1
|
Zhang X, Wu X, Zhang Y, Chen Y, Li T, Shi Y, Bao S. Mycoplasma synoviae Induces Apoptosis in Chicken Oviduct Cells. Vet Sci 2024; 11:639. [PMID: 39728979 DOI: 10.3390/vetsci11120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Mycoplasma synoviae (MS) is an important pathogen that can cause respiratory diseases in poultry and birds, leading to serious economic losses in the world and impacting the development of the poultry industry. However, the pathogenic mechanisms of MS infection are still unclear, resulting in a lack of effective diagnosis and treatment strategies. This study aimed to uncover the infection effect caused by MS in chicken oviduct cells. MS-infected chicken oviduct cells with different infection times and doses were collected, and DAPI staining was performed to monitor the morphological changes of cell nuclei. Cell viability was detect by CCK-8 assay. The expression of marker genes of cell apoptosis was determined by RT-qPCR and Western blotting assay, respectively. The results showed that MS infection significantly inhibited the growth of chicken oviduct cells, caused the nuclear shrinkage and rupture, activated the expression of apoptosis marker genes Caspase 3 and Beclin-1, and increased the apoptosis rate. These results indicated that MS infection inhibits cell proliferation and promotes apoptosis in chicken oviduct cells, which provided a basis for further revealing the MS pathogenic mechanism and provided a foundation for the future development of anti-infection strategies.
Collapse
Affiliation(s)
- Xudong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaochun Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuting Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yulu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingwen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Shi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Strässle M, Laloli L, Gultom M, V'kovski P, Stoffel MH, Crespo Pomar S, Chanfon Bätzner A, Ebert N, Labroussaa F, Dijkman R, Jores J, Thiel V. Establishment of caprine airway epithelial cells grown in an air-liquid interface system to study caprine respiratory viruses and bacteria. Vet Microbiol 2021; 257:109067. [PMID: 33862331 DOI: 10.1016/j.vetmic.2021.109067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Respiratory diseases negatively impact the global goat industry, but are understudied. There is a shortage of established and biological relevant in vitro or ex vivo assays to study caprine respiratory infections. Here, we describe the establishment of an in vitro system based on well-differentiated caprine airway epithelial cell (AEC) cultures grown under air liquid interface conditions as an experimental platform to study caprine respiratory pathogens. The functional differentiation of the AEC cultures was monitored and confirmed by light and immunofluorescence microscopy, scanning electron microscopy and examination of histological sections. We validated the functionality of the platform by studying Influenza D Virus (IDV) infection and Mycoplasma mycoides subsp. capri (Mmc) colonization over 5 days, including monitoring of infectious agents by titration and qPCR as well as colour changing units, respectively. The inoculation of caprine AEC cultures with IDV showed that efficient viral replication takes place, and revealed that IDV has a marked cell tropism for ciliated cells. Furthermore, AEC cultures were successfully infected with Mmc using a multiplicity of infection of 0.1 and colonization was monitored over several days. Altogether, these results demonstrate that our newly-established caprine AEC cultures can be used to investigate host-pathogen interactions of caprine respiratory pathogens.
Collapse
Affiliation(s)
- Marina Strässle
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Biomedical Science, University of Bern, Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mitra Gultom
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Biomedical Science, University of Bern, Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philip V'kovski
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggass-Str. 120, PO Box 3001, Bern, Switzerland
| | - Silvia Crespo Pomar
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland
| | - Astrid Chanfon Bätzner
- Institute of Animal Pathology (COMPATH), Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Institute of Veterinary Bacteriology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Str. 122, PO Box 3001, Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Di Teodoro G, Marruchella G, Di Provvido A, D'Angelo AR, Orsini G, Di Giuseppe P, Sacchini F, Scacchia M. Contagious Bovine Pleuropneumonia: A Comprehensive Overview. Vet Pathol 2020; 57:476-489. [PMID: 32390522 DOI: 10.1177/0300985820921818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contagious bovine pleuropneumonia (CBPP) is a respiratory disease of cattle that is listed as notifiable by the World Organization for Animal Health. It is endemic in sub-Saharan Africa and causes important productivity losses due to the high mortality and morbidity rates. CBPP is caused by Mycoplasma mycoides subsp. mycoides (Mmm) and is characterized by severe fibrinous bronchopneumonia and pleural effusion during the acute to subacute stages and by pulmonary sequestra in chronic cases. Additional lesions can be detected in the kidneys and in the carpal and tarsal joints of calves. Mmm infection occurs through the inhalation of infected aerosol droplets. After the colonization of bronchioles and alveoli, Mmm invades blood and lymphatic vessels and causes vasculitis. Moreover, Mmm can be occasionally demonstrated in blood and in a variety of other tissues. In the lung, Mmm antigen is commonly detected on bronchiolar and alveolar epithelial cells, in lung phagocytic cells, within the wall of blood and lymphatic vessels, inside necrotic areas, and within tertiary lymphoid follicles. Mmm antigen can also be present in the cytoplasm of macrophages within lymph node sinuses, in the germinal center of lymphoid follicles, in glomerular endothelial cells, and in renal tubules. A complete pathological examination is of great value for a rapid presumptive diagnosis, but laboratory investigations are mandatory for definitive diagnosis. The purpose of this review is to describe the main features of CBPP including the causative agent, history, geographic distribution, epidemiology, clinical course, diagnosis, and control. A special focus is placed on gross and microscopic lesions in order to familiarize veterinarians with the pathology and pathogenesis of CBPP.
Collapse
Affiliation(s)
- Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Giuseppe Marruchella
- University of Teramo, Faculty of Veterinary Medicine, Loc. Piano d'Accio, Teramo, Italy
| | - Andrea Di Provvido
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Anna Rita D'Angelo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Gianluca Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Paola Di Giuseppe
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Flavio Sacchini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| | - Massimo Scacchia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale," OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Campo Boario, Teramo, Italy
| |
Collapse
|
4
|
Zhu X, Dong Y, Baranowski E, Li X, Zhao G, Hao Z, Zhang H, Chen Y, Hu C, Chen H, Citti C, Guo A. Mbov_0503 Encodes a Novel Cytoadhesin that Facilitates Mycoplasma bovis Interaction with Tight Junctions. Microorganisms 2020; 8:microorganisms8020164. [PMID: 31979335 PMCID: PMC7074692 DOI: 10.3390/microorganisms8020164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
Molecules contributing to microbial cytoadhesion are important virulence factors. In Mycoplasma bovis, a minimal bacterium but an important cattle pathogen, binding to host cells is emerging as a complex process involving a broad range of surface-exposed structures. Here, a new cytoadhesin of M. bovis was identified by producing a collection of individual knock-out mutants and evaluating their binding to embryonic bovine lung cells. The cytoadhesive-properties of this surface-exposed protein, which is encoded by Mbov_0503 in strain HB0801, were demonstrated at both the mycoplasma cell and protein levels using confocal microscopy and ELISA. Although Mbov_0503 disruption was only associated in M. bovis with a partial reduction of its binding capacity, this moderate effect was sufficient to affect M. bovis interaction with the host-cell tight junctions, and to reduce the translocation of this mycoplasma across epithelial cell monolayers. Besides demonstrating the capacity of M. bovis to disrupt tight junctions, these results identified novel properties associated with cytoadhesin that might contribute to virulence and host colonization. These findings provide new insights into the complex interplay taking place between wall-less mycoplasmas and the host-cell surface.
Collapse
Affiliation(s)
- Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Eric Baranowski
- IHAP, ENVT, INRAE, Université de Toulouse, Toulouse 31300, France; (E.B.); (C.C.)
| | - Xixi Li
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Christine Citti
- IHAP, ENVT, INRAE, Université de Toulouse, Toulouse 31300, France; (E.B.); (C.C.)
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Y.D.); (X.L.); (G.Z.); (Z.H.); (H.Z.); (Y.C.); (C.H.); (H.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: ; Tel.: 86-131-0071-2906
| |
Collapse
|
5
|
Wu Z, Chen C, Miao Y, Liu Y, Zhang Q, Li R, Ding L, Ishfaq M, Li J. Baicalin Attenuates Mycoplasma gallisepticum-Induced Inflammation via Inhibition of the TLR2-NF-κB Pathway in Chicken and DF-1 Cells. Infect Drug Resist 2019; 12:3911-3923. [PMID: 31908503 PMCID: PMC6929927 DOI: 10.2147/idr.s231908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Previous reports demonstrated that baicalin possesses potential anti-inflammatory properties. The present study was conducted to determine the effects of baicalin against inflammatory responses in chicken and DF-1 cells infected with Mycoplasma gallisepticum (MG). Methods An MG infection model was developed in chickens to study the anti-inflammatory mechanism of baicalin. Baicalin was mixed in water at a dose of 450 mg/kg per day, and the treatment is continued for 7 consecutive days. Samples were taken at 1, 4, and 7 days post treatment. Results By using transmission electron microscopy, ultrastructure of lung and tracheal cells has been examined. It can be seen that the cilia cells in the MG-infected group have pyknosis, degeneration, and necrosis. In the lung tissues, alveolar type-I epithelial cells were severely damaged. In the baicalin-treated group, cilia were swollen, mushroom-shaped edema bubbles formed on the apex, and fused together. Alveolar type I epithelial cells injury was significantly reduced. Compared to MG-infection group, the levels of proinflammatory cytokines IL-1β and TNF-α were significantly decreased (P < 0.01). The corresponding proteins TLR2 and P-p65 decreased in the baicalin-treated group after 1 (p > 0.05), 4 (p < 0.05), and 7 days (p < 0.05), respectively. Conclusion The results showed that baicalin can interfere with inflammatory injury by suppressing the release of inflammatory cytokines IL-1β and TNF-α during MG infection both in vivo and in vitro. Meanwhile, baicalin suppressed TLR2-NFκB signaling pathway by inhibiting the phosphorylation of p65 and IκB, thereby affecting the expression of inflammatory factors. The results suggested that baicalin acts as a potential anti-inflammatory agent against MG infection in chicken and DF-1 cells.
Collapse
Affiliation(s)
- Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuhao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qiaomei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Liangjun Ding
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, People's Republic of China
| |
Collapse
|
6
|
Host-Pathogen Interactions of Mycoplasma mycoides in Caprine and Bovine Precision-Cut Lung Slices (PCLS) Models. Pathogens 2019; 8:pathogens8020082. [PMID: 31226867 PMCID: PMC6631151 DOI: 10.3390/pathogens8020082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Respiratory infections caused by mycoplasma species in ruminants lead to considerable economic losses. Two important ruminant pathogens are Mycoplasma mycoides subsp. Mycoides (Mmm), the aetiological agent of contagious bovine pleuropneumonia and Mycoplasma mycoides subsp. capri (Mmc), which causes pneumonia, mastitis, arthritis, keratitis, and septicemia in goats. We established precision cut lung slices (PCLS) infection model for Mmm and Mmc to study host-pathogen interactions. We monitored infection over time using immunohistological analysis and electron microscopy. Moreover, infection burden was monitored by plating and quantitative real-time PCR. Results were compared with lungs from experimentally infected goats and cattle. Lungs from healthy goats and cattle were also included as controls. PCLS remained viable for up to two weeks. Both subspecies adhered to ciliated cells. However, the titer of Mmm in caprine PCLS decreased over time, indicating species specificity of Mmm. Mmc showed higher tropism to sub-bronchiolar tissue in caprine PCLS, which increased in a time-dependent manner. Moreover, Mmc was abundantly observed on pulmonary endothelial cells, indicating partially, how it causes systemic disease. Tissue destruction upon prolonged infection of slices was comparable to the in vivo samples. Therefore, PCLS represents a novel ex vivo model to study host-pathogen interaction in livestock mycoplasma.
Collapse
|
7
|
Identification of targets of monoclonal antibodies that inhibit adhesion and growth in Mycoplasma mycoides subspecies mycoides. Vet Immunol Immunopathol 2018; 204:11-18. [PMID: 30596376 PMCID: PMC6215757 DOI: 10.1016/j.vetimm.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
Abstract
A panel of anti-Mmm mAbs was produced and screened for host-pathogen inhibition. 13 mAbs inhibited adhesion of Mmm to host target cells. Anti-capsular polysaccharide inhibited growth and caused agglutination of Mmm. Anti-PDHC inhibited adherence of Mmm cells showing the possible role of glycolytic enzymes in host-pathogen interaction. One novel antigen that is a promising vaccine candidate against CBPP identified.
Mycoplasma mycoides subspecies mycoides (Mmm) adhesion is tissue and host specific. Inhibition of adhesion will prevent Mmm from binding to lung cells and hence prevent colonization and disease. The aim of this study was to develop a panel of Mmm monoclonal antibodies against Mmm and use these antibodies to investigate their inhibitory effect on the adherence of Mmm to bovine lung epithelial cells (BoLEC), and to further identify an antigen to any of the inhibitory antibodies. Thirteen anti-Mycoplasma mycoides subsp. mycoides (AMMY) monoclonal antibodies (mAbs) inhibited adhesion by at least 30% and ten of the mAbs bound to multiple bands on Western blots suggesting that the antibodies bound to proteins of variable sizes. AMMY 10, a previously characterized Mmm- capsular polysaccharide (CPS) specific antibody, inhibited growth of Mmm in vitro and also caused agglutination of Mmm total cell lysate. AMMY 5, a 2-oxo acid dehydrogenase acyltransferase (Catalytic domain) (MSC_0267) specific antibody, was identified and polyclonal rabbit serum against recombinant MSC_0267 blocked adhesion of Mmm to BoLEC by 41%. Antigens recognized by these antibodies could be vaccine candidate(s) and should be subsequently tested for their ability to induce a protective immune response in vivo.
Collapse
|
8
|
Di Teodoro G, Marruchella G, Di Provvido A, Orsini G, Ronchi GF, D'Angelo AR, D'Alterio N, Sacchini F, Scacchia M. Respiratory explants as a model to investigate early events of contagious bovine pleuropneumonia infection. Vet Res 2018; 49:5. [PMID: 29329577 PMCID: PMC5766988 DOI: 10.1186/s13567-017-0500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
Contagious bovine pleuropneumonia (CBPP) is a severe disease caused by Mycoplasma mycoides subsp. mycoides (Mmm). Knowledge on CBPP pathogenesis is fragmented and hampered by the limited availability of laboratory animal and in vitro models of investigation. The purpose of the present study is to assess respiratory explants as useful tools to study the early stages of CBPP. Explants were obtained from trachea, bronchi and lungs of slaughtered cattle, tested negative for Mycoplasma spp. and for the major bacterial and viral respiratory pathogens. The interaction of Mmm with explant cells was studied by immunohistochemistry (IHC), double-labelling indirect immunofluorescence (DLIIF) and laser scanning confocal microscopy (LSCM). Mmm capability to survive and proliferate within the explants was evaluated by standard microbiological procedures. Finally, the putative cellular internalization of Mmm was further investigated by the gentamicin invasion assay. IHC and DLIIF indicated that Mmm can colonize explants, showing a marked tropism for lower airways. Specifically, Mmm was detected on/inside the bronchiolar and alveolar epithelial cells, the alveolar macrophages and the endothelial cells. The interaction between Mmm and explant cells was abolished by the pre-incubation of the pathogen with bovine anti-Mmm immune sera. Mmm was able to survive and proliferate in all tracheal, bronchial and lung explants, during the entire time course of the experiments. LSCM and gentamicin invasion assay both confirmed that Mmm can enter non-phagocytic host cells. Taken together, our data supports bovine respiratory explants as a promising tool to investigate CBPP, alternative to cattle experimental infection.
Collapse
Affiliation(s)
- Giovanni Di Teodoro
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy.,Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Giuseppe Marruchella
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy.
| | - Andrea Di Provvido
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Gianluca Orsini
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Gaetano Federico Ronchi
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Anna Rita D'Angelo
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Nicola D'Alterio
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Flavio Sacchini
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| | - Massimo Scacchia
- OIE Reference Laboratory for Contagious Bovine Pleuropneumonia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise "G. Caporale", Campo Boario, 64100, Teramo, Italy
| |
Collapse
|
9
|
Bonnefois T, Vernerey MS, Rodrigues V, Totté P, Puech C, Ripoll C, Thiaucourt F, Manso-Silván L. Development of fluorescence expression tools to study host-mycoplasma interactions and validation in two distant mycoplasma clades. J Biotechnol 2016; 236:35-44. [PMID: 27497759 DOI: 10.1016/j.jbiotec.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 11/30/2022]
Abstract
Fluorescence expression tools for stable and innocuous whole mycoplasma cell labelling have been developed. A Tn4001-derivative mini-transposon affording unmarked, stable mutagenesis in mycoplasmas was modified to allow the constitutive, high-level expression of mCherry, mKO2 and mNeonGreen. These tools were used to introduce the respective fluorescent proteins as chromosomal tags in the phylogenetically distant species Mycoplasma mycoides subsp. mycoides and Mycoplasma bovis. The production, selection and characterisation of fluorescent clones were straightforward and resulted in the unprecedented observation of red and green fluorescent mycoplasma colonies in the two species, with no apparent cytotoxicity. Equivalent fluorescence expression levels were quantified by flow cytometry in both species, suggesting that these tools can be broadly applied in mycoplasmas. A macrophage infection assay was performed to assess the usefulness of mNeonGreen-expressing strains for monitoring mycoplasma infections, and notably cell invasion. The presence of fluorescent mycoplasmas inside live phagocytic cells was detected and quantified by flow cytometry and corroborated by confocal microscopy, which allowed the identification of individual mycoplasmas in the cytoplasm of infected cells. The fluorescence expression tools developed in this study are suitable for host-pathogen interaction studies and offer innumerable perspectives for the functional analysis of mycoplasmas both in vitro and in vivo.
Collapse
Affiliation(s)
- Tiffany Bonnefois
- CIRAD, UMR CMAEE, F-34398 Montpellier, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| | - Marie-Stéphanie Vernerey
- INRA, Joint Research Unit 385 UMR BGPI, Campus International de Baillarguet, Montpellier, France.
| | - Valérie Rodrigues
- CIRAD, UMR CMAEE, F-34398 Montpellier, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| | - Philippe Totté
- CIRAD, UMR CMAEE, F-34398 Montpellier, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| | - Carinne Puech
- CIRAD, UMR CMAEE, F-34398 Montpellier, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| | - Chantal Ripoll
- INSERM U1051-Hôpital Saint Eloi INM. 80, rue Augustin Fliche, 34091 Montpellier cedex 5, France.
| | - François Thiaucourt
- CIRAD, UMR CMAEE, F-34398 Montpellier, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| | - Lucía Manso-Silván
- CIRAD, UMR CMAEE, F-34398 Montpellier, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| |
Collapse
|
10
|
Mwirigi M, Nkando I, Olum M, Attah-Poku S, Ochanda H, Berberov E, Potter A, Gerdts V, Perez-Casal J, Wesonga H, Soi R, Naessens J. Capsular polysaccharide from Mycoplasma mycoides subsp. mycoides shows potential for protection against contagious bovine pleuropneumonia. Vet Immunol Immunopathol 2016; 178:64-9. [PMID: 27496744 DOI: 10.1016/j.vetimm.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/27/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
Contagious Bovine Pleuropneumonia (CBPP) is a severe respiratory disease caused by Mycoplasma mycoides subsp. mycoides (Mmm) which is widespread in Africa. The capsule polysaccharide (CPS) of Mmm is one of the few identified virulence determinants. In a previous study, immunization of mice against CPS generated antibodies, but they were not able to prevent multiplication of Mmm in this model animal. However, mice cannot be considered as a suitable animal model, as Mmm does not induce pathology in this species. Our aim was to induce antibody responses to CPS in cattle, and challenge them when they had specific CPS antibody titres similar or higher than those from cattle vaccinated with the live vaccine. The CPS was linked to the carrier protein ovalbumin via a carbodiimide-mediated condensation with 1-ethyl-3(3-imethylaminopropyl) carbodiimide (EDC). Ten animals were immunized twice and challenged three weeks after the booster inoculation, and compared to a group of challenged non-immunized cattle. When administered subcutaneously to adult cattle, the vaccine elicited CPS-specific antibody responses with the same or a higher titre than animals vaccinated with the live vaccine. Pathology in the group of immunized animals was significantly reduced (57%) after challenge with Mmm strain Afadé compared to the non-immunized group, a figure in the range of the protection provided by the live vaccine.
Collapse
Affiliation(s)
- Martin Mwirigi
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, P.O. Box 14733, 00800, Nairobi, Kenya.
| | - Isabel Nkando
- Kenya Agricultural and Livestock Research Organisation, Veterinary Science Research Institute, P.O. Box 32, 00902, Kikuyu, Kenya
| | - Moses Olum
- University of Nairobi, P.O. Box 30197, Nairobi, Kenya
| | - Samuel Attah-Poku
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK, S7N 5E3, Canada
| | | | - Emil Berberov
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK, S7N 5E3, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK, S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK, S7N 5E3, Canada
| | - Jose Perez-Casal
- Vaccine and Infectious Disease Organization - International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK, S7N 5E3, Canada
| | - Hezron Wesonga
- Kenya Agricultural and Livestock Research Organisation, Veterinary Science Research Institute, P.O. Box 32, 00902, Kikuyu, Kenya
| | - Reuben Soi
- Kenya Agricultural and Livestock Research Organization, Biotechnology Research Institute, P.O. Box 14733, 00800, Nairobi, Kenya
| | - Jan Naessens
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya
| |
Collapse
|
11
|
Nkando I, Perez-Casal J, Mwirigi M, Prysliak T, Townsend H, Berberov E, Kuria J, Mugambi J, Soi R, Liljander A, Jores J, Gerdts V, Potter A, Naessens J, Wesonga H. Recombinant Mycoplasma mycoides proteins elicit protective immune responses against contagious bovine pleuropneumonia. Vet Immunol Immunopathol 2016; 171:103-14. [DOI: 10.1016/j.vetimm.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 01/30/2023]
|