1
|
Dinga E, Marume U, Chelopo GM. Effect of Melia azedarach seed mediated nano-ZnO on growth performance, protein utilisation efficiency, haematology and nutritional status in pigs. Trop Anim Health Prod 2024; 56:371. [PMID: 39477912 PMCID: PMC11525381 DOI: 10.1007/s11250-024-04217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
The current study was conducted to investigate the effect of Melia azedarach seed-mediated ZnO nanoparticles on growth performance, protein utilisation efficiency, haematology and nutritional status in pigs. A total of 48 pigs were allocated to the following six treatments replicated 8 times: Negative Control (NC, No antibiotic), Treatment 2: Positive control (PC) given a conventional antibiotic (Oxytetracycline, 40 mg/kg feed); Treatment 3: Nano-ZnO 300 mg/L (N300ZnO), Treatment 4: Group given 150 mg/L Melia azedarach seed mediated nano-ZnO (N150MA), Treatment 5: Group given 300 mg/L Melia azedarach seed mediated nano-ZnO (N300MA), Treatment 6: Group given 450 mg/L Melia azedarach seed mediated nano-ZnO (N450MA). The experiment was conducted over 7 weeks. Melia azedarach seed-mediated ZnO nanoparticles had no significant effect on growth performance apart from average daily feed intake (ADFI) with treatment 3 having the highest value. It significantly affected protein consumption and growth efficiency but not protein efficiency ratio and specific growth rate. Melia azedarach seed-mediated ZnO nanoparticles had no significant impact on nutritional parameters, serum minerals apart from phosphorus which can negatively affect renal functioning.
Collapse
Affiliation(s)
- E Dinga
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa.
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa.
| | - U Marume
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa
| | - G M Chelopo
- Department of Animal Science, School of Agricultural Sciences, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, P Bag X 2046, Mmabatho, 2735, South Africa
| |
Collapse
|
2
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
3
|
Asmat-Campos D, Rojas-Jaimes J, Simbrón de la Cruz M, Montes de Oca-Vásquez G. Enhanced antimicrobial efficacy of biogenic ZnO nanoparticles through UV-B activation: A novel approach for textile garment. Heliyon 2024; 10:e25580. [PMID: 38356582 PMCID: PMC10864978 DOI: 10.1016/j.heliyon.2024.e25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NP) are characterized by novel properties which have been attracting the attention of different lines of research due to their wide applicability. Obtaining this nanomaterial is strongly linked to biogenic synthesis methods, which have also been developed in this research, using Coriandrum sativum extract as a reducing agent. ZnO NPs have been properly characterized by techniques to evaluate their morphology by transmission electron microscopy (TEM) and elemental analysis by EDX. The evaluation of the antimicrobial and antifungal effects is linked to the use of a system provided by "locker sanitizer" equipment, which has been designed and built as part of this research, and is intended to treat textile garments by nebulizing the ZnO NP colloid (99.08 μg/mL) + UV-B, water + UV-B, and UV-B only, and also to evaluate the influence of the treatment time for 1, 2 and 3 min. In this sense, it is known that the nanomaterial used shows a better response to UV light because more hydroxyl radicals are produced, leading to a higher reaction rate, which results in greater efficiency in inhibitory processes. The results show that the use of the locker sanitizer is more efficient when using ZnO NP + UV-B light since it achieved 100 % growth inhibition against E. coli, C. albicans, and A. brasiliensis, and >99 % against S. aureus, after 3 min of treatment.
Collapse
Affiliation(s)
- David Asmat-Campos
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte, Peru
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Peru
| | - Jesús Rojas-Jaimes
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte, Peru
- Facultad de Ciencias de la Salud, Universidad Privada del Norte, Lima, Peru
| | | | | |
Collapse
|
4
|
Long L, Zhao X, Chen J, Wang Z, Tang Y, Huang J, Yin Y. Piglet growth performance improved by dietary supplementation of porous or nano particles of zinc oxide may be related to the gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:159-172. [PMID: 38023375 PMCID: PMC10679868 DOI: 10.1016/j.aninu.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Previous studies on porous or nano particles zinc oxide (ZnO) in the piglets have mainly focused on growth performance and intestinal inflammation, but have scarcely explored the efficacy on gut microbiota. In addition, the efficacy of nano particles ZnO, which is related to its product quality, remains undefined. This study aimed to determine the efficacy of dietary 500 mg/kg porous or nano particles ZnO on the growth performance and gut microbiota of the weaned piglets. A total of 128 weaned piglets were randomly assigned to the dietary groups: NC (basal diet), PC (basal diet + 3,000 mg/kg conventional ZnO), 500HiZ (basal diet + 500 mg/kg porous particles ZnO), and 500ZNP (basal diet + 500 mg/kg nano particles ZnO). Compared with the NC diet group, both 500HiZ and 500ZNP increased (P < 0.05) average daily feed intake (1 to 28 d) and average daily gain (1 to 28 d), and the 500ZNP tended to decrease feed to gain ratio (F:G ratio, 1 to 28 d) (P = 0.09). Both 500HiZ and 500ZNP decreased crypt depth of the ileum and increased claudin-2 in the duodenum and zonula occludens-1 in the ileum (P < 0.05). Moreover, both 500HiZ and 500ZNP decreased IL-1β and tumor necrosis factor-α (TNF-α) in the jejunum and decreased TNF-α and IL-6 in the ileum (P < 0.05). Both 500HiZ and 500ZNP increased microbial β-diversity index in the ileum and microbial α-diversity indices in the colon of piglets (P < 0.05). The probiotic genera Coprococcus (500ZNP) and Blautia (500HiZ) were positively correlated with the F:G ratio (1 to 28 d) in colon of piglets (P < 0.05). In addition, 500HiZ promoted mitochondrial fusion protein 1 (MFN1) and zinc transporter-1 (ZnT-1) in the jejunum (P < 0.05), whilst 500ZNP decreased MFN1 in the jejunum and ZnT-1 in the ileum (P < 0.05). In summary, both 500HiZ and 500ZNP improved the growth performance of piglets, which is likely via the genera Blautia and Coprococcus, respectively. Both 500HiZ and 500ZNP improved barrier function and inflammation of the intestine, and 500HiZ achieved better efficacy than 500ZNP on intestine mitochondrial functions.
Collapse
Affiliation(s)
- Lina Long
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xichen Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Chen
- Foshan Guangmuxing Feed Co., Ltd, Foshan 528000, China
| | - Zixi Wang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yanfang Tang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jian Huang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
5
|
Regeneration Approach to Enhance the Antimicrobial and Antioxidant Activities of Chitosan for Biomedical Applications. Polymers (Basel) 2022; 15:polym15010132. [PMID: 36616481 PMCID: PMC9824206 DOI: 10.3390/polym15010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Owing to its biodegradability, non-toxicity, and biocompatibility, chitosan (Cs) is a ubiquitous biopolymer. However, applications of Cs are limited owing to the existence of strong inter- and intra-molecular hydrogen bonds within its network. To address this issue, we regenerated medium-molecular-weight Cs to enhance the physico-chemical and functional properties using a cationic approach. Accordingly, alkaline modification was employed to introduce an additional positive charge to the amine functional groups of Cs and moderately disintegrate the inter- and intra-hydrogen bonds. The chemical structure of Cs and regenerated chitosan (RCs) was confirmed through Fourier transform infrared and 1H-NMR spectroscopy. RCs showed higher zeta potential value compared to Cs. Additionally, using X-ray diffraction, RCs exhibited low crystallinity, which can be attributed to the repulsive force caused by the positive surface charge and the destruction of hydrogen bonds. The RCs exhibited stronger antioxidant activity than Cs. Furthermore, the minimum inhibition concentrations (MICs) of RCs against Escherichia coli and Staphylococcus aureus were reduced by almost four times compared with those of Cs. The superior functional properties of RCs can be attributed to the formation of a polycationic structure after alkaline modification. Thus, RCs can be introduced as potent agents for various biomedical purposes.
Collapse
|
6
|
Shurson GC, Urriola PE, Hung YT. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals (Basel) 2022; 12:3374. [PMID: 36496895 PMCID: PMC9739216 DOI: 10.3390/ani12233374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The objectives of this review were to summarize current knowledge of Zn in swine nutrition, environmental concerns, potential contribution to antimicrobial resistance, and explore the use of alternative feeding strategies to reduce Zn excretion in manure while capturing improvements in productivity. Zinc is a required nutrient for pigs but is commonly supplemented at concentrations that greatly exceed estimated requirements. Feeding pharmacological concentrations of Zn from ZnO to pigs for 1 to 2 weeks post-weaning reduces post-weaning diarrhea and improves growth performance. Feeding elevated dietary levels of Zn to sows during the last 30 days of gestation can reduce the incidence of low-birth-weight pigs and pre-weaning mortality. Most of the dietary Zn consumed by pigs is not retained in the body and is subsequently excreted in manure, which led several countries to impose regulations restricting dietary Zn concentrations to reduce environmental impacts. Although restricting Zn supplementation in swine diets is a reasonable approach for reducing environmental pollution, it does not allow capturing health and productivity benefits from strategic use of elevated dietary Zn concentrations. Therefore, we propose feeding strategies that allow strategic use of high dietary concentrations of Zn while also reducing Zn excretion in manure compared with current feeding practices.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
7
|
Dinga E, Mthiyane DMN, Marume U, Botha TL, Horn S, Pieters R, Wepener V, Ekennia A, Onwudiwe DC. Biosynthesis of ZnO nanoparticles using Melia azedarach seed extract: Evaluation of the cytotoxic and antimicrobial potency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
9
|
Wang LL, Yang C, Liu S. Development and antibacterial activity of zinc oxide nanoparticles encapsulated in core–shell microparticles for managing enterotoxigenic Escherichia coli-related post-weaning diarrhea. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Mokone B, Motsei LE, Yusuf AO, Egbu CF, Ajayi TO. Growth, physiological performance, and pork quality of weaner large white piglets to different inclusion levels of nano zinc oxide. Trop Anim Health Prod 2021; 54:22. [PMID: 34950972 DOI: 10.1007/s11250-021-03024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Thirty intensively reared piglets averaged 7.6 ± 0.32 kg were used for the experiment. The piglets were randomly allotted to 5 different treatments: 200 mg/kg, 400 mg/kg, 600 mg/kg nano zinc oxide (nZnO; 50 nm), positive control (tylosin 10%), and the negative control (no additive) in a completely randomized design. Data were collected for weight changes, blood parameters, and carcass and meat quality characteristics. Piglets supplemented with 200 mg/kg had elevated (P < 0.05) weight gain, while those supplemented with 400 and 600 mg/kg nZnO had higher comparable weight gains, while the control groups had the least comparable weight gain values. Pigs fed 600 mg/kg of nano zinc had the highest albumin concentrations with the least values observed in 200 and 400 mg/kg groups. Pigs offered tylosin 10% and 600 mg/kg had higher comparable total protein, while those fed control diet had the lowest total protein concentration. Pigs supplemented with nZnO had highest comparable values for slaughter weights. The supplementation of 600 mg/kg had elevated values of villi height, while the groups supplemented with 200 and 400 mg/kg had a similar trend, and the control had the least comparable values of villi height. It could be concluded that the supplementation of nZnO at a dietary dose of 600 mg/kg gave the best performance in terms of intestinal morphology (villus height), growth performance, meat quality, and immune response.
Collapse
Affiliation(s)
- Bontle Mokone
- Department of Animal Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa
| | - Lebogang Ezra Motsei
- Department of Animal Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa
| | - Azeez Olanrewaju Yusuf
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B 2240, Abeokuta, Nigeria.
| | - Chidozie Freedom Egbu
- Department of Animal Sciences, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, P Bag x2046, Mmabatho, 2735, South Africa.,Department of Agricultural Education, Alvan Ikoku Federal College of Education, P.M.B 1033, Owerri, Nigeria
| | - Taiwo Olufemi Ajayi
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B 2240, Abeokuta, Nigeria
| |
Collapse
|
11
|
Ekanayake SA, Godakumbura PI. Synthesis of a Dual-Functional Nanofertilizer by Embedding ZnO and CuO Nanoparticles on an Alginate-Based Hydrogel. ACS OMEGA 2021; 6:26262-26272. [PMID: 34660985 PMCID: PMC8515585 DOI: 10.1021/acsomega.1c03271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 05/28/2023]
Abstract
Recent scientific breakthroughs in the field of agriculture have led to the abundant usage of nanoparticles in agrochemicals to maintain proper nutrient uptake in plants. Since less attention has been given to the supply of vital micronutrients to crop plants, the objective of this study was to develop a nanofertilizer capable of releasing micronutrients while nourishing its surrounding soil. As the initial nanonutrients, Zn and Cu were used in their metal oxide forms, which promote seed germination. Alginic acid was used as the agent responsible for soil conditioning. To form the fertilizing complex, nanoparticles were reacted with sodium alginate, which resulted in a hydrogel where alginate chains were cross-linked with Zn(II) and Cu(II) and excess metal oxide nanoparticles were distributed on the hydrogel. Spectroscopic characterization of the nanofertilizer confirmed that alginate chains were cross-linked by Zn(II) and Cu(II), while morphological analysis by scanning electron microscopy (SEM) showed that ZnO and CuO nanoparticles were embedded on the alginate matrix. The release behavior of cations in soil and water environments, experimented using the tea bag method, revealed that the cationic release was slowly increasing with time. Micronutrient uptake by plants was studied by conducting leaf analyses in tomato plants for 30 consecutive days. To experiment the release behavior of micronutrients in the presence of compost, the nanofertilizer was added with predetermined amounts of compost to tomato plants. Flame atomic absorption spectroscopy (FAAS) results indicated that in the fertilizer-applied plants, Cu concentrations showed a steady increase with time while Zn concentrations remained undetected.
Collapse
|
12
|
Antibacterial Potential of Biosynthesized Zinc Oxide Nanoparticles against Poultry-Associated Foodborne Pathogens: An In Vitro Study. Animals (Basel) 2021; 11:ani11072093. [PMID: 34359225 PMCID: PMC8300380 DOI: 10.3390/ani11072093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The overuse of antibiotics in the poultry industry has led to the emergence of multidrug-resistant microorganisms. Thus, there is a need to find an alternative to conventional antibiotics. Recently, zinc oxide nanoparticles (ZnO NPs) have gained much attention due to their excellent antibacterial activity. In addition, ZnO NPs is an essential trace mineral in poultry diets. In this sense, incorporating ZnO NPs into poultry can promote growth and performance while serving as an alternative antibacterial agent to control diseases. Therefore, this study aimed to assess the in vitro antibacterial activity and antibacterial mechanisms of ZnO NPs against poultry-associated foodborne pathogens (Salmonella spp., Escherichia coli, and Staphylococcus aureus). The obtained findings demonstrated effective antibacterial actions against the tested microorganisms. The nanotechnology approach could represent a new tool for combating pathogens in the poultry industry. Abstract Since the emergence of multidrug-resistant bacteria in the poultry industry is currently a serious threat, there is an urgent need to develop a more efficient and alternative antibacterial substance. Zinc oxide nanoparticles (ZnO NPs) have exhibited antibacterial efficacy against a wide range of microorganisms. Although the in vitro antibacterial activity of ZnO NPs has been studied, little is known about the antibacterial mechanisms of ZnO NPs against poultry-associated foodborne pathogens. In the present study, ZnO NPs were successfully synthesized using Lactobacillus plantarum TA4, characterized, and their antibacterial potential against common avian pathogens (Salmonella spp., Escherichia coli, and Staphylococcus aureus) was investigated. Confirmation of ZnO NPs by UV-Visual spectroscopy showed an absorption band center at 360 nm. Morphologically, the synthesized ZnO NPs were oval with an average particle size of 29.7 nm. Based on the dissolution study of Zn2+, ZnO NPs released more ions than their bulk counterparts. Results from the agar well diffusion assay indicated that ZnO NPs effectively inhibited the growth of the three poultry-associated foodborne pathogens. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using various concentrations of ZnO NPs, which resulted in excellent antibacterial activity as compared to their bulkier counterparts. S. aureus was more susceptible to ZnO NPs compared to the other tested bacteria. Furthermore, the ZnO NPs demonstrated substantial biofilm inhibition and eradication. The formation of reactive oxygen species (ROS) and cellular material leakage was quantified to determine the underlying antibacterial mechanisms, whereas a scanning electron microscope (SEM) was used to examine the morphological changes of tested bacteria treated with ZnO NPs. The findings suggested that ROS-induced oxidative stress caused membrane damage and bacterial cell death. Overall, the results demonstrated that ZnO NPs could be developed as an alternative antibiotic in poultry production and revealed new possibilities in combating pathogenic microorganisms.
Collapse
|
13
|
Oh HJ, Park YJ, Cho JH, Song MH, Gu BH, Yun W, Lee JH, An JS, Kim YJ, Lee JS, Kim S, Kim H, Kim ES, Lee BK, Kim BW, Kim HB, Cho JH, Kim MH. Changes in Diarrhea Score, Nutrient Digestibility, Zinc Utilization, Intestinal Immune Profiles, and Fecal Microbiome in Weaned Piglets by Different Forms of Zinc. Animals (Basel) 2021; 11:ani11051356. [PMID: 34064626 PMCID: PMC8151337 DOI: 10.3390/ani11051356] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Piglets, especially at the weaning stage, are highly susceptible to various diseases due to an incomplete immune system development and stress responses. Post-weaning diarrhea has a significant impact on piglet growth rate and mortality, resulting in economic losses to the swine industry. Zinc oxide (ZnO) is widely used as a weaning diet supplement in the swine industry to prevent diarrheal diseases and promote immune system development. Despite the recently demonstrated beneficial effects of ZnO, many efforts have been made to reduce its excessive use in piglets owing to environmental pollution and toxic effects on tissues; thus, the need for an effective alternative ZnO form, which promotes zinc utilization, has been gaining attention. However, we do not completely understand the mode of action of ZnO alternatives or the amount required to exert positive effects on weaned piglets. Therefore, we conducted this study to evaluate the effects of different forms of ZnO alternatives (ZnO chelate with glycine (chelate-ZnO) and nanoparticle-sized ZnO (nano-ZnO)) on diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microflora on piglets, together with a comparison of the standard ZnO treatment. We found that 200 ppm Nano-ZnO had similar positive effects on weaned piglets compared with 2500 ppm ZnO and therefore is a promising alternative to ZnO. Abstract Twenty weaned piglets with initial body weight of 6.83 ± 0.33 kg (21 day of age, LYD) were randomly assigned to four treatments for a two-week feeding trial to determine the effects of different dietary zinc on nutrient digestibility, intestinal health, and microbiome of weaned piglets. The dietary treatments included a negative control (CON), standard ZnO (ZnO, 2500 ppm), zinc chelate with glycine (Chelate-ZnO, 200 ppm), and nanoparticle-sized ZnO (Nano-ZnO, 200 ppm). At 0 to 1 week, the diarrhea score was decreased in the CON group compared with the ZnO, Chelate-ZnO, and Nano-ZnO group. In overall period, the ZnO and Nano-ZnO groups exhibited improved diarrhea scores compared to the CON group. The apparent total tract digestibility of dry matter and gross energy was the lowest in the CON group after one week. Compared to the ZnO group, the chelate-ZnO group exhibited higher proportion of T-bet+ and FoxP3+ T cells and the nano-ZnO group had higher numbers of RORgt+ and GATA3+ T cells in the mesenteric lymph nodes. ZnO group increased IL-6 and IL-8 levels in the colon tissues and these positive effects were observed in both chelate ZnO and nano-ZnO groups with lower level. The 16S rRNA gene analysis showed that the relative abundance of Prevotella was higher in the ZnO-treated groups than in the CON group and that of Succinivibrio was the highest in the nano-ZnO group. The relative abundance of Lactobacillus increased in the ZnO group. In conclusion, low nano-ZnO levels have similar effects on nutrient digestibility, fecal microflora, and intestinal immune profiles in weaning pigs; thus, nano-ZnO could be used as a ZnO alternative for promoting ZnO utilization and intestinal immunity.
Collapse
Affiliation(s)
- Han-Jin Oh
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Yei-Ju Park
- Department of Animal Sciences, Pusan National University, Miryang 50463, Korea; (Y.-J.P.); (B.-W.K.)
| | - Jae Hyoung Cho
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Min-Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 341-34, Korea;
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
| | - Won Yun
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Ji-Hwan Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Ji-Seon An
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Yong-Ju Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Jun-Soeng Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Sheena Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Hyeri Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Eun Sol Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Byoung-Kon Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Byeong-Woo Kim
- Department of Animal Sciences, Pusan National University, Miryang 50463, Korea; (Y.-J.P.); (B.-W.K.)
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
| | - Hyeun Bum Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
- Correspondence: (H.B.K.); (J.-H.C.); (M.-H.K.); Tel.: +82-043-261-2544 (H.B.K.); +82-041-550-3652 (J.-H.C.); +82-55-350-5516 (M.-H.K.); Fax: +82-043-273-2240 (H.B.K.); +82-041-550-3604 (J.-H.C.); +82-55-350-5519 (M.-H.K.)
| | - Jin-Ho Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
- Correspondence: (H.B.K.); (J.-H.C.); (M.-H.K.); Tel.: +82-043-261-2544 (H.B.K.); +82-041-550-3652 (J.-H.C.); +82-55-350-5516 (M.-H.K.); Fax: +82-043-273-2240 (H.B.K.); +82-041-550-3604 (J.-H.C.); +82-55-350-5519 (M.-H.K.)
| | - Myung-Hoo Kim
- Department of Animal Sciences, Pusan National University, Miryang 50463, Korea; (Y.-J.P.); (B.-W.K.)
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
- Correspondence: (H.B.K.); (J.-H.C.); (M.-H.K.); Tel.: +82-043-261-2544 (H.B.K.); +82-041-550-3652 (J.-H.C.); +82-55-350-5516 (M.-H.K.); Fax: +82-043-273-2240 (H.B.K.); +82-041-550-3604 (J.-H.C.); +82-55-350-5519 (M.-H.K.)
| |
Collapse
|
14
|
Pei X, Xiao Z, Liu L, Wang G, Tao W, Wang M, Zou J, Leng D. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1366-1374. [PMID: 30094852 DOI: 10.1002/jsfa.9312] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study evaluated the effects of dietary zinc oxide nanoparticles (nano-ZnOs) on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned piglets. A total of 150 weaned piglets (9.37 ± 0.48 kg) were randomly allotted to five dietary treatments and fed with a basal diet (control), or the basal diet supplemented with nano-ZnOs at 150, 300, or 450 mg kg-1 , and 3000 mg kg-1 ZnO for 21 days. After a feeding test, six pigs from the control, 450 mg kg-1 nano-ZnOs and 3000 mg kg-1 ZnO groups were slaughtered. RESULTS Compared with the control, dietary supplements of nano-ZnOs and ZnO could improve (P < 0.05) average daily weight gain (ADG), average daily feed intake (ADFI), and villus height to crypt depth ratio in the duodenum and jejunum, and decrease (P < 0.05) diarrhea incidence. Zinc retention in the serum, heart, liver, spleen and kidney of pigs supplemented with nano-ZnOs and ZnO was increased (P < 0.05). Nano-ZnOs decreased (P < 0.05) the zinc excretion compared with conventional ZnO. Lower Escherichia coli counts in the cecum, colon, and rectum were observed (P < 0.05) in the nano-ZnOs group compared with the other groups. Compared with the control, ZnO and nano-ZnOs increased (P < 0.05) the serum concentration of IgA, IL-6, and TNF-α, and decreased (P < 0.05) the concentration of IgM. CONCLUSION These results indicated that low doses of nano-ZnOs can have beneficial effects on growth performance, intestinal morphology and microflora, and immunity in weanling pigs, which are similar to the effects of pharmacological dosages of conventional ZnO. Nano-ZnOs may reduce mineral excretion, which may reduce environmental challenges. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Pei
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhiping Xiao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Lujie Liu
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Geng Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Wenjing Tao
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Minqi Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Junbiao Zou
- Jiangxi Innovating Science and Technology Co., Ltd, Nanchang, People's Republic of China
| | - Dongbi Leng
- Jiangxi Innovating Science and Technology Co., Ltd, Nanchang, People's Republic of China
| |
Collapse
|