1
|
Soliman NS, Soliman MS, Khairat SM, Gad MA, Shawky S, Elkholy AA. Genetic diversities and drug resistance in Mycobacterium bovis isolates from zoonotic tuberculosis using whole genome sequencing. BMC Genomics 2024; 25:1024. [PMID: 39487429 PMCID: PMC11529264 DOI: 10.1186/s12864-024-10909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Zoonotic human tuberculosis (TB) caused by Mycobacterium bovis (M. bovis) is as vital as Mycobacterium tuberculosis, however with scarce available information. We aimed to use whole-genome sequencing (WGS) technology to take a deep insight into the circulating genotypes of human M. bovis and the genomic characteristics underlying virulence and drug resistance. METHODS The study included smear positive Ziehl-Neelsen samples from patients with suspected tuberculosis. Samples were cultured on Lowenstein-Jensen media and suspected colonies of M. bovis were selected to undergo DNA extraction and WGS. Data was analysed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and online bioinformatics tools. A phylogenetic tree was constructed for our sequenced strains, in addition to a set of 59 previously sequenced M. bovis genomes from different hosts and countries. RESULTS Out of total 112 mycobacterial positive cultures, five M. bovis were isolated and underwent WGS. All sequenced strains belonged to Mycobacterium tuberculosis var bovis, spoligotype BOV_1; BOV_11. Resistance gene mutations were determined in 100% of strains to pyrazinamide (pncA and rpsA), isoniazid (KatG and ahpC), ethambutol (embB, embC, embR and ubiA), streptomycin (rpsl) and fluoroquinolones (gyrA and gyrB). Rifampin (rpoB and rpoC) and delamanid (fbiC) resistance genes were found in 80% of strains. The major represented virulence classes were the secretion system, cell surface components and regulation system. The phylogenetic analysis revealed close genetic relatedness of three sequenced M. bovis strains to previous reported cow strains from Egypt and human strains from France, as well as relatedness of one M. bovis strain to four human Algerian strains. One sequenced strain was related to one cow strain from Egypt and a human strain from South Africa. CONCLUSIONS All sequenced M. bovis isolates showed the same spoligotype, but diverse phylogeny. Resistance gene mutations were detected for anti-TB drugs including pyrazinamide, isoniazid, streptomycin, ethambutol, fluoroquinolones, cycloserine, rifampin and delamanid. The virulence profile comprised genes assigned mainly to secretion system, cell surface components and regulation system. Phylogenetic analysis revealed genetic relatedness between our isolates and previously sequenced bovine strains from Egypt as well as human strains from other nearby countries in the region.
Collapse
Affiliation(s)
- Noha Salah Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - May Sherif Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Ali Gad
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherine Shawky
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Ali Elkholy
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Appegren A, Boschiroli ML, De Cruz K, Michelet L, Héry-Arnaud G, Kempf M, Lanotte P, Bemer P, Peuchant O, Pestel-Caron M, Skalli S, Brasme L, Martin C, Enault C, Carricajo A, Guet-Revillet H, Ponsoda M, Jacomo V, Bourgoin A, Trombert-Paolantoni S, Carrière C, Dupont C, Conquet G, Galal L, Banuls AL, Godreuil S. Genetic Diversity and Population Structure of Mycobacterium bovis at the Human-Animal-Ecosystem Interface in France: “A One Health Approach”. Pathogens 2023; 12:pathogens12040548. [PMID: 37111434 PMCID: PMC10143977 DOI: 10.3390/pathogens12040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Mycobacterium bovis infects cattle and wildlife, and also causes a small proportion of tuberculosis cases in humans. In most European countries, M. bovis infections in cattle have been drastically reduced, but not eradicated. Here, to determine the M. bovis circulation within and between the human, cattle, and wildlife compartments, we characterized by spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing the genetic diversity of M. bovis isolates collected from humans, cattle, and wildlife in France from 2000 to 2010. We also assessed their genetic structure within and among the different host groups, and across time and space. The M. bovis genetic structure and its spatiotemporal variations showed different dynamics in the human and animal compartments. Most genotypes detected in human isolates were absent in cattle and wildlife isolates, possibly because in patients, M. bovis infection was contracted abroad or was the reactivation of an old lesion. Therefore, they did not match the genetic pool present in France during the study period. However, some human-cattle exchanges occurred because some genotypes were common to both compartments. This study provides new elements for understanding M. bovis epidemiology in France, and calls for increased efforts to control this pathogen worldwide.
Collapse
Affiliation(s)
- Anaïs Appegren
- Laboratory of Bacteriology, CHU Montpellier, 34000 Montpellier, France
| | - Maria Laura Boschiroli
- ANSES Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, 94000 Maisons-Alfort, France
| | - Krystel De Cruz
- ANSES Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, 94000 Maisons-Alfort, France
| | - Lorraine Michelet
- ANSES Laboratory for Animal Health, Tuberculosis National Reference Laboratory, University Paris-Est, 94000 Maisons-Alfort, France
| | | | - Marie Kempf
- Laboratory of Bacteriology, CHU Angers, 49000 Angers, France
| | | | - Pascale Bemer
- Laboratory of Bacteriology, CHU Nantes, 44000 Nantes, France
| | - Olivia Peuchant
- Laboratory of Bacteriology, CHU Bordeaux, 33000 Bordeaux, France
| | | | - Soumaya Skalli
- Laboratory of Bacteriology, CHU Rouen, 76000 Rouen, France
| | - Lucien Brasme
- Laboratory of Bacteriology, CHU Reims, 51000 Reims, France
| | | | - Cecilia Enault
- Laboratory of Bacteriology, CHU Nîmes, 30000 Nîmes, France
| | - Anne Carricajo
- Laboratory of Bacteriology, CHU Saint-Etienne, 42000 Saint-Etienne, France
| | | | | | | | - Anne Bourgoin
- Laboratory of Bacteriology, CHU Poitiers, 86000 Poitiers, France
| | | | - Christian Carrière
- Laboratory of Bacteriology, CHU Montpellier, 34000 Montpellier, France
- UMR, MIVEGEC, IRD, CNRS, Université de Montpellier, 34000 Montpellier, France
| | - Chloé Dupont
- Laboratory of Bacteriology, CHU Montpellier, 34000 Montpellier, France
| | - Guilhem Conquet
- Laboratory of Bacteriology, CHU Montpellier, 34000 Montpellier, France
| | - Lokman Galal
- UMR, MIVEGEC, IRD, CNRS, Université de Montpellier, 34000 Montpellier, France
| | - Anne-Laure Banuls
- UMR, MIVEGEC, IRD, CNRS, Université de Montpellier, 34000 Montpellier, France
| | - Sylvain Godreuil
- Laboratory of Bacteriology, CHU Montpellier, 34000 Montpellier, France
- UMR, MIVEGEC, IRD, CNRS, Université de Montpellier, 34000 Montpellier, France
| |
Collapse
|
3
|
Kasir D, Osman N, Awik A, El Ratel I, Rafei R, Al Kassaa I, El Safadi D, Salma R, El Omari K, Cummings KJ, Kassem II, Osman M. Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases 2023; 11:diseases11010039. [PMID: 36975589 PMCID: PMC10047434 DOI: 10.3390/diseases11010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Mycobacterium bovis is the etiologic agent of bovine tuberculosis (BTB), a serious infectious disease in both humans and animals. BTB is a zoonotic disease primarily affecting cattle and occasionally humans infected through close contact with infected hosts or the consumption of unpasteurized dairy products. Zoonotic tuberculosis is strongly associated with poverty and poor hygiene, and low- and middle-income countries bear the brunt of the disease. BTB has been increasingly recognized as a growing public health threat in developing countries. However, the lack of effective surveillance programs in many of these countries poses a barrier to accurately determining the true burden of this disease. Additionally, the control of BTB is threatened by the emergence of drug-resistant strains that affect the effectiveness of current treatment regimens. Here, we analyzed current trends in the epidemiology of the disease as well as the antimicrobial susceptibility patterns of M. bovis in the Middle East and North Africa (MENA) region, a region that includes several developing countries. Following PRISMA guidelines, a total of 90 studies conducted in the MENA region were selected. Our findings revealed that the prevalence of BTB among humans and cattle varied significantly according to the population size and country in the MENA region. Most of the available studies were based on culture and/or PCR strategies and were published without including data on antimicrobial resistance and molecular typing. Our findings highlighted the paramount need for the use of appropriate diagnostic tools and the implementation of sustainable control measures, especially at the human/animal interface, in the MENA region.
Collapse
Affiliation(s)
- Dalal Kasir
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Nour Osman
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut 1100, Lebanon
| | - Aicha Awik
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Imane El Ratel
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Imad Al Kassaa
- Fonterra Research and Development Center, Palmerston North 4410, New Zealand
| | - Dima El Safadi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Rayane Salma
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
| | - Khaled El Omari
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli 1300, Lebanon
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Kevin J. Cummings
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Marwan Osman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Correspondence: or ; Tel.: +1-607-262-4219
| |
Collapse
|
4
|
Kwaghe AV, Ameh JA, Kudi CA, Ambali AG, Adesokan HK, Akinseye VO, Adelakun OD, Usman JG, Cadmus SI. Prevalence and molecular characterization of Mycobacterium tuberculosis complex in cattle and humans, Maiduguri, Borno state, Nigeria: a cross-sectional study. BMC Microbiol 2023; 23:7. [PMID: 36624395 PMCID: PMC9827019 DOI: 10.1186/s12866-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Globally, the highest burden of bovine and human tuberculosis resides in Africa and Asia. Tuberculosis (TB) is the second leading single infectious killer after severe acute respiratory syndrome corona virus-2 (SARSCOV-2). Bovine TB remains a treat to wild and domesticated animals, humans and hinders international trade in endemic countries like Nigeria. We aimed at determining the prevalence of bovine and human tuberculosis, and the spoligotypes of Mycobacterium tuberculosis complex in cattle and humans in Maiduguri. METHODS We conducted a cross sectional study on bovine and human tuberculosis in Maiduguri, Borno state. We calculated sample size using the method of Thrusfield. Lesions suggestive of TB from 160 slaughtered cattle were obtained from Maiduguri Central Abattoir. Sputum samples from humans; 82 abattoir workers and 147 suspected TB patients from hospitals/clinics were obtained. Lesions and sputum samples were cultured for the isolation of Mycobacterium spp. Positive cultures were subjected genus typing, deletion analysis and selected isolates were spoligotyped. Data was analysed using SPSS VERSION 16.0. RESULTS Prevalence of 32.5% (52/160) was obtained in cattle. Damboa local government area (LGA), where majority of the infected animals were obtained from had 35.5% bTB prevalence. All categories analysed (breed, age, sex, body conformation and score) had P-values that were not significant (P > 0.05). Sputum culture revealed a prevalence of 3.7% (3/82) from abattoir workers and 12.2% from hospitals/clinics. A significant P-value (0.03) was obtained when positive culture from abattoir and that of hospitals/clinics were compared. Out of the 52 culture positive isolates obtained from cattle, 26 (50%) belonged to M. tuberculosis complex (MTC) and 17/26 (65.4%) were characterized as M. bovis. In humans, 7/12 (58.3%) MTC obtained were characterized as M. tuberculosis. Spoligotyping revealed SB0944 and SB1025 in cattle, while SIT838, SIT61 of LAM10_CAM and SIT1054, SIT46 of Haarlem (H) families were obtained from humans. CONCLUSIONS Cattle in Damboa LGA need to be screened for bTB as majority of the infected animals were brought from there. Our findings revealed the presence of SB0944 and SB1025 spoligotypes from cattle in Borno state. We isolated M. tuberculosis strain of the H family mainly domiciled in Europe from humans.
Collapse
Affiliation(s)
- Ayi Vandi Kwaghe
- grid.473394.e0000 0004 1785 2322Department of Veterinary and Pest Control Services, Federal Ministry of Agriculture and Rural Development, P. M. B. 135, Area 11, Garki, Abuja, Nigeria ,Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria
| | - James Agbo Ameh
- grid.413003.50000 0000 8883 6523Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Caleb Ayuba Kudi
- grid.411225.10000 0004 1937 1493Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Zaria, Kaduna State Nigeria
| | - Abdul-Ganiyu Ambali
- grid.412974.d0000 0001 0625 9425Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State Nigeria
| | - Hezekiah Kehinde Adesokan
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Victor Oluwatoyin Akinseye
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria ,Department of Chemical Sciences, Augustine University Ilara-Epe, Epe, Lagos State Nigeria
| | - Olubukola Deborah Adelakun
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Joy Gararawa Usman
- grid.419813.6National Veterinary Research Institute, Vom, Plateau State Nigeria
| | - Simeon Idowu Cadmus
- grid.9582.60000 0004 1794 5983Department of Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
5
|
Kanyala E, Shuaib YA, Schwarz NG, Andres S, Richter E, Sawadogo B, Sawadogo M, Germaine M, Lassina O, Poppert S, Frickmann H. Prevalence and Molecular Characterization of Mycobacterium bovis in Slaughtered Cattle Carcasses in Burkina Faso; West Africa. Microorganisms 2022; 10:microorganisms10071378. [PMID: 35889097 PMCID: PMC9316762 DOI: 10.3390/microorganisms10071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
This cross-sectional study was conducted at the slaughterhouses/slabs of Oudalan and Ouagadougou in Burkina Faso, between August and September 2013. It aimed at determining the prevalence of bovine tuberculosis (bTB) suggestive lesions in slaughtered cattle carcasses and to identify and characterize the mycobacteria isolated from these lesions. A thorough postmortem examination was conducted on carcasses of a total of 2165 randomly selected cattle. The overall prevalence of bTB suggestive lesions was 2.7% (58/2165; 95% CI 2.1–3.5%). Due to the low number of positive samples, data were descriptively presented. The lesions were either observed localized in one or a few organs or generalized (i.e., miliary bTB) in 96.6% (n = 57) and 3.4% (n = 2), respectively. The identified mycobacteria were M. bovis (44.4%, n = 20), M. fortuitum (8.9%, n = 4), M. elephantis (6.7%, n = 3), M. brumae (4.4%, n = 2), M. avium (2.2%, n = 1), M. asiaticum (2.2%, n = 1), M. terrae (2.2%, n = 1), and unknown non-tuberculous mycobacteria (NTM) (11.1%, n = 5). Moreover, eight mixed cultures with more than one Mycobacterium species growing were also observed, of which three were M. bovis and M. fortuitum and three were M. bovis and M. elephantis. In conclusion, M. bovis is the predominant causative agent of mycobacterial infections in the study area. Our study has identified a base to broaden the epidemiological knowledge on zoonotic transmission of mycobacteria in Burkina Faso by future studies investigating further samples from humans and animals, including wild animals employing molecular techniques.
Collapse
Affiliation(s)
- Estelle Kanyala
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso BP 390, Burkina Faso;
| | - Yassir Adam Shuaib
- College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Khartoum North 13321, Sudan;
- Molecular and Experimental Mycobacteriology, Research Center Borstel, 23845 Borstel, Germany
| | | | - Sönke Andres
- National Reference Laboratory for Mycobacteria, Research Center Borstel, 23845 Borstel, Germany;
| | - Elvira Richter
- Tuberculosis Laboratory, Laboratory Limbach, 69126 Heidelberg, Germany;
| | - Bernard Sawadogo
- West Africa Francophone, African Field Epidemiology Network (AFENET), Ouagadougou 01 BP 364, Burkina Faso;
| | - Mamadou Sawadogo
- Laboratory of Biochemistry, Health Sciences Training and Research Unit, University of Ouagadougou, Ouagadougou BP 7021, Burkina Faso;
| | | | - Ouattara Lassina
- Direction Générale des Services Vétérinaires (DGSv), Ouagadougou 01 BP 364, Burkina Faso;
| | - Sven Poppert
- Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany
- Correspondence: (S.P.); or (H.F.)
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
- Correspondence: (S.P.); or (H.F.)
| |
Collapse
|
6
|
Güven Gökmen T, Yakici G, Kalayci Y, Turut N, Meral Ocal M, Haligür M, Günaydin E, Köksal F. Molecular characterization of Mycobacterium bovis strains isolated from cattle and humans by spoligotyping and 24-locus MIRU-VNTR, and prevalence of positive IGRA in slaughterhouse workers in Southern Turkey. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:210-218. [PMID: 36425601 PMCID: PMC9681978 DOI: 10.22099/ijvr.2022.42580.6186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 06/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mycobacterium bovis is a zoonotic member of the Mycobacterium tuberculosis complex with a wide range of hosts, mainly cattle. Molecular epidemiological studies should be conducted to determine the transmission route, zoonotic risk factors, and phylogenetic relationships of M. bovis strains. Aims: This study aimed to characterize bovine and human M. bovis isolates by molecular methods. METHODS Molecular characterization and clonal relationship of strains isolated from tissue and organ samples of 76 cattle with positive tuberculin tests were collected from a slaughterhouse, and four M. bovis strains isolated from clinical materials of patients with suspected pulmonary TB isolates were analyzed using 24-locus MIRU-VNTR and spoligotyping methods. QuantiFERON-TB Gold Plus (QFT-Plus; Qiagen) was used to determine the prevalence of latent TB infection among 21 slaughterhouse personnel including 7 veterinarians, 12 butchers, 1 caretaker, and 1 veterinary technician. RESULTS SB0288/SIT685 type was detected in both cattle and humans by the spoligotyping method. When evaluating MIRU-VNTR, the presence of a 100% compatible pattern between human and bovine isolates was not detected, but some human samples were found to be 91.6% similar to a bovine sample. In addition, 21 slaughterhouse workers were screened with the interferon gamma-released assay (IGRA) and a 23.8% positivity was detected. CONCLUSION Clonal similarity was determined between the bovine and human isolates using the MIRU-VNTR and spoligotyping methods and IGRA positivity in the occupational group suggested that M. bovis might be associated with pulmonary tuberculosis in humans.
Collapse
Affiliation(s)
- T. Güven Gökmen
- Department of Microbiology, Ceyhan Veterinary Faculty, Cukurova University, 01330, Adana, Turkey
| | - G. Yakici
- Tuberculosis Region Laboratory, Tropical Disease and Research Center, Cukurova University, 01330, Adana, Turkey
| | - Y. Kalayci
- Microbiology Laboratory, Adana City Hospital, 01230, Adana, Turkey
| | - N. Turut
- MSc, Microbiology Laboratory, Adana Veterinary Control Institute, 01250, Adana, Turkey
| | - M. Meral Ocal
- Department of Microbiology, Medicine Faculty, Cukurova University, 01330, Adana, Turkey
| | - M. Haligür
- Department of Pathology, Ceyhan Veterinary Faculty, Cukurova University, 01330, Adana, Turkey
| | - E. Günaydin
- Department of Microbiology, Veterinary Faculty, Kastamonu University, 37150, Kastamonu, Turkey
| | - F. Köksal
- Department of Microbiology, Medicine Faculty, Cukurova University, 01330, Adana, Turkey
| |
Collapse
|
7
|
Tazerart F, Saad J, Sahraoui N, Yala D, Niar A, Drancourt M. Whole Genome Sequence Analysis of Mycobacterium bovis Cattle Isolates, Algeria. Pathogens 2021; 10:pathogens10070802. [PMID: 34202816 PMCID: PMC8308521 DOI: 10.3390/pathogens10070802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium bovis (M. bovis), a Mycobacterium tuberculosis complex species responsible for tuberculosis in cattle and zoonotic tuberculosis in humans, is present in Algeria. In Algeria however, the M. bovis population structure is unknown, limiting understanding of the sources and transmission of bovine tuberculosis. In this study, we identified the whole genome sequence (WGS) of 13 M. bovis strains isolated from animals exhibiting lesions compatible with tuberculosis, which were slaughtered and inspected in five slaughterhouses in Algeria. We found that six isolates were grouped together with reference clinical strains of M. bovis genotype-Unknown2. One isolate was related to M. bovis genotype-Unknown7, one isolate was related to M. bovis genotype-Unknown4, three isolates belonged to M. bovis genotype-Europe 2 and there was one new clone for two M. bovis isolates. Two isolates from Blida exhibited no pairwise differences in single nucleotide polymorphisms. None of these 13 isolates were closely related to four zoonotic M. bovis isolates previously characterized in Algeria. In Algeria, the epidemiology of bovine tuberculosis in cattle is partly driven by cross border movements of animals and animal products.
Collapse
Affiliation(s)
- Fatah Tazerart
- Laboratoire d’Agro Biotechnologie et de Nutrition des Zones Semi Arides, Université Ibn Khaldoun, Tiaret 14000, Algeria;
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria;
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
| | - Jamal Saad
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France
| | - Naima Sahraoui
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria;
| | - Djamel Yala
- Laboratoire National de Référence pour la Tuberculose et Mycobactéries, Institut Pasteur d’Algérie, Alger 16015, Algeria;
| | - Abdellatif Niar
- Laboratoire de Reproduction des Animaux de la Ferme, Université Ibn Khaldoun, Tiaret 14000, Algeria;
| | - Michel Drancourt
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
8
|
Ramanujam H, Thiruvengadam K, Singaraj R, Palaniyandi K. Role of abattoir monitoring in determining the prevalence of bovine tuberculosis: A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:958-973. [PMID: 33891372 DOI: 10.1111/tbed.14118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Bovine tuberculosis (bTB) is one of the major zoonotic concerns of the world, as milk and meat from cattle are major products for human consumption. Bovine tuberculosis not only affects the health of cattle and poses an imminent zoonotic threat, but also causes significant economic loss in both developed and developing countries. This systematic review reports the prevalence of Mycobacterium tuberculosis complex (MTBC) organisms in slaughtered cattle showing tuberculosis-like lesion (TBL) with available literature worldwide. Appropriate keywords were used to search various databases to collect articles pertaining to slaughterhouse studies. Bovine TB prevalence, based on the prevalence of MTBC organisms in slaughtered cattle showing TBL by culture, microscopy, PCR and spoligotyping, was assessed in each study using a random-effects model and standardized mean with 95% confidence interval (CI). Heterogeneity was assessed by the I2 statistic. Publication bias was evaluated using funnel plots. Out of 72 hits, 37 studies were selected based on title and abstract. Ten articles were excluded due to lack of desired data, and 27 studies were included in the final analysis. From the selected articles, it was found that 426 [95% CI: 302-560] per 1,000 slaughtered cattle with TBL were positive for the presence of MTBC organisms. The sensitivity analysis showed that no individual study alone influenced the estimation of pooled prevalence. The prevalence of MTBC organisms in slaughtered cattle showing TBL by culture, microscopy, PCR and spoligotyping was 474[95% CI: 342-610], 385 [95% CI: 269-515], 218 [95% CI: 132-338], 326 [95% CI: 229-442], respectively, per 1,000 slaughtered cattle. Most of the slaughtered cattle were from the same locality as the slaughterhouse. The results obtained in this study suggest that abattoir monitoring can give an estimate of the prevalence of bTB in that locality. This study also emphasizes the need to test cattle and animal handlers who were in contact with bTB-positive cattle.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Kannan Thiruvengadam
- Department of Statistics, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Ranjani Singaraj
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
9
|
Damene H, Tahir D, Diels M, Berber A, Sahraoui N, Rigouts L. Broad diversity of Mycobacterium tuberculosis complex strains isolated from humans and cattle in Northern Algeria suggests a zoonotic transmission cycle. PLoS Negl Trop Dis 2020; 14:e0008894. [PMID: 33253150 PMCID: PMC7728391 DOI: 10.1371/journal.pntd.0008894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/10/2020] [Accepted: 10/15/2020] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) comprises closely related species responsible for human and animal tuberculosis (TB). Efficient species determination is useful for epidemiological purposes, especially for the elucidation of the zoonotic contribution. In Algeria, data on MTBC genotypes are largely unknown. In this study, we aimed to investigate the occurrence and diversity of MTBC genotypes causing human and bovine TB in Northern Algeria. During a two-year sampling period (2017-2019) in two regions of Northern Algeria, we observed an overall prevalence of 6.5% of tuberculosis (TB) among slaughtered cattle, which is higher than previous Algerian data yet comparable to neighboring countries. A total of 296 Mycobacterium tuberculosis complex (MTBC) isolates were genotyped by spoligotyping: 181 from tissues with TB-like lesions collected from 181 cattle carcasses and 115 from TB patients. In human isolates, we identified 107 M. tuberculosis, seven M. bovis and one "M. pinnipedii-like", while for bovine samples, 174 isolates were identified as M. bovis, three as M. caprae, three as "M. pinnipedii-like" and one as "M. microti-like". The majority of isolates (89.2%) belonged to 72 different known Shared International Types (SIT) or M. bovis spoligotypes (SB), while we also identified seven new SB profiles (SB2695 to SB2701). Twenty-eight of the SB profiles were new to Algeria. Our data suggest zoonotic transmission in Sétif, where significantly more TB was observed among cattle (20%) compared to the slaughterhouses from the three other regions (5.4%-7.3%) (p < 0.0001), with the isolation of the same M. bovis genotypes from TB patients. The present study showed a high genetic diversity of MTBC isolated from human and cattle in Northern Algeria. Even though relatively small in terms of numbers, our data suggest the zoonotic transmission of TB from cattle to humans, suggesting the need for stronger eradication strategies for bovine TB.
Collapse
Affiliation(s)
- Hanane Damene
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
| | - Djamel Tahir
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
- IHU Méditerranée Infection, Marseille, France
| | - Maren Diels
- BCCM/ITM Mycobacterial Culture collection, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ali Berber
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
| | - Naima Sahraoui
- Institute of Veterinary Sciences, University Blida 1, Blida, Algeria
| | - Leen Rigouts
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
11
|
Carneiro PAM, Pasquatti TN, Takatani H, Zumárraga MJ, Marfil MJ, Barnard C, Fitzgerald SD, Abramovitch RB, Araujo FR, Kaneene JB. Molecular characterization of Mycobacterium bovis infection in cattle and buffalo in Amazon Region, Brazil. Vet Med Sci 2019; 6:133-141. [PMID: 31571406 PMCID: PMC7036311 DOI: 10.1002/vms3.203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/24/2019] [Accepted: 08/30/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to characterize Mycobacterium bovis from cattle and buffalo tissue samples, from two Brazilian states, and to analyse their genetic diversity by spoligotyping. Tissue samples from tuberculosis suspect animals, 57 in Amazonas State (12 cattle and 45 buffaloes) and six from Pará State (5 cattle and one buffalo) from slaughterhouses under State Veterinary Inspection, were isolated in culture medium Stonebrink. The positive cultures were confirmed by PCR and analysed by the spoligotyping technique and the patterns (spoligotypes) were identified and compared at the Mycobacterium bovis Spoligotype Database (http://www.mbovis.org/). There was bacterial growth in 44 (69.8%) of the tissues of the 63 animals, of which PCR for region of differentiation 4 identified 35/44 (79.5%) as Mycobacterium bovis. Six different spoligotypes were identified among the 35 Mycobacterium bovis isolates, of which SB0295, SB1869, SB0121 and SB1800 had already been described in Brazil, and SB0822 and SB1608 had not been described. The most frequent spoligotype in this study (SB0822) had already been described in buffaloes in Colombia, a neighbouring country of Amazonas state. The other identified spoligotypes were also described in other South American countries, such as Argentina and Venezuela, and described in the Brazilian states of Rio Grande do Sul, Santa Catarina, São Paulo, Minas Gerais, Mato Grosso do Sul, Mato Grosso and Goiás, indicating an active movement of Mycobacterium bovis strains within Brazil.
Collapse
Affiliation(s)
- Paulo A M Carneiro
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.,Amazonas State Federal Institute, Manaus, AM, Brazil
| | | | - Haruo Takatani
- Agencia de Defesa Agropecuaria do Amazonas, Manaus, AM, Brazil
| | - Martin J Zumárraga
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, Buenos Aires, Argentina
| | - Maria J Marfil
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, Buenos Aires, Argentina
| | | | - Scott D Fitzgerald
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, MI, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Flábio R Araujo
- Centro Nacional de Pesquisa de Gado de Corte, Campo Grande, MS, Brazil
| | - John B Kaneene
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Siala M, Cassan C, Smaoui S, Kammoun S, Marouane C, Godreuil S, Hachicha S, Mhiri E, Slim L, Gamara D, Messadi-Akrout F, Bañuls AL. A first insight into genetic diversity of Mycobacterium bovis isolated from extrapulmonary tuberculosis patients in South Tunisia assessed by spoligotyping and MIRU VNTR. PLoS Negl Trop Dis 2019; 13:e0007707. [PMID: 31532767 PMCID: PMC6750577 DOI: 10.1371/journal.pntd.0007707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/14/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction In Tunisia, almost 77% of clinically and bacteriologically diagnosed cases of extrapulmonary tuberculosis (EPTB) are zoonotic TB, caused by M. bovis. Although several studies have analyzed bovine TB in cattle in Tunisia, no study has evaluated the risk of transmission to humans in such an endemic country. We aimed to study the genetic diversity of M. bovis human isolates, to ascertain the causes of human EPTB infection by M. bovis and to investigate the distribution and population structure of this species in Tunisia. Materials and methods A total of 110 M. bovis isolates taken from patients with confirmed EPTB were characterized by spoligotyping and MIRU-VNTR typing methods. Results Among the 15 spoligotypes detected in our study, 6 (SB0120, SB0121, SB2025, SB1200, SB1003 and SB0134) were the most prevalent (83.5%) of which SB0120, SB0121 and SB2025 were the most prevailing. MIRU-VNTR typing method showed a high genotypic and genetic diversity. The genetic differentiation based on MIRU-VNTR was significant between populations from South East (Tataouine, Medenine) and Central West (Gafsa, Sidi Bouzid, Kasserine) regions. Of note, 13/15 (86.7%) spoligotypes detected in our study were previously identified in cattle in Tunisia with different frequencies suggesting a peculiar ability of some genotypes to infect humans. Using combined spoligotyping and MIRU-VNTR method, a high clustering rate of 43.9% was obtained. Our results underlined that human EPTB due to M. bovis was more commonly found in female gender and in young patients. Most of our patients, 66.4% (73/110) were raw milk or derivatives consumers, whereas 30.9% (34/110) patients would have contracted EPTB through contact with livestock. The findings suggest that the transmission of Zoonotic TB caused by M. bovis to humans mainly occurred by oral route through raw milk or derivatives. Conclusion Our study showed the urgent need of a better veterinary control with the implementation of effective and comprehensive strategies in order to reach a good protection of animals as well as human health. In South Tunisia, the prevalence of bovine TB is high with Mycobacterium bovis as causative agent and cattle as reservoir of the bacteria. However as previously mentioned in several studies, M. bovis is also responsible for human extrapulmonary tuberculosis (EPTB) cases in South Tunisia. Despite the veterinary and medical problems, M. bovis is still little studied. In this context, this work aimed to study the molecular epidemiology of M. bovis in EPTB patients in south Tunisia in order to determine the main risk factors of transmission. Our results underlined that SB0120, SB0121 and SB2025, previously described in cattle in Tunisia, represent the predominant genotypes. The findings highlighted that human EPTB caused by M. bovis mainly occurred through the consumption of raw milk or derivatives. These data demonstrate the urgent need to implement strategies for preventing and controlling zoonotic TB.
Collapse
Affiliation(s)
- Mariam Siala
- Department of Biology, Preparatory Institute for Engineering Studies, Sfax, University of Sfax-Tunisia
- Department of Life Sciences, Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, Sfax, University of Sfax-Tunisia
- * E-mail:
| | - Cécile Cassan
- MIVEGEC, UMR IRD–CNRS—Université de Montpellier, Montpellier, France
| | - Salma Smaoui
- Department of Mycobacteriology, Regional hygiene care laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
| | - Sana Kammoun
- Department of Mycobacteriology, Regional hygiene care laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
| | - Chema Marouane
- Department of Mycobacteriology, Regional hygiene care laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
| | - Sylvain Godreuil
- MIVEGEC, UMR IRD–CNRS—Université de Montpellier, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, France
| | - Salma Hachicha
- Department of Mycobacteriology, Regional hygiene care laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
| | - Emna Mhiri
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
- Department of Microbiology, National Reference Laboratory of Mycobacteria, Research Unit (UR12SP18), A. Mami University Hospital of Pneumology, Ariana, Tunisia
| | - Leila Slim
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
- Department of Microbiology, National Reference Laboratory of Mycobacteria, Research Unit (UR12SP18), A. Mami University Hospital of Pneumology, Ariana, Tunisia
| | - Dhikrayet Gamara
- Basic Health Care Management, Ministry of Health, Tunis, Tunisia
| | - Férièle Messadi-Akrout
- Department of Mycobacteriology, Regional hygiene care laboratory, Hedi-Chaker University Hospital, Sfax, Tunisia
- Department of Biology B, Faculty of pharmacy, Monastir, University of Monastir, Monastir, Tunisia
| | - Anne-Laure Bañuls
- MIVEGEC, UMR IRD–CNRS—Université de Montpellier, Montpellier, France
| |
Collapse
|
13
|
Pokam BT, Guemdjom P, Yeboah-Manu D, Weledji E, Enoh J, Tebid P, Asuquo A. Challenges of bovine tuberculosis control and genetic distribution in Africa. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2019. [DOI: 10.4103/bbrj.bbrj_110_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Ahmad I, Kudi CA, Abdulkadir AI, Saidu SNA, Chafe UM, Abdulmalik Z. Survey of bovine tuberculosis in Nigerian beef cattle. Open Vet J 2018; 8:463-470. [PMID: 30775286 PMCID: PMC6356099 DOI: 10.4314/ovj.v8i4.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022] Open
Abstract
Bovine tuberculosis (bTB) is a zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) that primarily affects cattle, but also other domestic and wild mammals. In Nigeria, abattoir monitoring of gross bTB lesions is the only control method being applied in all animals. This study aims to investigate tubercle bacilli infection in slaughtered cattle found with visible tuberculosis-like lesions. Lesions suggesting bTB were detected in 226 cattle during abattoir monitoring in Zamfara State, Nigeria. Tissue samples collected from the affected carcasses were subjected to Ziehl-Neelsen stain (ZN). Of the 226 carcasses with lesions, 37 (16.4%) were positive by the Ziehl-Neelsen stain (ZN), and MTBC was detected from 34 (91.9%) of the 37 ZN-positive samples. Molecular typing by region of difference (RD) deletion analysis revealed the genotype of Mycobacterium bovis, Mycobacterium caprae and Mycobacterium tuberculosis. Infection was most significantly associated with age of the animals (OR = 3.49; CI: 1.29-9.47 [p = 0.002]). The findings indicate a serious threat for health as well as for TB control in Nigeria.
Collapse
Affiliation(s)
- Ibrahim Ahmad
- Directorate of Animal Health and Livestock Development, Gusau, Zamfara, Nigeria
| | - Caleb Ayuba Kudi
- Departmet of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Nigeria
| | - Alhaji Idris Abdulkadir
- Departmet of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Nigeria
| | - S N A Saidu
- Departmet of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Nigeria
| | - Umar Mohammed Chafe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Zainab Abdulmalik
- Directorate of Animal Health and Livestock Development, Gusau, Zamfara, Nigeria
| |
Collapse
|
15
|
Perea Razo CA, Rodríguez Hernández E, Ponce SIR, Milián Suazo F, Robbe-Austerman S, Stuber T, Cantó Alarcón GJ. Molecular epidemiology of cattle tuberculosis in Mexico through whole-genome sequencing and spoligotyping. PLoS One 2018; 13:e0201981. [PMID: 30138365 PMCID: PMC6107157 DOI: 10.1371/journal.pone.0201981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium bovis infection in cattle persists in Mexico, posing a threat to human health. Control of bovine tuberculosis, through the National Program Against Bovine Tuberculosis, has led to the decrease of disease prevalence in most of the country, except for high dairy production regions. Genotyping of M. bovis has been performed mainly by spoligotyping and variable number tandem repeats (VNTR), but higher resolution power can be useful for a finer definition of the spread of the disease. Whole genome sequencing and spoligotyping was performed for a set of 322 M. bovis isolates from different sources in Mexico: Baja California, Coahuila, Estado de Mexico, Guanajuato, Hidalgo, Jalisco, Queretaro and Veracruz, from dairy and beef cattle, as well as humans. Twelve main genetic clades were obtained through WGS and genetic diversity analysis. A clear differentiation of the Baja California isolates was seen as they clustered together exclusively. However, isolates from the central states showed no specific clustering whatsoever. Although WGS proves to have higher resolving power than spoligotyping, and since there was concordance between WGS and spoligotyping results, we consider that the latter is still an efficient and practical method for monitoring bovine tuberculosis in developing countries, where resources for higher technology are scarce.
Collapse
Affiliation(s)
| | - Elba Rodríguez Hernández
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Colón, Qro., México
| | - Sergio Iván Román Ponce
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Colón, Qro., México
| | - Feliciano Milián Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Qro., México
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, United States Department of Agriculture, University Blvd, Ames, Iowa, United States of America
| | - Tod Stuber
- National Veterinary Services Laboratories, United States Department of Agriculture, University Blvd, Ames, Iowa, United States of America
| | | |
Collapse
|