epilepsy in Great Swiss Mountain Dogs in Germany—A Retrospective Study. Front Vet Sci 2022; 9:921134. [PMID: 35903129 PMCID: PMC9317297 DOI: 10.3389/fvets.2022.921134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Genetic predisposition of idiopathic epilepsy (IE) has been demonstrated in individual breeds. According to the responsible breeding association in Germany, the average incidence of registered Great Swiss Mountain Dogs (GSMDs) with seizures between the years 1999 and 2019 is 2.56%, a genetic predisposition in this breed is suspected. To describe the seizure phenotype and to examine seizure causes, a retrospective, questionnaire-based study was performed. In cooperation with the Swiss Mountain Dog Association of Germany e.V. (SSV e.V.), 114 questionnaires filled in by owners of GSMD displaying seizures and filled in by their respective veterinarians between the years 2005–2021 were evaluated. Seizure characteristics, clinical and further examinations, treatment, treatment responses, and pedigree information were collected. In this study, 94 (83.06%) dogs had IE (suspected genetic epilepsy) confirmed with confidence level TIER 1, 2, or 3. The remaining 20 dogs showed the signs of structural epilepsy, reactive seizures, or epilepsy of unknown cause and were therefore excluded from further analysis. The average age at seizure onset was 28.83 months. Male GSMDs were significantly more often affected by IE than females. The most common seizure type was focal evolving into generalized seizures (64.5%). Seizures often began with vomiting, retching, or salivation. Cluster seizures (CS) (48.9%) and status epilepticus (SE) (37.2%) were observed in a large proportion of dogs. During the observation time, a total of 49 animals (52.13%) died. Out of those, 19 dogs (20.21%) were euthanized in SE or during CS and 14 dogs (14.9%) died spontaneously during CS or SE. The median age at death was 4 years, and the median survival time for the time, when the dog was suffering from seizures, was found to be 18 months. Both occurrence of CS (p = 0.0076) and occurrence of SE (p = 0.0859) had an impact on survival time. In GSMD, idiopathic epilepsy presents with a severe phenotype with frequently occurring CS and SE. This study could serve as basis for further genetic evaluations as well as to provide individual treatment recommendations.
Collapse
Affiliation(s)
- Theresa Elisabeth Ostermann
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
- *Correspondence: Theresa Elisabeth Ostermann
| | - Jasmin Nicole Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hildegard Urankar
- Great Swiss Mountain Dog Association for Germany e.V., München, Germany
| | - Norbert Bachmann
- Great Swiss Mountain Dog Association for Germany e.V., München, Germany
| | - Christel Fechler
- Great Swiss Mountain Dog Association for Germany e.V., München, Germany
| | | | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Kriechbaumer SRP, Jurina K, Wielaender F, Schenk HC, Steinberg TA, Reese S, Buhmann G, Doerfelt S, Potschka H, Fischer A. Pregabalin Add-On vs. Dose Increase in Levetiracetam Add-On Treatment: A Real-Life Trial in Dogs With Drug-Resistant Epilepsy. Front Vet Sci 2022; 9:910038. [PMID: 35873699 PMCID: PMC9298511 DOI: 10.3389/fvets.2022.910038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common neurological disorder affecting 0.6–0.75% of dogs in veterinary practice. Treatment is frequently complicated by the occurrence of drug-resistant epilepsy and cluster seizures in dogs with idiopathic epilepsy. Only few studies are available to guide treatment choices beyond licensed veterinary drugs. The aim of the study was to compare antiseizure efficacy and tolerability of two add-on treatment strategies in dogs with drug-resistant idiopathic epilepsy. The study design was a prospective, open-label, non-blinded, comparative treatment trial. Treatment success was defined as a 3-fold extension of the longest baseline interseizure interval and to a minimum of 3 months. To avoid prolonged adherence to a presumably ineffective treatment strategy, dog owners could leave the study after the third day with generalized seizures if the interseizure interval failed to show a relevant increase. Twenty-six dogs (mean age 5.5 years, mean seizure frequency 4/month) with drug-resistant idiopathic epilepsy and a history of cluster seizures were included. Dogs received either add-on treatment with pregabalin (PGB) 4 mg/kg twice daily (14 dogs) or a dose increase in levetiracetam (LEV) add-on treatment (12 dogs). Thirteen dogs in the PGB group had drug levels within the therapeutic range for humans. Two dogs in the PGB group (14.3%; 2/14) and one dog in the LEV group (8.3%; 1/12) achieved treatment success with long seizure-free intervals from 122 to 219 days but then relapsed to their early seizure frequency 10 months after the study inclusion. The overall low success rates with both treatment strategies likely reflect a real-life situation in canine drug-resistant idiopathic epilepsy in everyday veterinary practice. These results delineate the need for research on better pharmacologic and non-pharmacologic treatment strategies in dogs with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Sandra R. P. Kriechbaumer
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- AniCura Small Animal Clinic Haar, Haar, Germany
| | | | - Franziska Wielaender
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Henning C. Schenk
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Small Animal Clinic Lüneburg, Lüneburg, Germany
| | | | - Sven Reese
- Department of Veterinary Sciences, Institute of Anatomy, Histology and Embryology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gesine Buhmann
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefanie Doerfelt
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- AniCura Small Animal Clinic Haar, Haar, Germany
| | - Heidrun Potschka
- Department of Veterinary Sciences, Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Andrea Fischer
| |
Collapse
|
6
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
7
|
Schmidt T, Meller S, Talbot SR, Berk BA, Law TH, Hobbs SL, Meyerhoff N, Packer RMA, Volk HA. Urinary Neurotransmitter Patterns Are Altered in Canine Epilepsy. Front Vet Sci 2022; 9:893013. [PMID: 35651965 PMCID: PMC9150448 DOI: 10.3389/fvets.2022.893013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is the most common chronic neurological disease in humans and dogs. Epilepsy is thought to be caused by an imbalance of excitatory and inhibitory neurotransmission. Intact neurotransmitters are transported from the central nervous system to the periphery, from where they are subsequently excreted through the urine. In human medicine, non-invasive urinary neurotransmitter analysis is used to manage psychological diseases, but not as yet for epilepsy. The current study aimed to investigate if urinary neurotransmitter profiles differ between dogs with epilepsy and healthy controls. A total of 223 urine samples were analysed from 63 dogs diagnosed with idiopathic epilepsy and 127 control dogs without epilepsy. The quantification of nine urinary neurotransmitters was performed utilising mass spectrometry technology. A significant difference between urinary neurotransmitter levels (glycine, serotonin, norepinephrine/epinephrine ratio, ɤ-aminobutyric acid/glutamate ratio) of dogs diagnosed with idiopathic epilepsy and the control group was found, when sex and neutering status were accounted for. Furthermore, an influence of antiseizure drug treatment upon the urinary neurotransmitter profile of serotonin and ɤ-aminobutyric acid concentration was revealed. This study demonstrated that the imbalances in the neurotransmitter system that causes epileptic seizures also leads to altered neurotransmitter elimination in the urine of affected dogs. Urinary neurotransmitters have the potential to serve as valuable biomarkers for diagnostics and treatment monitoring in canine epilepsy. However, more research on this topic needs to be undertaken to understand better the association between neurotransmitter deviations in the brain and urine neurotransmitter concentrations in dogs with idiopathic epilepsy.
Collapse
Affiliation(s)
- Teresa Schmidt
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Benjamin A. Berk
- BrainCheck.Pet – Tierärztliche Praxis für Epilepsie, Sachsenstraße, Mannheim, Germany
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Tsz H. Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Sarah L. Hobbs
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Rowena M. A. Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
8
|
Stabile F, De Risio L. Response to Levetiracetam Treatment and Long-Term Follow-Up in Dogs With Reactive Seizures Due to Probable Exogenous Toxicity. Front Vet Sci 2021; 8:773942. [PMID: 34869747 PMCID: PMC8634145 DOI: 10.3389/fvets.2021.773942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Limited information is available on the long-term follow-up and seizure recurrence in dogs with reactive seizures due to suspected exogenous toxicity. The purpose of this study was to report the long-term follow-up of 13 dogs referred to a single referral hospital, diagnosed with reactive seizures and treated with a standardized levetiracetam protocol. All dogs received a loading levetiracetam dose of 60 mg/kg/IV once, followed by a maintenance dose of 20 mg/kg every 8 h as part of an open-label clinical study. Levetiracetam was withdrawn after a 6-months seizure-free period by reducing levetiracetam to 20 mg/kg every 12 h for a 4-week seizure-free period, followed by levetiracetam 20 mg/kg every 24 h for a 4-week seizure-free period, before levetiracetam treatment was stopped. No adverse effects of the treatment were reported. No dogs experienced any seizures after discharge or after levetiracetam withdrawal. Median follow-up time from time of discharge was of 78 months (=6 years 6 months). The result of this study supports the use of levetiracetam for treatment of reactive seizures due to exogenous substance intoxication. Moreover, our results do not support the need for long-term antiepileptic treatment in cases of reactive seizures due to exogenous intoxication.
Collapse
Affiliation(s)
- Fabio Stabile
- Neurology and Neurosurgery Unit, Southfields Veterinary Specialists, Linnaeus, Basildon, United Kingdom
| | | |
Collapse
|
9
|
Use of Levetiracetam in Epileptic Dogs with Chronic Kidney Disease: A Retrospective Study. Vet Sci 2021; 8:vetsci8110263. [PMID: 34822636 PMCID: PMC8617888 DOI: 10.3390/vetsci8110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
In human medicine, doses of levetiracetam (LEV) are individualized for patients with epilepsy, depending on the status of the patient’s renal function. However, there are not reports on the individualized dosing of LEV for small animals. The aim of this study is to investigate whether a dose adjustment of LEV is needed in dogs with chronic kidney disease (CKD). Patient databases were searched, and 37 dogs with seizures or epilepsy were retrospectively included in this study. Based on pre-existing CKD, patients were divided into a CKD group (n = 20) and a non-CKD group (n = 17). We collected kidney panels before and after LEV treatment. Side-effects were monitored for 1 month after the start of LEV administration. In the CKD group, more dogs developed adverse effects (85%) than in the non-CKD group (52.94%). After LEV administration, an increase in blood urea nitrogen and/or serum creatinine was more often reported in the CKD group than it was in the non-CKD group. Our data indicate that in dogs with seizures or epilepsy with pre-existing CKD, an LEV dose-adjustment is needed. During LEV treatment, CKD patients should be monitored for side-effects and may require laboratory evaluation of renal function.
Collapse
|
10
|
Zamora M, Meller S, Kajin F, Sermon JJ, Toth R, Benjaber M, Dijk DJ, Bogacz R, Worrell GA, Valentin A, Duchet B, Volk HA, Denison T. Case Report: Embedding "Digital Chronotherapy" Into Medical Devices-A Canine Validation for Controlling Status Epilepticus Through Multi-Scale Rhythmic Brain Stimulation. Front Neurosci 2021; 15:734265. [PMID: 34630021 PMCID: PMC8498587 DOI: 10.3389/fnins.2021.734265] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
Circadian and other physiological rhythms play a key role in both normal homeostasis and disease processes. Such is the case of circadian and infradian seizure patterns observed in epilepsy. However, these rhythms are not fully exploited in the design of active implantable medical devices. In this paper we explore a new implantable stimulator that implements chronotherapy as a feedforward input to supplement both open-loop and closed-loop methods. This integrated algorithm allows for stimulation to be adjusted to the ultradian, circadian and infradian patterns observed in patients through slowly-varying temporal adjustments of stimulation and algorithm sub-components, while also enabling adaption of stimulation based on immediate physiological needs such as a breakthrough seizure or change of posture. Embedded physiological sensors in the stimulator can be used to refine the baseline stimulation circadian pattern as a "digital zeitgeber," i.e., a source of stimulus that entrains or synchronizes the subject's natural rhythms. This algorithmic approach is tested on a canine with severe drug-resistant idiopathic generalized epilepsy exhibiting a characteristic diurnal pattern correlated with sleep-wake cycles. Prior to implantation, the canine's cluster seizures evolved to status epilepticus (SE) and required emergency pharmacological intervention. The cranially-mounted system was fully-implanted bilaterally into the centromedian nucleus of the thalamus. Using combinations of time-based modulation, thalamocortical rhythm-specific tuning of frequency parameters as well as fast-adaptive modes based on activity, the canine experienced no further SE events post-implant as of the time of writing (7 months). Importantly, no significant cluster seizures have been observed either, allowing the reduction of rescue medication. The use of digitally-enabled chronotherapy as a feedforward signal to augment adaptive neurostimulators could prove a useful algorithmic method in conditions where sensitivity to temporal patterns are characteristics of the disease state, providing a novel mechanism for tailoring a more patient-specific therapy approach.
Collapse
Affiliation(s)
- Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Filip Kajin
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - James J. Sermon
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Moaad Benjaber
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and The University of Surrey, Guildford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Antonio Valentin
- Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, United Kingdom
| | - Benoit Duchet
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Timothy Denison
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Finnegan SL, Volk HA, Asher L, Daley M, Packer RMA. Investigating the potential for seizure prediction in dogs with idiopathic epilepsy: owner-reported prodromal changes and seizure triggers. Vet Rec 2020; 187:152. [PMID: 32444506 DOI: 10.1136/vr.105307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/14/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Canine idiopathic epilepsy (IE) is characterised by recurrent seizure activity, which can appear unpredictable and uncontrollable. The purpose of this study was to investigate the potential for seizure prediction in dogs by exploring owner-perceived seizure prediction abilities and identifying owner-reported prodromal changes (long-term changes in disposition that indicate forthcoming seizures) and seizure triggers (stimuli that precipitate seizures) in dogs with IE. METHODS This is an online, international, cross-sectional survey of 229 owners of dogs diagnosed with IE, meeting the International Veterinary Epilepsy Task Force tier I diagnostic criteria. RESULTS Over half (59.6 per cent) of owners believed they were able to predict an upcoming seizure in their dog, of whom nearly half (45.5 per cent) were able to do so at least 30 minutes before the seizure commenced. The most common 'seizure predictors' were preseizure behavioural changes including increased clinginess (25.4 per cent), restlessness (23.1 per cent) and fearful behaviour (19.4 per cent). Nearly two-thirds of owners reported prodromal changes (64.9 per cent), most commonly restlessness (29.2 per cent), and nearly half (43.1 per cent) reported seizure triggers, most commonly stress (39.1 per cent). CONCLUSIONS The relatively high prevalence of owner-reported prodromal changes and seizure triggers shows promise for utilising these methods to aid seizure prediction in dogs, which could open a window of time for pre-emptive, individualised drug interventions to abort impending seizure activity.
Collapse
Affiliation(s)
| | - Holger Andreas Volk
- Clinical Science and Services, Royal Veterinary College, Hertfordshire, UK.,Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lucy Asher
- School of Natural and Environmental Science, Newcastle University, Newcastle, UK
| | - Monica Daley
- School of Biological Sciences, UC Irvine, Irvine, California, USA.,Structure and Motion Laboratory, Royal Veterinary College, Hertfordshire, UK
| | | |
Collapse
|
12
|
Erath JR, Nessler JN, Riese F, Hünerfauth E, Rohn K, Tipold A. Behavioral Changes Under Levetiracetam Treatment in Dogs. Front Vet Sci 2020; 7:169. [PMID: 32318589 PMCID: PMC7146871 DOI: 10.3389/fvets.2020.00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
In veterinary medicine levetiracetam (LEV) is a well-tolerated antiepileptic drug (AED) with only mild to moderate side effects. Behavioral changes are rarely reported in animals. In contrast, in human medicine the impact of LEV on behavior has frequently been described. Since in the Clinic for Small Animals at the University of Veterinary Medicine Hannover single canine patients were observed with behavioral abnormalities after LEV treatment, it was hypothesized that levetiracetam induces behavioral changes or causes an intensifying of pre-existing behavioral abnormalities in dogs with epileptic seizures. This monocentric retrospective study evaluated the incidence of behavioral changes in epileptic dogs treated with the antiepileptic drug LEV based on information obtained in a questionnaire completed by dog owners. Eighty-four client-owned dogs with recurrent seizures receiving LEV as monotherapy, add on treatment or pulse therapy met inclusion criteria. Approximately half of the dogs in the study population were reported to have preexisting behavioral changes before treatment with LEV, and some of these dogs were reported to experience a worsening of behavioral changes (14/44) or the emergence of new behaviors after initiation of LEV therapy (4/44). One quarter of the dogs without pre-existing behavioral abnormalities developed behavioral changes associated with the administration of LEV (10/40). Based on these results, the authors conclude that behavioral changes can occur in dogs being administered LEV, and this should be taken into consideration when discussing treatment options with owners.
Collapse
Affiliation(s)
- Johannes Roland Erath
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hanover, Germany
| | - Jasmin Nicole Nessler
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hanover, Germany
| | - Franziska Riese
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hanover, Germany
| | - Enrice Hünerfauth
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hanover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine, Hanover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
13
|
Johnson ER, Taylor AR, Boothe DM, Gray-Edwards HL, Winter RL, Martin DR. Pharmacokinetics of a commercially available product and a compounded formulation of extended-release levetiracetam after oral administration of a single dose in cats. Am J Vet Res 2019; 80:950-956. [PMID: 31556719 DOI: 10.2460/ajvr.80.10.950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare pharmacokinetics of levetiracetam in serum and CSF of cats after oral administration of extended-release (ER) levetiracetam. ANIMALS 9 healthy cats. PROCEDURES Cats received 1 dose of a commercially available ER levetiracetam product (500 mg, PO). Thirteen blood and 10 CSF samples were collected over a 24-hour period for pharmacokinetic analysis. After 1 week, cats received 1 dose of a compounded ER levetiracetam formulation (500 mg, PO), and samples were obtained at the same times for analysis. RESULTS CSF concentrations of levetiracetam closely paralleled serum concentrations. There were significant differences between the commercially available product and the compounded formulation for mean ± SD serum maximum concentration (Cmax; 126 ± 33 μg/mL and 169 ± 51 μg/mL, respectively), Cmax corrected for dose (0.83 ± 0.10 μg/mL/mg and 1.10 ± 0.28 μg/mL/mg, respectively), and time to Cmax (5.1 ± 1.6 hours and 3.1 ± 1.5 hours, respectively). Half-life for the commercially available product and compounded formulation of ER levetiracetam was 4.3 ± 2.0 hours and 5.0 ± 1.6 hours, respectively. CONCLUSIONS AND CLINICAL RELEVANCE The commercially available product and compounded formulation of ER levetiracetam both maintained concentrations in healthy cats 12 hours after oral administration that have been found to be therapeutic in humans (ie, 5 μg/mL). Results of this study supported dosing intervals of 12 hours, and potentially 24 hours, for oral administration of ER levetiracetam to cats. Monitoring of serum concentrations of levetiracetam can be used as an accurate representation of levetiracetam concentrations in CSF of cats.
Collapse
|
14
|
Riese F, Meyerhoff N, Nessler J, Tipold A. Misery of insufficient treatment guidelines in post‐traumatic epilepsy. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2018-000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Franziska Riese
- Department of Small Animal Medicine and SurgeryKlinik fuer Kleine HaustiereStiftung Tierarztliche Hochschule HannoverHannoverGermany
| | - Nina Meyerhoff
- Department of Small Animal Medicine and SurgeryKlinik fuer Kleine HaustiereStiftung Tierarztliche Hochschule HannoverHannoverGermany
| | - Jasmin Nessler
- Department of Small Animal Medicine and SurgeryKlinik fuer Kleine HaustiereStiftung Tierarztliche Hochschule HannoverHannoverGermany
| | - Andrea Tipold
- Department of Small Animal Medicine and SurgeryKlinik fuer Kleine HaustiereStiftung Tierarztliche Hochschule HannoverHannoverGermany
| |
Collapse
|
15
|
Litvinova Svetlana A, Voroninа Tatyana A, Nerobkova Lubov N, Kutepova Inga S, Avakyan Georgii G, Avakyan Gagik N. Levetiracetam effect and electrophysiological mechanism of action in rats with cobalt-induced chronic epilepsy. Eur J Pharmacol 2019; 854:380-386. [PMID: 31034820 DOI: 10.1016/j.ejphar.2019.04.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Levetiracetam was initially developed as a nootropic drug, although since 2002 it has been used as anticonvulsant for the treatment of partial and generalized epilepsy syndromes. The purpose of the research was to investigate anti-paroxysmal activity of levetiracetam (LEV) on the model of cobalt-induced chronic epilepsy caused by the application of cobalt to the sensorimotor area of the rat cortex to evaluate LEV impact on the different stages of epileptogenesis. LEV effects were studied at the initial stage of the epileptogenesis (2nd day after the cobalt application) and at the stage of generalized paroxysmal activity (6th day after the cobalt application). The research showed that levetiracetam administration (dosages 50 mg/kg and 200 mg/kg) at the early stage of the epileptogenesis had no statistically significant effect on the development of paroxysmal activity in both primary and secondary epileptic areas: in the ipsi- and contralateral cortex, hypothalamus and hippocampus. LEV administration on 6th day (dosage 50 mg/kg) did not have statistical effect on the epileptogenesis, while at a dosage of 200 mg/kg on 6th day LEV significantly suppressed paroxysmal activity in the studied structures of rats with cobalt epilepsy. The strongest anti-paroxysmal effect was detected in hippocampus and was expressed as the normalization of bioelectrical activity and the appearance of a regular theta rhythm. Thus, LEV effects are mostly directed to the hippocampal area of epileptiform activity and, to a lesser extent, to the cortical area.
Collapse
Affiliation(s)
- A Litvinova Svetlana
- FSBI Zakusov Institute of Pharmacology, Baltiiskaya str, 8, Moscow, 125315, Russia.
| | - A Voroninа Tatyana
- Laboratory of Psychopharmacology, FSBI Zakusov Institute of Pharmacology, Russia.
| | - N Nerobkova Lubov
- FSBI Zakusov Institute of Pharmacology, Baltiiskaya str, 8, Moscow, 125315, Russia.
| | - S Kutepova Inga
- FSBI Zakusov Institute of Pharmacology, Baltiiskaya str, 8, Moscow, 125315, Russia.
| | - G Avakyan Georgii
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova str., 1, Moscow, 117997, Russia.
| | - N Avakyan Gagik
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova str., 1, Moscow, 117997, Russia.
| |
Collapse
|
16
|
Cagnotti G, Odore R, Bertone I, Corona C, Dappiano E, Gardini G, Iulini B, Bellino C, D'Angelo A. Open-label clinical trial of rectally administered levetiracetam as supplemental treatment in dogs with cluster seizures. J Vet Intern Med 2019; 33:1714-1718. [PMID: 31218767 PMCID: PMC6639497 DOI: 10.1111/jvim.15541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Treatment options for at‐home management of cluster seizures (CS) and status epilepticus (SE) are limited. The pharmacokinetics of levetiracetam (LEV) after rectal administration in both healthy and epileptic dogs has been investigated recently. Hypothesis/Objectives To investigate the clinical efficacy of rectally administered LEV in preventing additional seizures in dogs presented for CS and SE. We hypothesized that rectal administration of LEV in addition to a standard treatment protocol would provide better control of seizure activity as compared with the standard treatment protocol alone. Animals Fifty‐seven client‐owned dogs with CS or SE. Methods Prospective open‐label clinical trial. Patients included in the study were assigned to receive either a standard treatment protocol comprising IV/rectal diazepam and IV phenobarbital q8h (control group) or a standard treatment protocol in association with a single dose of 40 mg/kg LEV rectally (rectal LEV group). Dogs that experienced no additional seizures were defined as responders, whereas those that showed additional seizure activity were classified as nonresponders. Results Twenty‐one dogs were assigned to the rectal LEV group, and 36 to control group. Given the small number of cases of SE, statistical analysis was performed only on patients with CS. The response rate was 94% in the rectal LEV group and 48% in the control group (P < .001). Conclusions and Clinical Importance Rectally administered LEV combined with a standard treatment protocol provided good control of seizure activity in patients with CS. The validity of these results should be confirmed in a double‐blinded, placebo‐controlled clinical trial.
Collapse
Affiliation(s)
- Giulia Cagnotti
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Rosangela Odore
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Iride Bertone
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Cristiano Corona
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Elena Dappiano
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Giulia Gardini
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Claudio Bellino
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Antonio D'Angelo
- Department of Veterinary Science, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Meland T, Carrera-Justiz S, Buckley GJ. Antiepileptic Drug Use Patterns in Suspect Epileptic Dogs Among Neurology and Emergency Specialists. J Am Anim Hosp Assoc 2019; 55:138-143. [PMID: 30870608 DOI: 10.5326/jaaha-ms-6795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study used a cross-sectional survey designed to inquire about antiepileptic drug (AED) use in newly diagnosed idiopathic epileptic dogs among board-certified emergency and neurology specialists. Results were obtained from 300 completed surveys by 128 board-certified neurologists and 172 board-certified emergency and critical care (ECC) specialists. Case volume was slightly different between groups, with 36% of neurologists and 18% of ECC specialists managing >50 cases of first-time canine seizure patients yearly. The initial AED of choice was similar between the groups, with 66% of neurologists and 64% of ECC specialists using phenobarbital and 16% of neurologists and 26% of ECC specialists using levetiracetam. Although most respondents gave a loading dose of phenobarbital, roughly one-fourth of neurologists did not load the drug versus 6% of ECC specialists. The total loading dose was similar between respondents (16 mg/kg) but varied in administration protocol. Approximately half of neurologists and nearly two-thirds of ECC specialists gave a higher initial dose of levetiracetam than recommended. Almost all the respondents who gave a higher initial dose of levetiracetam used 60 mg/kg IV once. Understanding the common practices in AED use may promote future discussions regarding best practices in the management of canine idiopathic epilepsy.
Collapse
Affiliation(s)
- Tessa Meland
- From the Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Sheila Carrera-Justiz
- From the Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gareth J Buckley
- From the Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Common Neurologic Problems: Impact on Patient Welfare, Caregiver Burden and Veterinarian Wellbeing. Vet Clin North Am Small Anim Pract 2019; 49:463-476. [PMID: 30846382 DOI: 10.1016/j.cvsm.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Most neurologic diseases are incurable. Palliative care is vital in the treatment of companion animals with serious or chronic neurologic disease. A Neuropalliative Care Core Skill Set includes multifaceted communication competencies and symptom management. Because some of the most common clinical signs of neurologic disease are also associated with stress of caregiving, veterinarians should understand their clients' unique potential for caregiver burden. Acknowledging caregiver burden in their clients, means that veterinarians treating patients with neurologic disease must be proactive in building their own resilience to the occupational stress inherent in treating their patients and supporting their patients' caregivers.
Collapse
|
19
|
Cagnotti G, Odore R, Gardini G, Amedeo S, Bertone I, Guerriero G, Lentini L, Dappiano E, D'Angelo A. Pharmacokinetics of rectal levetiracetam as add-on treatment in dogs affected by cluster seizures or status epilepticus. BMC Vet Res 2018; 14:189. [PMID: 29914474 PMCID: PMC6006693 DOI: 10.1186/s12917-018-1522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/12/2018] [Indexed: 12/02/2022] Open
Abstract
Background Levetiracetam can be used for seizure control alone or in combination with other antiepileptic medications. A previous study achieved the minimum targeted serum drug concentration after rectal administration of levetiracetam in healthy dogs. The purpose of the present study was to determine the pharmacokinetics of rectal LEV in dogs presented for cluster seizures or status epilepticus and potentially in treatment with other anti-epileptic drugs. Furthermore, preliminary information on response to this treatment as add-on to the standard treatment protocol is reported. Results Eight client-owned dogs were enrolled. Plasma levetiracetam concentrations (measured at 0, 30, 60, 90, 120, 180, 240, 360, 720, and 1440 min after drug administration) reached the minimum target concentration (5 μg/ml) at 30 min in all but one patient. At T1 (30 min) the mean concentration was 28.2 ± 15.5 μg/ml. Plasma concentrations remained above the targeted minimum concentration in all patients until 240 min and in 7/8 until 360 min. Six out of eight patients experienced no seizures in the 24-h period after hospitalization and were classified as “responders”. Conclusions Minimum plasma levetiracetam concentration can be reached after rectal administration of 40 mg/kg in dogs affected by cluster seizures and status epilepticus and concurrently receiving other antiepileptic drugs. These preliminary results may encourage the evaluation of rectal levetiracetam as an additional treatment option for cluster seizures and status epilepticus in a larger number of dogs. Electronic supplementary material The online version of this article (10.1186/s12917-018-1522-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giulia Cagnotti
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy.
| | - Rosangela Odore
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Giulia Gardini
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Stefano Amedeo
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Iride Bertone
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Giulia Guerriero
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Laura Lentini
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Elena Dappiano
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Antonio D'Angelo
- Department of Veterinary Science, University of Turin, Via Largo Braccini 2, 10095, Grugliasco, Turin, Italy
| |
Collapse
|
20
|
Biddick AA, Bacek LM, Taylor AR. A serious adverse event secondary to rapid intravenous levetiracetam injection in a dog. J Vet Emerg Crit Care (San Antonio) 2018; 28:157-162. [PMID: 29419933 DOI: 10.1111/vec.12693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To describe a serious adverse event as a result of rapid intravenous injection of undiluted levetiracetam in a dog. CASE SUMMARY An 8-year-old female spayed Chihuahua was evaluated for cluster seizures and tachypnea. The patient was administered an intravenous dose of undiluted levetiracetam (60 mg/kg) and immediately developed tachycardia, hyperglycemia, hypotension, and a dull mentation. The patient's blood pressure and mentation did not respond to intravenous fluid boluses but improved immediately after administration of epinephrine intravenously. The patient subsequently developed respiratory failure necessitating mechanical ventilation, prior to cardiac arrest. Necropsy examination noted a pulmonary inflammatory cell infiltrate, pulmonary edema, and interstitial pneumonia. NEW OR UNIQUE INFORMATION PROVIDED This report documents a serious adverse event associated with intravenous levetiracetam administration to a dog.
Collapse
Affiliation(s)
| | - Lenore M Bacek
- Auburn University College of Veterinary Medicine, Auburn, AL, 36849
| | - Amanda R Taylor
- Auburn University College of Veterinary Medicine, Auburn, AL, 36849
| |
Collapse
|
21
|
|
22
|
MacDonald KD, Hart KA, Davis JL, Berghaus LJ, Giguère S. Pharmacokinetics of the anticonvulsant levetiracetam in neonatal foals. Equine Vet J 2017; 50:532-536. [DOI: 10.1111/evj.12790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/23/2017] [Indexed: 11/27/2022]
Affiliation(s)
- K. D. MacDonald
- Department of Large Animal Medicine; College of Veterinary Medicine; University of Georgia; Athens Georgia USA
| | - K. A. Hart
- Department of Large Animal Medicine; College of Veterinary Medicine; University of Georgia; Athens Georgia USA
| | - J. L. Davis
- Department of Biomedical Sciences and Pathobiology; Virginia-Maryland College of Veterinary Medicine; Blacksburg Virginia USA
| | - L. J. Berghaus
- Department of Large Animal Medicine; College of Veterinary Medicine; University of Georgia; Athens Georgia USA
| | - S. Giguère
- Department of Large Animal Medicine; College of Veterinary Medicine; University of Georgia; Athens Georgia USA
| |
Collapse
|
23
|
Kelly D, Raimondi F, Shihab N. Levetiracetam monotherapy for treatment of structural epilepsy in dogs: 19 cases (2010-2015). Vet Rec 2017; 181:401. [DOI: 10.1136/vr.104190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 06/27/2017] [Accepted: 07/29/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Darren Kelly
- Department of Internal Medicine; Southern Counties Veterinary Specialists LLP; Ringwood UK
| | - Francesca Raimondi
- Department of Neurology and Neurosurgery; Southern Counties Veterinary Specialists LLP; Ringwood UK
| | - Nadia Shihab
- Department of Neurology and Neurosurgery; Southern Counties Veterinary Specialists; Ringwood Hampshire UK
| |
Collapse
|
24
|
Charalambous M, Shivapour SK, Brodbelt DC, Volk HA. Antiepileptic drugs' tolerability and safety--a systematic review and meta-analysis of adverse effects in dogs. BMC Vet Res 2016; 12:79. [PMID: 27206489 PMCID: PMC4875685 DOI: 10.1186/s12917-016-0703-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/12/2016] [Indexed: 01/16/2023] Open
Abstract
Background The safety profile of anti-epileptic drugs (AEDs) is an important consideration for the regulatory bodies, owners and prescribing clinicians. Information on their adverse effects still remains limited. A systematic review including a meta-analytic approach was designed to evaluate existing evidence for the safety profile of AEDs in canine patients. Electronic searches of PubMed, CAB Direct and Google scholar were carried out without date or language restrictions. Conference proceedings were also searched. Peer-reviewed full-length studies reporting adverse effects of AEDs in epileptic and healthy non-epileptic dogs were included. Studies were allocated to three groups based on their design. Individual studies were evaluated based on the quality of evidence (study design, study group sizes, subject enrolment quality and overall risk of bias) and the outcome measures reported (proportion of specific adverse effects for each AED, prevalence and 95 % confidence interval of the affected population in each study and comparative odds ratio of adverse effects for AEDs). Results Ninety studies, including six conference proceedings, reporting clinical outcomes of AEDs’ adverse effects were identified. Few studies were designed as blinded randomised controlled clinical trials. Many studies included low canine populations with unclear criteria of subject enrolment and short treatment periods. Direct comparisons suggested that imepitoin and levetiracetam might have a better safety profile than phenobarbital, whilst the latter might have a better safety profile than potassium bromide. However, none of these comparisons showed a statistically significant difference. Comparisons between other AEDs were not possible as a considerable amount of studies lacked power calculations or adequate data to allow further statistical analysis. Individual AED assessments indicated that levetiracetam might be one of the safest AEDs, followed by imepitoin and then phenobarbital and potassium bromide; these findings were all supported by a strong level of evidence. The safety profile in other AEDs was variable, but weak evidence was found to permit firm conclusions or to compare their safety to other AEDs. Conclusions This systematic review provides objective evaluation of the most commonly used AEDs’ adverse effects. Adverse effects usually appeared mild in all AEDs and subsided once doses and/or serum levels were monitored or after the AED was withdrawn. Although phenobarbital might be less safe than imepitoin and levetiracetam, there was insufficient evidence to classify it as an AED with a high risk of major adverse effects. It is important for clinicians to evaluate both AEDs’ effectiveness and safety on an individual basis before the selection of the appropriate monotherapy or adjunctive AED therapy.
Collapse
Affiliation(s)
- Marios Charalambous
- Faculty of Brain Sciences, UCL Institute of Neurology, University College London, London, WC1E 6BT, UK.
| | - Sara K Shivapour
- College of Veterinary Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | - David C Brodbelt
- Department of Production and Population Health, Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, AL9 7TA, UK
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Herts, AL9 7TA, UK
| |
Collapse
|
25
|
Podell M, Volk HA, Berendt M, Löscher W, Muñana K, Patterson EE, Platt SR. 2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs. J Vet Intern Med 2016; 30:477-90. [PMID: 26899355 PMCID: PMC4913615 DOI: 10.1111/jvim.13841] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 11/27/2022] Open
Abstract
This report represents a scientific and working clinical consensus statement on seizure management in dogs based on current literature and clinical expertise. The goal was to establish guidelines for a predetermined, concise, and logical sequential approach to chronic seizure management starting with seizure identification and diagnosis (not included in this report), reviewing decision‐making, treatment strategies, focusing on issues related to chronic antiepileptic drug treatment response and monitoring, and guidelines to enhance patient response and quality of life. Ultimately, we hope to provide a foundation for ongoing and future clinical epilepsy research in veterinary medicine.
Collapse
Affiliation(s)
- M Podell
- Medvet Chicago, Medical and Cancer Centers for Pets, Chicago, IL.,Department of Neurosurgery, Pritzker School of Medicine, The University of Chicago, Chicago, IL
| | - H A Volk
- Department of Clinical Sciences and Services, Small Animal Medicine and Surgery Group, The Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - M Berendt
- Department of Veterinary and Clinical Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - K Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - E E Patterson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - S R Platt
- Department of Small Animal Medicine & Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA
| |
Collapse
|
26
|
Bhatti SFM, De Risio L, Muñana K, Penderis J, Stein VM, Tipold A, Berendt M, Farquhar RG, Fischer A, Long S, Löscher W, Mandigers PJJ, Matiasek K, Pakozdy A, Patterson EE, Platt S, Podell M, Potschka H, Rusbridge C, Volk HA. International Veterinary Epilepsy Task Force consensus proposal: medical treatment of canine epilepsy in Europe. BMC Vet Res 2015; 11:176. [PMID: 26316233 PMCID: PMC4552371 DOI: 10.1186/s12917-015-0464-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors' experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible.
Collapse
Affiliation(s)
- Sofie F M Bhatti
- Department of Small Animal Medicine and Clinical Biology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| | - Luisa De Risio
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, Suffolk, United Kingdom.
| | - Karen Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1052 William Moore Drive, Raleigh, NC, 27607, USA.
| | - Jacques Penderis
- Vet Extra Neurology, Broadleys Veterinary Hospital, Craig Leith Road, Stirling, FK7 7LE, Stirlingshire, United Kingdom.
| | - Veronika M Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| | - Mette Berendt
- Department of Veterinary and Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Robyn G Farquhar
- Fernside Veterinary Centre, 205 Shenley Road, Borehamwood, SG9 0TH, Hertfordshire, United Kingdom.
| | - Andrea Fischer
- Clinical Veterinary Medicine, Ludwig-Maximillians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Sam Long
- University of Melbourne, 250 Princes Highway, Weibee, 3015, VIC, Australia.
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Paul J J Mandigers
- Department of Clinical Sciences of Companion Animals, Utrecht University, Yalelaan 108, 3583 CM, Utrecht, The Netherlands.
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany.
| | - Akos Pakozdy
- Clinical Unit of Internal Medicine Small Animals, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Edward E Patterson
- University of Minnesota College of Veterinary Medicine, D426 Veterinary Medical Center, 1352 Boyd Avenue, St. Paul, MN, 55108, USA.
| | - Simon Platt
- College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA, 30602, USA.
| | - Michael Podell
- Chicago Veterinary Neurology and Neurosurgery, 3123 N. Clybourn Avenue, Chicago, IL, 60618, USA.
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Königinstr. 16, 80539, Munich, Germany.
| | - Clare Rusbridge
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming, GU7 2QQ, Surrey, United Kingdom.
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, GU2 7TE, Surrey, United Kingdom.
| | - Holger A Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA, Hertfordshire, UK.
| |
Collapse
|