1
|
Groschupp S, Kampen H, Werner D. Winter activity of Culicoides (Diptera: Ceratopogonidae) inside and outside stables in Germany. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:552-565. [PMID: 39187966 DOI: 10.1111/mve.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Culicoides biting midge species (Diptera: Ceratopogonidae) of the Obsoletus Group and the Pulicaris Complex are considered the major vectors of bluetongue and Schmallenberg viruses in Europe. Overwintering strategies of these arboviruses are controversially discussed, with the ongoing activity of vector species and a non-disrupted transmission cycle during winter being a plausible explanation. Although data on Culicoides winter activity are relatively scant, a seasonal vector-free period (SVFP), during which adult Culicoides are not or hardly active, is questionable. To determine winter activity and define SVFPs according to the EU Commission Regulation No 1266/2007, adult Culicoides were trapped weekly with UV-light traps from October to April 2019/2020 and 2020/2021 inside and outside stables on 16 farms throughout Germany. Temperature measurements were taken regularly at each trapping site since the temperature is a known driver of biting midge activity. In 960 indoor and outdoor catches, 32,377 Culicoides were trapped, with 90.9% of them belonging to the Obsoletus Group, 6.1% to the Pulicaris Complex and 3.0% to 'other Culicoides' according to morphological identification. The majority (61.3%) of Culicoides were trapped indoors, with substantial numbers of specimens collected from October to December, in March and in April, and only a few or no specimens in January and February. Obsoletus Group biting midges were active indoors for almost the entire winter. Outdoors, Culicoides numbers decreased from October to December, few or no specimens were caught from January to March, and high numbers were captured in April. Of the collected Culicoides, 2028 were blood-fed, of which 94.6% were trapped in the stables. The indoor SVFP, although calculated for blood-fed instead of parous females, lasted for almost 4 months (late November until mid-March) in winter 2019/2020 and 2 months (January and February) in winter 2020/2021. The outdoor SVFPs covered almost the entire study period in both winters, with slight differences between the onsets and the ends. The Culicoides activity significantly depended on temperature. Specimens of the Obsoletus Group were caught at an average temperature of 7.4°C (minimum 0.3°C) and of the Pulicaris Complex at an average temperature of 10.3°C (minimum 1.2°C). These temperatures were reached inside the stables over more extended periods than outside. The average indoor temperatures were 1.2 K higher than the average outdoor temperatures, although absolute temperature differences of up to 9.0 K were recorded. Based on Culicoides activity, the results of the present study indicate an almost continuous potential for virus transmission in winter within livestock houses.
Collapse
Affiliation(s)
- Sarah Groschupp
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
2
|
Kęsik-Maliszewska J, Collins ÁB, Rola J, Blanco-Penedo I, Larska M. Schmallenberg virus in Poland endemic or re-emerging? A six-year serosurvey. Transbound Emerg Dis 2020; 68:2188-2198. [PMID: 33012078 DOI: 10.1111/tbed.13870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/20/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
A novel arbovirus, called Schmallenberg virus (SBV), emerged in Europe in 2011 infecting domestic as well as wild ruminants. The virus was first detected in Poland during the 2012 vector season. In order to study the SBV post-epidemic period in Poland, over twenty-one thousand domestic ruminants (cattle, sheep, goats) were tested for SBV infection between 2013 and 2018. Samples were collected as part of the national Bluetongue virus (BTV) surveillance programme. Thirteen per cent of all samples were collected from animals between 6 months and one year of age. Overall, 37.5% of ruminants tested seropositive. The seroprevalence fluctuated yearly and was highest in 2014 and 2017; however, seroconversion was detected in younger animals throughout the study indicating continuous virus circulation during the 6-year study period. A significantly higher proportion of seropositive animals were detected among cattle and older animals. Uneven distribution of seropositive animals between provinces was identified and may be a result of different housing and breeding practices and/or meteorological conditions influencing local and regional vector abundances, rather than farm stocking densities. A small number of animals were identified as being exposed to both SBV and BTV; this is likely due to the fact that the same Culicoides species transmit these two viruses thus increasing the risk of co-exposure. Considering these results, in addition to virological and entomological studies carried out in Poland previously, it can be concluded that SBV is endemic in Poland with cyclical waves of virus circulation happening every 3-4 years.
Collapse
Affiliation(s)
| | - Áine B Collins
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Department of Agriculture, Food and the Marine, Dublin 2, Ireland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| | - Isabel Blanco-Penedo
- Veterinary Epidemiology Unit, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
3
|
Vengušt G, Žele Vengušt D, Toplak I, Rihtarič D, Kuhar U. Post-epidemic investigation of Schmallenberg virus in wild ruminants in Slovenia. Transbound Emerg Dis 2020; 67:1708-1715. [PMID: 31991522 PMCID: PMC7383813 DOI: 10.1111/tbed.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
Schmallenberg virus (SBV) is a vector-borne virus belonging to the genus Orthobunyavirus within the Bunyaviridae family. SBV emerged in Europe in 2011 and was characterized by epidemics of abortions, stillbirths and congenital malformations in domestic ruminants. The first evidence of SBV infection in Slovenia was from an ELISA-positive sample from a cow collected in August 2012; clinical manifestations of SBV disease in sheep and cattle were observed in 2013, with SBV RNA detected in samples collected from a total of 28 herds. A potential re-emergence of SBV in Europe is predicted to occur when population-level immunity declines. SBV is also capable of infecting several wild ruminant species, although clinical disease has not yet been described in these species. Data on SBV-positive wild ruminants suggest that these species might be possible sources for the re-emergence of SBV. The aim of this study was to investigate whether SBV was circulating among wild ruminants in Slovenia and whether these species can act as a virus reservoir. A total of 281 blood and spleen samples from wild ruminants, including roe deer, red deer, chamois and European mouflon, were collected during the 2017-2018 hunting season. Serum samples were tested for antibodies against SBV by ELISA; the overall seroprevalence was 18.1%. Seropositive samples were reported from all over the country in examined animal species from 1 to 15 years of age. Spleen samples from the seropositive animals and serum samples from the seronegative animals were tested for the presence of SBV RNA using real-time RT-PCR; all the samples tested negative. Based on the results of the seropositive animals, it was demonstrated that SBV was circulating in wild ruminant populations in Slovenia even after the epidemic, as almost half (23/51) of the seropositive animals were 1 or 2 years old.
Collapse
Affiliation(s)
- Gorazd Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Danijela Rihtarič
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Endalew AD, Faburay B, Wilson WC, Richt JA. Schmallenberg Disease-A Newly Emerged Culicoides-borne Viral Disease of Ruminants. Viruses 2019; 11:v11111065. [PMID: 31731618 PMCID: PMC6893508 DOI: 10.3390/v11111065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
First appearing in 2011 in Northern Europe, Schmallenberg virus (SBV), an Orthobunyavirus of the Simbu serogroup, is associated with clinical disease mainly in ruminants such as cattle, sheep and goats. The clinical signs are characterized by abortion and congenital deformities in newborns. The virus is transmitted by Culicoides midges of the Obsoletus complex. SBV infection induces a solid protective immunity that persists for at least 4 or 6 years in sheep and cattle, respectively. SBV infection can be diagnosed directly by real-time RT-qPCR and virus isolation or indirectly by serological assays. Three vaccines are commercially available in Europe. This article provides a comprehensive literature review on this emerging disease regarding pathogenesis, transmission, diagnosis, control and prevention. This review also highlights that although much has been learned since SBV’s first emergence, there are still areas that require further study to devise better mitigation strategies.
Collapse
Affiliation(s)
- Abaineh D. Endalew
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Disease Research Unit, Manhattan, KS 66506, USA
- Correspondence: (W.C.W.); (J.A.R.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
- Correspondence: (W.C.W.); (J.A.R.)
| |
Collapse
|
5
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
6
|
Ansari M, Walker M, Dyson P. Fungi as Biocontrol Agents of Culicoides Biting Midges, the Putative Vectors of Bluetongue Disease. Vector Borne Zoonotic Dis 2019; 19:395-399. [DOI: 10.1089/vbz.2018.2300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Minshad Ansari
- Institute of Life Science 1, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Miranda Walker
- Institute of Life Science 1, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Paul Dyson
- Institute of Life Science 1, College of Medicine, Swansea University, Swansea, United Kingdom
| |
Collapse
|
7
|
Schmallenberg virus in Azerbaijan 2012-2018. Arch Virol 2019; 164:1877-1881. [PMID: 31079212 DOI: 10.1007/s00705-019-04278-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/07/2019] [Indexed: 10/26/2022]
Abstract
Schmallenberg virus is an orthobunyavirus that infects ruminants and can cause transient fever, diarrhea, reduced milk production, congenital malformations, and abortions. Following the first suspected cases in Azerbaijan, a surveillance study was launched to determine and follow the situation. Serum samples and fetal tissue were collected starting October 2012 and tested via ELISA and qPCR. A first wave of Schmallenberg virus infections was detected in 2012/2013 in, and was largely limited to, the southern part of the country. In the second and larger wave in 2013/2014, cases were found throughout most of the country. Since then, no major outbreaks have been recorded.
Collapse
|
8
|
Affiliation(s)
- Magdalena Larska
- Department of Virology; National Veterinary Research Institute; Puławy Poland
| |
Collapse
|
9
|
Collins ÁB, Mee JF, Doherty ML, Barrett DJ, England ME. Culicoides species composition and abundance on Irish cattle farms: implications for arboviral disease transmission. Parasit Vectors 2018; 11:472. [PMID: 30119685 PMCID: PMC6098625 DOI: 10.1186/s13071-018-3010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Following the emergence of Schmallenberg virus (SBV) in Ireland in 2012, a sentinel herd surveillance program was established in the south of Ireland with the primary aim of investigating the species composition and abundance of Culicoides on livestock farms in the region. Methods Ultraviolet-light trapping for Culicoides was carried out on 10 sentinel farms. Each site was sampled fortnightly over 16 weeks (21st July to 5th November 2014). One Onderstepoort Veterinary Institute UV light trap was run overnight at each site and catches were transferred immediately into 70% ethanol. Culicoides were morphologically identified to species level. Collection site habitats were characterised using the Phase 1 habitat survey technique (Joint Nature Conservation Committee). Results A total of 23,929 individual Culicoides from 20 species was identified, including one species identified in Ireland for the first time, Culicoides cameroni. The most abundant species identified were Culicoides obsoletus/Culicoides scoticus (38%), Culicoides dewulfi (36%), Culicoides pulicaris (9%), Culicoides chiopterus (5%) and Culicoides punctatus (5%), comprising 93% of all Culicoides specimens identified. Collection site habitats were dominated by improved grassland and a combination of broadleaf woodland and native woodland species. Conclusions The most abundant species of Culicoides identified were the putative vectors of bluetongue virus (BTV) and SBV in northern Europe. Their presence and abundance demonstrates the potential for future transmission of arboviruses among livestock in this region. Electronic supplementary material The online version of this article (10.1186/s13071-018-3010-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland. .,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland.
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Michael L Doherty
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Surveillance, Animal By Products and TSE Division, Department of Agriculture, Food and the Marine, Backweston, Celbridge, Co. Kildare, Ireland
| | - Marion E England
- The Pirbright Institute, Ash Rd., Pirbright, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
10
|
Collins Á, Grant J, Barrett D, Doherty M, Hallinan A, Mee J. Schmallenberg virus: Predicting within-herd seroprevalence using bulk-tank milk antibody titres and exploring individual animal antibody titres using empirical distribution functions (EDF). Prev Vet Med 2017. [DOI: 10.1016/j.prevetmed.2017.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Collins ÁB, Barrett DJ, Doherty ML, McDonnell M, Mee JF. Significant re-emergence and recirculation of Schmallenberg virus in previously exposed dairy herds in Ireland in 2016. Transbound Emerg Dis 2017; 64:1359-1363. [PMID: 28762657 DOI: 10.1111/tbed.12685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/27/2022]
Abstract
Schmallenberg virus (SBV) circulation was investigated in 25 previously exposed dairy herds in Ireland in 2016. A population of 1,550 spring-2014-born animals, which had been monitored for SBV infection in 2014 and 2015 as part of a previous SBV surveillance study, were resampled for evidence of SBV infection during 2016. A total of 366 blood samples were collected in the 25 study herds (15 samples per herd) between 3 March 2017 and 10 March 2017 (before the 2017 vector-active season) and analysed for SBV antibodies using a competitive ELISA kit (IDVet). A total of 256 animals tested seropositive, an AP of 69.9% (95% CI: 65.1-74.4) and TP of 77.7% (95% CI: 72.3%-82.8%) when correcting for imperfect test characteristics. These results demonstrate that a new epidemic of SBV circulation occurred in these previously exposed herds in Ireland in 2016.
Collapse
Affiliation(s)
- Á B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - D J Barrett
- Surveillance, Animal By Products and TSE Division, Department of Agriculture, Food and the Marine, Backweston, Celbridge, Co. Kildare, Ireland
| | - M L Doherty
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - M McDonnell
- Blood Testing Laboratory, Department of Agriculture, Food and the Marine, Model Farm Road, Cork, Ireland
| | - J F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
12
|
Graham DA, Gallagher C, Carden RF, Lozano JM, Moriarty J, O'Neill R. A survey of free-ranging deer in Ireland for serological evidence of exposure to bovine viral diarrhoea virus, bovine herpes virus-1, bluetongue virus and Schmallenberg virus. Ir Vet J 2017; 70:13. [PMID: 28503294 PMCID: PMC5427525 DOI: 10.1186/s13620-017-0091-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background Deer are an important wildlife species in both the Republic of Ireland and Northern Ireland having colonised most regions across the island of Ireland. In comparison to cattle and sheep which represent the main farmed ruminant species on the island, there is a lack of data concerning their exposure, as measured by the presence of antibodies, to important viral pathogens of ruminants. A study was therefore undertaken to investigate the seroprevalence of wild deer to four viruses, namely bovine viral diarrhoea virus (BVDV), bovine herpesvirus-1 (BoHV-1), Schmallenberg virus (SBV) and bluetongue virus (BTV). Results Two panels of sera were assembled; Panel 1 comprised 259 samples (202 collected in the Republic of Ireland and 57 in Northern Ireland) between 2013 and 2015, while Panel 2 comprised 131 samples collected in the Republic of Ireland between 2014 and 2015. Overall sika deer (Cervus nippon) were sampled most commonly (54.8%), followed by fallow deer (Dama dama) (35.3%), with red deer (Cervus elaphus) (4.3%) and hybrid species (0.3%) sampled less frequently, with the species not being recorded for the remaining 5.3% of deer sampled. Age was not recorded for 96 of the 390 deer sampled. 196 of the remainder were adults, while 68 and 30 were yearlings and calves, respectively. Using commercially available enzyme-linked immunosorbent assays, true prevalence and 95% confidence intervals were calculated as 9.9%, (6.8-13.0% CI), SBV; 1.5% (0.1-3.0% CI), BoHV-1; 0.0%, 0-1.7% CI), BVDV; and 0.0%, (0.01-0.10% CI), BTV. Conclusions The results indicate a very low seroprevalence for both BVDV and BoHV-1 in the wild deer tested within the study and, are consistent with a very low prevalence in Ireland. While serological cross-reaction with cervid herpesviruses cannot be excluded, the results in both cases suggest that the presence of these viruses in deer is not a significant risk to their control and eradication from the cattle population. This is important given the ongoing programme to eradicate BVDV in Ireland and deliberations on a national eradication programme for BoHV-1. The SBV results show consistency with those reported from cattle and sheep on the island of Ireland, while the BTV results are consistent with this virus remaining exotic to Ireland. The results provide a baseline against which future surveys of either wild or farmed/captive deer populations can be compared.
Collapse
Affiliation(s)
- David A Graham
- Animal Health Ireland, 4-5 The Archways, Carrick on Shannon, Co. Leitrim Ireland
| | - Clare Gallagher
- Animal Health Ireland, 4-5 The Archways, Carrick on Shannon, Co. Leitrim Ireland
| | - Ruth F Carden
- Adjunct Research Fellow, School of Archaeology, University College Dublin, Belfield, Dublin 4 Ireland
| | - Jose-Maria Lozano
- Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Ireland
| | - John Moriarty
- Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Ireland
| | - Ronan O'Neill
- Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Ireland
| |
Collapse
|
13
|
Stavrou A, Daly JM, Maddison B, Gough K, Tarlinton R. How is Europe positioned for a re-emergence of Schmallenberg virus? Vet J 2017; 230:45-51. [PMID: 28668462 DOI: 10.1016/j.tvjl.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011 to 2013, infecting ruminants and causing foetal deformities after infection of pregnant animals. The main impact of the virus was financial loss due to restrictions on trade of animals, meat and semen. Although effective vaccines were produced, their uptake was never high. Along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock, this has resulted in a decrease in the number of protected animals. Recent surveillance has shown that a large population of naïve animals is currently present in Europe and that the virus is circulating at a low level. These changes in animal status, in combination with favourable conditions for insect vectors, may open the door to the re-emergence of SBV and another large scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes for ruminant seroconversion and the presence of SBV in the insect vectors, and provides an overview of the economic impact associated with diagnosis, control and the effects of non-vaccination.
Collapse
Affiliation(s)
- Anastasios Stavrou
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Janet M Daly
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Ben Maddison
- Biotechnology Group, ADAS, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Kevin Gough
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
14
|
Affiliation(s)
- Áine Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark Fermoy County Cork Ireland
| | - John F. Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark Fermoy County Cork Ireland
| |
Collapse
|