1
|
Vargas-Castro I, Giorda F, Mattioda V, Goria M, Serracca L, Varello K, Carta V, Nodari S, Maniaci MG, Dell’Atti L, Testori C, Pussini N, Iulini B, Battistini R, Zoppi S, Nocera FD, Lucifora G, Fontanesi E, Acutis P, Casalone C, Grattarola C, Peletto S. Herpesvirus surveillance in stranded striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) from Italy with emphasis on neuropathological characterization. PLoS One 2024; 19:e0311767. [PMID: 39441833 PMCID: PMC11498698 DOI: 10.1371/journal.pone.0311767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Herpesvirus (HV) is widely distributed among cetacean populations, with the highest prevalence reported in the Mediterranean Sea. In this study, a comprehensive analysis was conducted, including epidemiological, phylogenetic, and pathological aspects, with particular emphasis on neuropathology, to better understand the impact of HV in these animals. Our results show a higher presence of HV in males compared to females, with males exhibiting a greater number of positive tissues. Additionally, adults were more frequently affected by HV infection than juveniles, with no infections detected in calves or neonates. The affected species were striped (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus). The highest positivity rates were observed in the genital system, cerebrum, and skin tissues. Phylogenetic analysis indicated a higher occurrence of Gammaherpesvirus (GHV) sequences but increased genetic diversity within Alphaherpesvirus (AHV). Key neuropathological features included astro-microgliosis (n = 4) and meningitis with minimal to mild perivascular cuffing (n = 2). The presence of concurrent infections with other pathogens, particularly cetacean morbillivirus (CeMV), underscores the complex nature of infectious diseases in cetaceans. However, the presence of lesions at the Central Nervous System (CNS) with molecular positivity for GHV, excluding the involvement of other potential neurotropic agents, would confirm the potential of this HV subfamily to induce neurological damage. Pathological examination identified lesions in other organs that could potentially be associated with HV, characterized by lymphoid depletion and tissue inflammation. These findings enhance our understanding of HV in odontocetes and highlight the need for ongoing research into the factors driving these infections and their broader implications.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Valerio Carta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Sabrina Nodari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Maria Grazia Maniaci
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Luana Dell’Atti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Camilla Testori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Nicola Pussini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | | | - Pierluigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| |
Collapse
|
2
|
Neves J, Methion S, Díaz López B. Relationship between skin and body condition in three species of baleen whales. DISEASES OF AQUATIC ORGANISMS 2024; 159:99-115. [PMID: 39145476 DOI: 10.3354/dao03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The assessment of free-ranging cetacean health through the study of skin conditions using photographs has gained prominence in recent years. However, little attention has been given to the relationships between cetacean skin conditions, species, and body condition. To explore this relationship among baleen whale species along the northwestern coast of Spain, we employed a non-invasive method involving photograph analysis. In this study, we examined skin conditions (including injuries, epizoites and ectoparasites, pigmentation disorders, skin lesions, and anatomical malformations) and body condition (overall physical contours and form, as an indicator of nutritional status and health) in 3 species of whales (blue, fin, and minke whales). This methodology facilitated the identification of 29 subcategories of distinct skin conditions and an assessment of body condition over a 5 yr period (2017 to 2021). In our study, we present evidence linking hypopigmentation, protruding pieces of tissue, and tattoo-like lesions to 'Poor' body condition in the 3 baleen whale species. Fin whales exhibited a higher susceptibility to mottling (prevalence = 17.7%), while blue whales were more prone to starbursts (prevalence = 90.5%). Additionally, we found a significant relationship between skin condition diversity and individual body condition. Our findings contribute valuable information to the broader understanding of the health status of baleen whales. Further investigations are necessary to delve into the etiology of the documented skin conditions and their potential implications for individual survival. This study serves as a foundation for ongoing research aimed at advancing our comprehension of these findings.
Collapse
Affiliation(s)
- Joyce Neves
- Bottlenose Dolphin Research Institute (BDRI), 36980 O Grove, Spain
- Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Séverine Methion
- Bottlenose Dolphin Research Institute (BDRI), 36980 O Grove, Spain
| | - Bruno Díaz López
- Bottlenose Dolphin Research Institute (BDRI), 36980 O Grove, Spain
| |
Collapse
|
3
|
Lee SB, Lee KL, Kim SW, Jung WJ, Park DS, Lee S, Giri SS, Kim SG, Jo SJ, Park JH, Hwang MH, Park EJ, Seo JP, Kim BY, Park SC. Novel Gammaherpesvirus Infections in Narrow-Ridged Finless Porpoise ( Neophocaena asiaeorientalis) and False Killer Whales ( Pseudorca crassidens) in the Republic of Korea. Viruses 2024; 16:1234. [PMID: 39205209 PMCID: PMC11359890 DOI: 10.3390/v16081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
A female narrow-ridged finless porpoise (Neophocaena asiaeorientalis) stranded on a beach on Jeju Island showed epithelial proliferative skin lesions on its body. Two false killer whales (Pseudorca crassidens), caught using nets near Gangneung and Samcheok, respectively, had multiple plaques on their penile epidermis. Histological examination of the epidermis revealed that all the lesions had common features, including accentuated rete pegs, ballooning changes, and eosinophilic intranuclear inclusion (INI) bodies. Based on the histopathological results, herpesvirus infection was suspected, and thus further analysis was conducted using herpesvirus-specific primers. Based on nested polymerase chain reaction (PCR) tests using the herpesvirus-detectable primers, the PCR products demonstrated two fragments: a 222-base-pair (bp) sequence of the DNA polymerase gene, SNUABM_CeHV01, showing 96.4% identity with a bottlenose dolphin herpesvirus from the Jeju narrow-ridged finless porpoise; and a 222 bp sequence of the DNA polymerase gene, SNUABM_CeHV02, showing 95.95% identity with the same bottlenose dolphin herpesvirus from the Gangneung and Samcheok false killer whales. The significance of this study lies in its ability to demonstrate the existence of novel cetacean herpesviruses in South Korean seawater, representing an important step forward in studying potentially harmful pathogens that affect endangered whale and dolphin populations.
Collapse
Affiliation(s)
- Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Kyung Lee Lee
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan 44780, Republic of Korea;
| | - Sang Wha Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Da Sol Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Seyoung Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Eun Jae Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Byung Yeop Kim
- Department of Marine Industry and Maritime Police, College of Ocean Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| |
Collapse
|
4
|
Sacristán C, Ewbank AC, Duarte-Benvenuto A, Sacristán I, Zamana-Ramblas R, Costa-Silva S, Lanes Ribeiro V, Bertozzi CP, Del Rio do Valle R, Castilho PV, Colosio AC, Marcondes MCC, Lailson-Brito J, de Freitas Azevedo A, Carvalho VL, Pessi CF, Cremer M, Esperón F, Catão-Dias JL. Survey of selected viral agents (herpesvirus, adenovirus and hepatitis E virus) in liver and lung samples of cetaceans, Brazil. Sci Rep 2024; 14:2689. [PMID: 38302481 PMCID: PMC10834590 DOI: 10.1038/s41598-023-45315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 02/03/2024] Open
Abstract
Hepatic and pulmonary lesions are common in cetaceans, despite their poorly understood viral etiology. Herpesviruses (HV), adenoviruses (AdV) and hepatitis E virus (HEV) are emerging agents in cetaceans, associated with liver and/or pulmonary damage in mammals. We isolated and molecularly tested DNA for HV and AdV (n = 218 individuals; 187 liver and 108 lung samples) and RNA for HEV (n = 147 animals; 147 liver samples) from six cetacean families. All animals stranded or were bycaught in Brazil between 2001 and 2021. Positive-animals were analyzed by histopathology. Statistical analyses assessed if the prevalence of viral infection could be associated with the variables: species, family, habitat, region, sex, and age group. All samples were negative for AdV and HEV. Overall, 8.7% (19/218) of the cetaceans were HV-positive (4.8% [9/187] liver and 11.1% [12/108] lung), without HV-associated lesions. HV-prevalence was statistically significant higher in Pontoporiidae (19.2%, 10/52) when compared to Delphinidae (4.1%, 5/121), and in southeastern (17.1%, 13/76)-the most industrialized Brazilian region-when compared to the northeastern region (2.4%, 3/126). This study broadens the herpesvirus host range in cetaceans, including its description in pygmy sperm whales (Kogia breviceps) and humpback whales (Megaptera novaeangliae). Further studies must elucidate herpesvirus drivers in cetaceans.
Collapse
Affiliation(s)
- C Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos, Madrid, Spain.
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - A C Ewbank
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - A Duarte-Benvenuto
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - I Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos, Madrid, Spain
| | - R Zamana-Ramblas
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - S Costa-Silva
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - C P Bertozzi
- São Paulo State University - UNESP, São Vicente, SP, Brazil
| | - R Del Rio do Valle
- Instituto Ecoema de Estudo e Conservação do Meio Ambiente, Peruíbe, SP, Brasil
| | - P V Castilho
- Universidade do Estado de Santa Catarina-UDESC, Laguna, SC, Brazil
| | - A C Colosio
- Instituto Baleia Jubarte, Caravelas, BA, Brazil
| | | | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores 'Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A de Freitas Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores 'Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - V L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, CE, Brazil
| | - C F Pessi
- Instituto de Pesquisas Cananéia (IpeC), Cananéia, SP, Brazil
| | - M Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros - TETRAMAR, Universidade da Região de Joinville - UNIVILLE, São Francisco Do Sul, SC, Brazil
| | - F Esperón
- Universidad Europea, Villaviciosa de Odon, Spain
| | - J L Catão-Dias
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Morick D, Davidovich N, Zemah-Shamir Z, Kroin Y, Bigal E, Sierra E, Segura-Göthlin S, Wosnick N, Hauser-Davis RA, Tchernov D, Scheinin AP. First description of a Gammaherpesvirus in a common dolphin (Delphinus delphis) from the Eastern Mediterranean Sea. Vet Res Commun 2023; 47:2253-2258. [PMID: 37088865 DOI: 10.1007/s11259-023-10125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
In September 2020, a male common dolphin (Delphinus delphis) was found dead on a beach near Bat-Yam, Israel. A small, raised, well circumscribed penile lesion (i.e., mass) was identified and removed for histology and molecular characterizations. By histology, the penile mass presented focal keratinization of the squamous epithelium and a mild ballooning of acanthocytes in lower epithelium levels, as well as features compatible with viral plaques, and tested positive for a gammaherpesvirus through molecular characterization analyses. Tissue samples from the lungs, liver, and spleen, however, tested negative for herpesvirus infection. The gammaherpesvirus detected herein is similar to other isolates found in several areas worldwide in different cetacean species. This is the first reported case of gammaherpesvirus infection in dolphins from the eastern Mediterranean Sea, indicative of the need for long-term assessments to create viral infections databases in cetaceans, especially in a climate change context, which is likely to intensify infectious disease outbreaks in marine mammals in the future.
Collapse
Affiliation(s)
- Danny Morick
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel.
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
- Hong Kong Branch of Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Nadav Davidovich
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
- Israeli Veterinary Services, 20250, Bet Dagan, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Yael Kroin
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Eva Sierra
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Las Palmas, Spain
| | - Simone Segura-Göthlin
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Trasmontaña, s/n, 35413, Las Palmas, Spain
| | - Natascha Wosnick
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, 81531-980, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | - Dan Tchernov
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
- Hong Kong Branch of Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aviad P Scheinin
- Morris Kahn Marine Research Station, University of Haifa, 3498838, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
6
|
Sakyi ME, Kamio T, Kohyama K, Rahman MM, Shimizu K, Okada A, Inoshima Y. Assessing of the use of proteins A, G, and chimeric protein AG to detect marine mammal immunoglobulins. PLoS One 2023; 18:e0291743. [PMID: 37733771 PMCID: PMC10513184 DOI: 10.1371/journal.pone.0291743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been an increase in infectious diseases in marine mammals, including brucellosis, infections of morbillivirus, herpesvirus, and poxvirus. Several serological diagnostic methods, including enzyme-linked immunosorbent assays, immunofluorescence assays (ELISA), and western blotting, have been used to detect antibodies against pathogens in marine mammals. However, options for commercial secondary antibodies used to detect antibodies in marine mammals are limited; therefore, the use of proteins A, G, or chimeric protein AG may provide a suitable alternative. This study aimed to assess the use of proteins A, G, and chimeric protein AG to detect marine mammal immunoglobulins. Currently, there are no comparative studies on the use of proteins A, G, and chimeric protein AG for the detection of immunoglobulins in marine mammals. In this study, we used ten pinnipeds' species (Baikal seal, California sea lion, harbor seal, northern fur seal, ringed seal, South American fur seal, South American sea lion, spotted seal, Steller sea lion, and walrus) and five cetacean species (beluga whale, bottlenose dolphin, harbor porpoise, killer whale, and Pacific white-sided dolphin) and compare binding ability to proteins A, G, or chimeric protein AG by ELISA. The results revealed that the immunoglobulins from pinniped and cetacean species reacted more strongly to protein A than protein G. In addition, the immunoglobulins of pinnipeds and cetaceans showed a strong binding ability to chimeric protein AG. These results suggest that proteins A, G, and chimeric protein AG would be used to help further develop serological assays.
Collapse
Affiliation(s)
- Michael Essien Sakyi
- Cooperative Department of Veterinary Medicine, Laboratory of Food and Environmental Hygiene, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takashi Kamio
- Cooperative Department of Veterinary Medicine, Laboratory of Food and Environmental Hygiene, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Port of Nagoya Public Aquarium, Nagoya, Aichi, Japan
| | | | - Md. Matiur Rahman
- Cooperative Department of Veterinary Medicine, Laboratory of Food and Environmental Hygiene, Gifu University, Gifu, Japan
- Faculty for Veterinary, Department of Medicine, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kaori Shimizu
- Cooperative Department of Veterinary Medicine, Laboratory of Food and Environmental Hygiene, Gifu University, Gifu, Japan
| | - Ayaka Okada
- Cooperative Department of Veterinary Medicine, Laboratory of Food and Environmental Hygiene, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Yasuo Inoshima
- Cooperative Department of Veterinary Medicine, Laboratory of Food and Environmental Hygiene, Gifu University, Gifu, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| |
Collapse
|
7
|
Vargas-Castro I, Crespo-Picazo JL, Jiménez Martínez MÁ, Marco-Cabedo V, Muñoz-Baquero M, García-Párraga D, Sánchez-Vizcaíno JM. First description of a lesion in the upper digestive mucosa associated with a novel gammaherpesvirus in a striped dolphin (Stenella coeruleoalba) stranded in the Western Mediterranean Sea. BMC Vet Res 2023; 19:118. [PMID: 37563731 PMCID: PMC10413511 DOI: 10.1186/s12917-023-03677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND A wide variety of lesions have been associated with herpesvirus in cetaceans. However, descriptions of herpesvirus infections in the digestive system of cetaceans are scarce. CASE REPORT A young female striped dolphin stranded in the Valencian Community (Spain) on the 6th August 2021. The animal showed external macroscopic lesions suggestive of an aggressive interaction with bottlenose dolphins (rake marks in the epidermis). Internally, the main findings included congestion of the central nervous system and multiple, well-defined, whitish, irregularly shaped, proliferative lesions on the oropharyngeal and laryngopharyngeal mucosa. Histopathology revealed lymphoplasmacytic and histiocytic meningoencephalitis, consistent with neuro brucellosis. The oropharyngeal and laryngopharyngeal plaques were comprised histologically of focally extensive epithelial hyperplasia. As part of the health surveillance program tissue samples were tested for cetacean morbillivirus using a real-time reverse transcription-PCR, for Brucella spp. using a real-time PCR, and for herpesvirus using a conventional nested PCR. All samples were negative for cetacean morbillivirus; molecular positivity for Brucella spp. was obtained in pharyngeal tonsils and cerebrospinal fluid; herpesvirus was detected in a proliferative lesion in the upper digestive mucosa. Phylogenetic analysis showed that the herpesvirus sequence was included in the Gammaherpesvirinae subfamily. This novel sequence showed the greatest identity with other Herpesvirus sequences detected in skin, pharyngeal and genital lesions in five different species. CONCLUSIONS To the best of the authors' knowledge, this is the first report of a proliferative lesion in the upper digestive mucosa associated with gammaherpesvirus posititvity in a striped dolphin (Stenella coeruleoalba).
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, 28040, Spain.
| | - José Luis Crespo-Picazo
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
| | - Mª Ángeles Jiménez Martínez
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Vicente Marco-Cabedo
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
| | - Marta Muñoz-Baquero
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
| | - Daniel García-Párraga
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
- Biology Department, Oceanogràfic, Ciudad de las Artes y las Ciencias, 46013, Valencia, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
8
|
Wang T, Xi C, Yu Y, Liu W, Akhtar MF, Li Y, Wang C, Li L. Characteristics and epidemiological investigation of equid herpesvirus 8 in donkeys in Shandong, China. Arch Virol 2023; 168:99. [PMID: 36871102 DOI: 10.1007/s00705-023-05704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/08/2022] [Indexed: 03/06/2023]
Abstract
Equid herpesvirus 8 (EHV-8), also known as asinine herpesvirus type 3 (AHV-3), can cause severe respiratory disease, abortion in mares, and neurological disorders. There is limited information on the prevalence of EHV-8 in donkeys in China. In this study, we investigated EHV-8 infection in donkeys using PCR, resulting in the identification of a field strain, termed EHV-8 SD2020113, which was isolated using RK-13 cells and characterized by high-throughput sequencing and transmission electron microscopy. Our data indicated that 38.7% (457/1180) of donkeys showed the presence of EHV-8 in blood samples. Analysis of the ORF70 gene showed the highest similarity (99.8-99.9% identity) to EHV-8 IR/2015/40 (MF431614.1) and SDLC66 (MW816102), and, in phylogenetic analysis, it clustered with EHV-8 SDLC66 from China. The findings of this study indicate that EHV-8 is likely to represent a threat to the donkey industry, and breeders and veterinarians who care for donkey farms should be aware of this.
Collapse
Affiliation(s)
- Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Cankun Xi
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yue Yu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
9
|
Molecular Characterization of Herpesviral Encephalitis in Cetaceans: Correlation with Histopathological and Immunohistochemical Findings. Animals (Basel) 2022; 12:ani12091149. [PMID: 35565575 PMCID: PMC9105563 DOI: 10.3390/ani12091149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In this study we describe the molecular and pathological characteristics of alpha- and gamma-herpesvirus infection of the central nervous system of stranded cetaceans and correlate them with viral load, immunohistochemical findings and biological data such as age, sex, and the presence of co-infections. The viruses (alpha- and gamma-herpesvirus) were detected in twelve out of 103 analysed stranded cetaceans and were associated with a wide range of histopathological lesions, as previously described for these and other species. In five out the twelve animals, lesions were severe enough (malacia, neuronal necrosis and neuronophagia) to cause death. Intranuclear inclusions bodies were present in brain tissue samples from half of the HV-positive animals, indicating that the injury was due to an infective agent belonging to a group of filterable viruses. These results are in accordance with immunohistochemical findings, as all the brain tissue samples with INIBs were immunolabeled with Anti-HSV1. Males, juveniles, and calves were predominantly infected among the analysed cetaceans and a 41.6% (5/12) incidence of co-infections in the brain was detected, with three animals co-infected with Dolphin Morbillivirus (DMV). In this study, we present, to the best of our knowledge, the first histopathological evidence of superinfection between HV and DMV pathogens in brain tissue. Abstract Herpesviruses are causative agents of meningitis and encephalitis in cetaceans, which are among the main leading known natural causes of death in these species. Brain samples from 103 stranded cetaceans were retrospectively screened for the presence of herpesvirus DNA in the brain. Molecular detection of Cetacean Morbillivirus was performed in HV positive brain cases. Histopathologic evaluation of brain samples included the presence or absence of the following findings (n = 7): meningitis, perivascular cuffings, microgliosis, intranuclear inclusion bodies, malacia, neuronal necrosis and neurophagic nodules, and haemorrhages. Histological evidence of the involvement of other etiological agents led to complementary analysis. We detected the presence of alpha and gamma-HVs in 12 out of 103 (11.6%) brain samples from stranded cetaceans of five different species: one bottlenose dolphin, six striped dolphins, three Atlantic spotted dolphins, one Cuvier’s beaked whale, and one common dolphin. Pathogenic factors such as viral strain, age, sex, and the presence of co-infections were analysed and correlated with the brain histopathological findings in each case. Herpesvirus was more prevalent in males, juveniles, and calves and a 41.6% incidence of co-infections in the brain was detected in our study: three with Dolphin Morbillivirus, one with Staphilococcus aureus septicaemia and one with Brucella spp.
Collapse
|
10
|
Vargas-Castro I, Melero M, Crespo-Picazo JL, Jiménez MDLÁ, Sierra E, Rubio-Guerri C, Arbelo M, Fernández A, García-Párraga D, Sánchez-Vizcaíno JM. Systematic Determination of Herpesvirus in Free-Ranging Cetaceans Stranded in the Western Mediterranean: Tissue Tropism and Associated Lesions. Viruses 2021; 13:v13112180. [PMID: 34834986 PMCID: PMC8621769 DOI: 10.3390/v13112180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The monitoring of herpesvirus infection provides useful information when assessing marine mammals’ health. This paper shows the prevalence of herpesvirus infection (80.85%) in 47 cetaceans stranded on the coast of the Valencian Community, Spain. Of the 966 tissues evaluated, 121 tested positive when employing nested-PCR (12.53%). The largest proportion of herpesvirus-positive tissue samples was in the reproductive system, nervous system, and tegument. Herpesvirus was more prevalent in females, juveniles, and calves. More than half the DNA PCR positive tissues contained herpesvirus RNA, indicating the presence of actively replicating virus. This RNA was most frequently found in neonates. Fourteen unique sequences were identified. Most amplified sequences belonged to the Gammaherpesvirinae subfamily, but a greater variation was found in Alphaherpesvirinae sequences. This is the first report of systematic herpesvirus DNA and RNA determination in free-ranging cetaceans. Nine (19.14%) were infected with cetacean morbillivirus and all of them (100%) were coinfected with herpesvirus. Lesions similar to those caused by herpesvirus in other species were observed, mainly in the skin, upper digestive tract, genitalia, and central nervous system. Other lesions were also attributable to concomitant etiologies or were nonspecific. It is necessary to investigate the possible role of herpesvirus infection in those cases.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
- Correspondence:
| | - Mar Melero
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
- Division of External Health, Government Delegation in the Community of Madrid, Ministry of Territorial Policy, 28071 Madrid, Spain
| | - José Luis Crespo-Picazo
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, 46013 Valencia, Spain; (J.L.C.-P.); (D.G.-P.)
| | - María de los Ángeles Jiménez
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Eva Sierra
- Division of Veterinary Histology and Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35416 Canary Islands, Spain; (E.S.); (M.A.); (A.F.)
| | - Consuelo Rubio-Guerri
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
- Department of Pharmacy, Facultad de CC de la Salud, UCH-CEU University, 46113 Valencia, Spain
| | - Manuel Arbelo
- Division of Veterinary Histology and Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35416 Canary Islands, Spain; (E.S.); (M.A.); (A.F.)
| | - Antonio Fernández
- Division of Veterinary Histology and Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35416 Canary Islands, Spain; (E.S.); (M.A.); (A.F.)
| | - Daniel García-Párraga
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, 46013 Valencia, Spain; (J.L.C.-P.); (D.G.-P.)
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
| |
Collapse
|
11
|
Contribution to Herpesvirus Surveillance in Beaked Whales Stranded in the Canary Islands. Animals (Basel) 2021; 11:ani11071923. [PMID: 34203458 PMCID: PMC8300104 DOI: 10.3390/ani11071923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Herpesviruses (HVs) are a large family of DNA viruses infecting animals (including insects and mollusks) and humans. Cetaceans can be also infected by HVs presenting different range of lesions, from dermatitis to meningoencephalitis, or being asymptomatic. Several studies have addressed the question of HVs in cetaceans, although no previous systematic survey of HV in beaked whales (BWs) (Ziphiidae family) has been previously performed. The family Ziphiidae, which includes 22 species in 6 genera, is one of the most widespread families of cetaceans, with a strict oceanic habitat pattern. Beaked whales, Cuvier’s BW in particular, are one of the deepest diving whales and are of particular interest because of a notable relationship between military operations employing mid-frequency sonar and the mass stranding of BWs in different geographic areas, including the Canary Islands. In this study, we analyzed 55 BWs (294 samples) stranded in the Canary Islands from 1990 to 2017 by molecular methods (conventional nested polymerase chain reaction). Our results showed that 8 BWs were infected by HVs, although only three animals displayed lesions indicative of active viral replication. Phylogenetic analysis suggests that HV-BW sequences are species-specific, although more studies are needed to better address this question. Abstract Herpesviruses (HVs) (Alpha- and Gammaherpesvirinae subfamilies) have been detected in several species of cetaceans with different pathological implications. However, available information on their presence in beaked whales (BWs) is still scarce. In this study, a total of 55 BWs (35 Ziphius cavirostris and 20 animals belonging to the Mesoplodon genus) were analyzed. Samples (n = 294) were obtained from BWs stranded along the coasts of the Canary Islands (1990–2017). Molecular detection of HV was performed by means of a conventional nested PCR based on the DNA polymerase gene. Herpesvirus was detected in 14.45% (8/55) of the analyzed BWs, including 2 positive animals from a previous survey. A percentage positivity of 8.57% was found within the Cuvier’s BW group, while the percentage of positivity rose to 25% within the Mesoplodon genus group (three M. densirostris, one M. europaeus, and one M. bidens). All the obtained sequences from this study belonged to the Alphaherpesvirinae subfamily, from which three are considered novel sequences, all of them within the Mesoplodon genus group. In addition, to our knowledge, this is the first description of HV infection in Gervais’ and Sowerby’s BWs. Three out of eight HV-positive BWs displayed histopathological lesions indicative of active viral replication.
Collapse
|
12
|
Vargas-Castro I, Crespo-Picazo JL, Rivera-Arroyo B, Sánchez R, Marco-Cabedo V, Jiménez-Martínez MÁ, Fayos M, Serdio Á, García-Párraga D, Sánchez-Vizcaíno JM. Alpha- and gammaherpesviruses in stranded striped dolphins (Stenella coeruleoalba) from Spain: first molecular detection of gammaherpesvirus infection in central nervous system of odontocetes. BMC Vet Res 2020; 16:288. [PMID: 32787898 PMCID: PMC7425534 DOI: 10.1186/s12917-020-02511-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpesvirus infections in cetaceans have always been attributed to the Alphaherpesvirinae and Gammaherpesvirinae subfamilies. To date, gammaherpesviruses have not been reported in the central nervous system of odontocetes. CASE PRESENTATION A mass stranding of 14 striped dolphins (Stenella coeruleoalba) occurred in Cantabria (Spain) on 18th May 2019. Tissue samples were collected and tested for herpesvirus using nested polymerase chain reaction (PCR), and for cetacean morbillivirus using reverse transcription-PCR. Cetacean morbillivirus was not detected in any of the animals, while gammaherpesvirus was detected in nine male and one female dolphins. Three of these males were coinfected by alphaherpesviruses. Alphaherpesvirus sequences were detected in the cerebrum, spinal cord and tracheobronchial lymph node, while gammaherpesvirus sequences were detected in the cerebrum, cerebellum, spinal cord, pharyngeal tonsils, mesenteric lymph node, tracheobronchial lymph node, lung, skin and penile mucosa. Macroscopic and histopathological post-mortem examinations did not unveil the potential cause of the mass stranding event or any evidence of severe infectious disease in the dolphins. The only observed lesions that may be associated with herpesvirus were three cases of balanitis and one penile papilloma. CONCLUSIONS To the authors' knowledge, this is the first report of gammaherpesvirus infection in the central nervous system of odontocete cetaceans. This raises new questions for future studies about how gammaherpesviruses reach the central nervous system and how infection manifests clinically.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Belén Rivera-Arroyo
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Rocío Sánchez
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | | | - Manena Fayos
- Centro de Recuperación de Fauna Silvestre de Cantabria, 39690, Santander, Spain.,Tragsatec, 39005, Santander, Spain
| | - Ángel Serdio
- Dirección General de Biodiversidad, Medio Ambiente y Cambio Climático, 39011, Santander, Spain
| | | | - José Manuel Sánchez-Vizcaíno
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
13
|
Sacristán C, Esperón F, Ewbank AC, Díaz-Delgado J, Ferreira-Machado E, Costa-Silva S, Sánchez-Sarmiento AM, Groch KR, Neves E, Pereira Dutra GH, Gravena W, Ferreira Da Silva VM, Marcondes MCC, Castaldo Colosio A, Cremer MJ, Carvalho VL, O Meirelles AC, Marigo J, Catão-Dias JL. Novel herpesviruses in riverine and marine cetaceans from South America. Acta Trop 2019; 190:220-227. [PMID: 30465743 DOI: 10.1016/j.actatropica.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/15/2022]
Abstract
Herpesvirus (HV) infections in cetaceans are frequently associated with skin and mucosal lesions. Although HV infections have been reported worldwide, their occurrence in southern Atlantic marine mammals is still poorly understood. We tested skin, oral and genital mucosal beta-actin PCR-positive samples from 109 free-ranging Brazilian cetaceans using a universal herpesvirus DNA polymerase PCR. Herpesvirus-positive skin samples from a Guiana dolphin (Sotalia guianensis), a dwarf sperm whale (Kogia sima), a Bolivian river dolphin (Inia boliviensis), and a lingual sample from an Atlantic spotted dolphin (Stenella frontalis) were histologically evaluated. Additional tissue samples from these animals were also PCR-positive for HV, including a novel sequence obtained from the dwarf sperm whale's stomach and mesenteric lymph node. Four novel HV species were detected in the Guiana dolphin (one), the dwarf sperm whale (two) and the Bolivian river dolphin (one). The cutaneous lesions (marked, focally extensive, chronic proliferative dermatitis) of the Guiana dolphin and the Bolivian river dolphin were similar to previous HV reports in cetaceans, despite the absence of intranuclear inclusion bodies. This is the largest HV survey in South American cetaceans and the first detection of HV infection in riverine dolphins worldwide.
Collapse
Affiliation(s)
- Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil.
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, Madrid, 28130, Spain
| | - Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Eduardo Ferreira-Machado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Samira Costa-Silva
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Angélica María Sánchez-Sarmiento
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Kátia R Groch
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Elena Neves
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, Madrid, 28130, Spain
| | | | - Waleska Gravena
- Instituto Nacional de Pesquisas da Amazônia, Manaus, 69067-375, AM, Brazil; Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Coari, 69460-000, AM, Brazil
| | | | | | | | - Marta J Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros, Universidade da Região de Joinville, São Francisco do Sul, 89240-000, SC, Brazil
| | - Vitor L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, 61627-210, CE, Brazil
| | | | - Juliana Marigo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| |
Collapse
|
14
|
Seade GCC, Cerqueira VD, Sierra E, Chaves JF, Moura MAO, Montão DP, Riet-Correa G, Oliveira CA, Siciliano S, Emin-Lima R, Costa AF, Fernández A, Bezerra Júnior PS. Herpesviral infection in a Guiana dolphin ( Sotalia guianensis) from the northern coast of Brazil. J Vet Diagn Invest 2017; 29:877-879. [PMID: 28818026 DOI: 10.1177/1040638717727794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We describe herein herpesvirus-associated genital lesions in a Guiana dolphin ( Sotalia guianensis) from the northern Brazilian coast. Papillary lesions on the vulva, with epithelial hyperplasia, swollen keratinocytes, and intranuclear inclusions, were positive for a herpesvirus ( Gammaherpesvirinae subfamily).
Collapse
Affiliation(s)
- Gisele C C Seade
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Valíria D Cerqueira
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Eva Sierra
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Jaese F Chaves
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Márcio A O Moura
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Daniele P Montão
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Gabriela Riet-Correa
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Carlos A Oliveira
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Salvatore Siciliano
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Renata Emin-Lima
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Alexandra Fernandes Costa
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Antonio Fernández
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| | - Pedro S Bezerra Júnior
- Universidade Federal do Pará (UFPA), Castanhal, Brazil (Seade, Cerqueira, Chaves, Moura, Montão, Riet-Correa, Oliveira, Bezerra Júnior).,Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain (Sierra, Fernández).,Museu Paraense Emílio Goeldi, Belém, Brazil (Emin-Lima, Costa).,Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil (Siciliano)
| |
Collapse
|
15
|
Genome Sequence of a Gammaherpesvirus from a Common Bottlenose Dolphin ( Tursiops truncatus). GENOME ANNOUNCEMENTS 2017; 5:5/31/e00777-17. [PMID: 28774992 PMCID: PMC5543654 DOI: 10.1128/genomea.00777-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A herpesvirus genome was sequenced directly from a biopsy specimen of a rectal lesion from a female common bottlenose dolphin. This genome sequence comprises a unique region (161,235 bp) flanked by multiple copies of a terminal repeat (4,431 bp) and contains 72 putative genes. The virus was named common bottlenose dolphin gammaherpesvirus 1.
Collapse
|