1
|
Safwat MS, El-Sayed M S, Ali ME, Saeed OS, Amer HM, Mansour ONO, Hassan AM, Farouk MM. Molecular typing of Protoparvovirus carnivoran 1 in Egyptian cats diagnosed with feline panleukopenia. Comp Immunol Microbiol Infect Dis 2024; 115:102273. [PMID: 39520796 DOI: 10.1016/j.cimid.2024.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Feline panleukopenia (FPL) in cats is caused by either feline parvovirus (FPV) or canine parvovirus (CPV-2), which belong to the same species "Protoparvovirus carnivoran 1". While FPV is widely recognized as the principal cause of FPL, CPV-2 has been detected at a higher rate than FPV in sick cats in a recent Egyptian study. To assess this conflict, the present study aimed to determine which Protoparvovirus carnivoran 1 is commonly associated with FPL in Egyptian cats. From Dec-2022 to Jan-2024, 43 cats presenting with acute gastroenteritis and testing positive for FPL using in-clinic assay, SNAP® parvo, were tested for Protoparvovirus carnivoran 1 DNA using conventional PCR. Typing of Protoparvovirus carnivoran 1 was conducted by partial VP2 gene sequencing. Additional epidemiological aspects of the disease were investigated, including seasonal pattern, case-fatality rate, median survival time to death, and the association between FPL outcomes and selected factors like age, sex, vaccination status, and clinical signs (vomiting and diarrhea). All cats tested positive for Protoparvovirus carnivoran 1 DNA and FPV was detected in all cats with strong PCR amplicons (n=39). The following seasonal pattern was recorded: cases emerging in autumn, peaking during winter, declining in spring, and disappearing in summer. The case-fatality rate was 41.6 %, and the median time to death was two days. None of the studied factors affected FPL outcomes. In conclusion, FPL in Egyptian cat populations is primarily caused by FPV, not CPV-2, and is particularly prevalent in winter.
Collapse
Affiliation(s)
- Mahmoud S Safwat
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Samah El-Sayed M
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mohamed E Ali
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Omar S Saeed
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Haitham M Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Othman N O Mansour
- Genome Research Unit, Animal Health Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Ayah M Hassan
- Genome Research Unit, Animal Health Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| |
Collapse
|
2
|
Citarová A, Mojžišová J, Petroušková P, Pelegrinová A, Kostičák M, Korytár L, Prokeš M, Vojtek B, Ondrejková A, Drážovská M. Investigation of canine parvovirus occurrence in cats with clinical signs of feline panleukopenia in Slovakia - pilot study. J Vet Res 2024; 68:199-205. [PMID: 38947159 PMCID: PMC11210359 DOI: 10.2478/jvetres-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Feline panleukopenia is a contagious viral disease caused by the feline panleukopenia virus (FPV). A closely related pathogen is canine parvovirus (CPV), and amino acid substitutions in this virus allow it to acquire a feline host range. In feline hosts, the disease induced by CPV manifests with similar symptoms to those caused by FPV or milder ones, leading to its underdiagnosis. The aim of this study was to determine the presence of CPV type 2 (CPV-2) in cats with clinical symptoms of panleukopenia and to assess the use of commercial CPV antigen tests for the clinical diagnosis of FPV. Material and Methods Samples from 59 cats from central Slovakia were included in the study. Rectal swabs were collected and clinically tested for parvovirus infection using a commercial antigen test. Antigen-positive samples were confirmed by PCR targeting the viral VP2 gene. The sequences of the PCR products were established with the Sanger method. Results Of 59 samples, 23 were revealed to be positive for parvovirus infection by both antigen and PCR test (38.9%). Analysis with the National Center for Biotechnology Information BLASTn application showed 99.78-100% pairwise identity with FPV. The mortality rate of parvovirus-infected cats included in this study was 8.69% (2/23). Conclusion Although feline disease with CPV-2 was not confirmed, the CPV antigen test was able to detect FPV infection.
Collapse
Affiliation(s)
- Alexandra Citarová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Jana Mojžišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Patrícia Petroušková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Andrea Pelegrinová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Maroš Kostičák
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - L’uboš Korytár
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Marián Prokeš
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Boris Vojtek
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Anna Ondrejková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Monika Drážovská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| |
Collapse
|
3
|
Hasırcıoglu S, Aslım HP, Kale M, Bulut O, Koçlu O, Orta YS. Molecular characterization of carnivore protoparvovirus strains circulating in cats in Turkey. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
ABSTRACT: Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus type 2 (CPV-2). Therefore, coinfection and superinfection with multiple parvovirus strains may occur, resulting in high heterogeneity and recombination. Considering the importance of cats as a potential source of genetic diversity for parvoviruses, we investigated the frequency of parvovirus infection in cats using their blood and fecal samples and performed molecular characterization of parvovirus strains circulating in cat populations. Accordingly, the fecal and blood samples of 60 cats with gastroenteritis symptoms were collected from Turkey’s Burdur, Isparta, and Izmit provinces. Of these 15 fecal samples tested as parvovirus-positive by PCR, 14 were confirmed to have been infected with true FPV strains by sequencing analysis. Through the phylogeny analysis, those were located in the FPV cluster, closely related to CPV-2, and one was discriminated in the CPV-2b cluster. Additionally, sequence analysis of the VP2 gene of CPV and FPV revealed that the FPV strains detected in Turkey and the vaccine strains were highly related to each other, with a nucleotide identity of 97.7- 100%. Furthermore, 13 variable positions were detected in VP2 of the field and reference FPV strains. Three synonymous mutations were determined in the VP2 gene. Some amino acid mutations in the VP2 protein-affected sites were considered responsible for the virus’s biological and antigenic properties. The partial sequence analysis of the VP2 gene revealed that four FPV strains detected in Turkey have a single nucleotide change from T to G at the amino acid position 384 between the nucleotides 3939-3941, which was reported for the first time. Therefore, these four isolates formed a different branch in the phylogenetic tree. The results suggest that both FPV and CPV-2b strains are circulating in domestic cats in Turkey and cats should be considered as potential sources of new parvovirus variants for cats, dogs and other animals.
Collapse
|
4
|
Ndiana LA, Lanave G, Zarea AAK, Desario C, Odigie EA, Ehab FA, Capozza P, Greco G, Buonavoglia C, Decaro N. Molecular characterization of carnivore protoparvovirus 1 circulating in domestic carnivores in Egypt. Front Vet Sci 2022; 9:932247. [PMID: 35937285 PMCID: PMC9354892 DOI: 10.3389/fvets.2022.932247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in the unique species Carnivore protoparvovirus 1 (CPPV1), have been circulating in dogs and cats for several decades and are considered the causes of clinically important diseases, especially in young animals. While genetic evidence of the circulation of parvoviruses in Egyptian domestic carnivores has been provided since 2016, to date, all available data are based on partial fragments of the VP2 gene. This study reports the molecular characterization of CPPV strains from Egypt based on the full VP2 gene. Overall, 196 blood samples were collected from dogs and cats presented at veterinary clinics for routine medical assessment in 2019 in Egypt. DNA extracts were screened and characterized by real-time PCR. Positive samples were amplified by conventional PCR and then were sequenced. Nucleotide and amino acid changes in the sequences were investigated and phylogeny was inferred. Carnivore protoparvovirus DNA was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic analyses based on the full VP2 gene revealed that 9 sequenced strains clustered with different CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2) and 1 strain with the FPV clade. All three CPV variants were detected in dog and cat populations with a predominance of CPV-2c strains (7 of 18, 38.9%) in dog samples, thus mirroring the circulation of this variant in African, European, and Asian countries. Deduced amino acid sequence alignment revealed the presence of the previously unreported unique mutations S542L, H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.
Collapse
Affiliation(s)
- Linda A. Ndiana
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- *Correspondence: Gianvito Lanave
| | - Aya A. K. Zarea
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | | | - Eugene A. Odigie
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Fouad A. Ehab
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Wang X, Carrai M, Van Brussel K, Feng S, Beatty JA, Shi M, Holmes EC, Li J, Barrs VR. Low Intrahost and Interhost Genetic Diversity of Carnivore Protoparvovirus 1 in Domestic Cats during a Feline Panleukopenia Outbreak. Viruses 2022; 14:v14071412. [PMID: 35891392 PMCID: PMC9325248 DOI: 10.3390/v14071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Feline panleukopenia (FPL), a highly contagious and frequently fatal disease of cats, is caused by Feline parvovirus (FPV) and Canine parvovirus (CPV). We characterised the diversity of these Carnivore protoparvovirus 1 variants in 18 faecal samples collected from domestic cats with FPL during an outbreak, using targeted parvoviral DNA metagenomics to a mean depth of >10,000 × coverage per site. All samples comprised FPV alone. Compared with the reference FPV genome, isolated in 1967, 44 mutations were detected. Ten of these were nonsynonymous, including 9 in nonstructural genes and one in VP1/VP2 (Val232Ile), which was the only one to exhibit interhost diversity, being present in five sequences. There were five other polymorphic nucleotide positions, all with synonymous mutations. Intrahost diversity at all polymorphic positions was low, with subconsensus variant frequencies (SVF) of <1% except for two positions (2108 and 3208) in two samples with SVF of 1.1−1.3%. Intrahost nucleotide diversity was measured across the whole genome (0.7−1.5%) and for each gene and was highest in the NS2 gene of four samples (1.2−1.9%). Overall, intrahost viral genetic diversity was limited and most mutations observed were synonymous, indicative of a low background mutation rate and strong selective constraints.
Collapse
Affiliation(s)
- Xiuwan Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; (X.W.); (S.F.); (J.L.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Maura Carrai
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (M.C.); (J.A.B.)
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong, China
| | - Kate Van Brussel
- School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
- School of Life and Environmental Sciences and School of Medical Sciences, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia;
| | - Shuo Feng
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; (X.W.); (S.F.); (J.L.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Julia A. Beatty
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (M.C.); (J.A.B.)
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong, China
- School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Mang Shi
- School of Medicine, Sun Yat-sen University, Guangzhou 510275, China;
| | - Edward C. Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia;
| | - Jun Li
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; (X.W.); (S.F.); (J.L.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong, China
| | - Vanessa R. Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (M.C.); (J.A.B.)
- Centre for Animal Health and Welfare, City University of Hong Kong, Hong Kong, China
- School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
6
|
Tang Y, Tang N, Zhu J, Wang M, Liu Y, Lyu Y. Molecular characteristics and genetic evolutionary analyses of circulating parvoviruses derived from cats in Beijing. BMC Vet Res 2022; 18:195. [PMID: 35606875 PMCID: PMC9125828 DOI: 10.1186/s12917-022-03281-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Feline parvovirus (FPV) is a member of the family Parvoviridae, which is a major enteric pathogen of cats worldwide. This study aimed to investigate the prevalence of feline parvovirus in Beijing of China and analyze the genetic features of detected viruses. Results In this study, a total of 60 (8.5%) parvovirus-positive samples were detected from 702 cat fecal samples using parvovirus-specific PCR. The complete VP2 genes were amplified from all these samples. Among them, 55 (91.7%) sequences were characterized as FPV, and the other five (8.3%) were typed as canine parvovirus type 2 (CPV-2) variants, comprised of four CPV-2c and a new CPV-2b strain. In order to investigate the origin of CPV-2 variants in cats, we amplified full-length VP2 genes from seven fecal samples of dogs infected with CPV-2, which were further classified as CPV-2c. The sequences of new CPV-2b/MT270586 and CPV-2c/MT270587 detected from feline samples shared 100% identity with previous canine isolates KT156833 and MF467242 respectively, suggesting the CPV-2 variants circulating in cats might be derived from dogs. Sequence analysis indicated new mutations, Ala91Ser and Ser192Phe, in the FPV sequences, while obtained CPV-2c carried mutations reported in Asian CPV variants, showing they share a common evolutionary pattern with the Asian 2c strains. Interestingly, the FPV sequence (MT270571), displaying four CPV-specific residues, was found to be a putative recombinant sequence between CPV-2c and FPV. Phylogenetic analysis of the VP2 gene showed that amino acid and nucleotide mutations promoted the evolution of FPV and CPV lineages. Conclusions Our findings will be helpful to further understand the circulation and evolution of feline and canine parvovirus in Beijing.
Collapse
Affiliation(s)
- Yashu Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Na Tang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingru Zhu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Min Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Liu
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, 100193, China
| | - Yanli Lyu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Balboni A, Terrusi A, Urbani L, Troia R, Stefanelli SAM, Giunti M, Battilani M. Canine circovirus and Canine adenovirus type 1 and 2 in dogs with parvoviral enteritis. Vet Res Commun 2021; 46:223-232. [PMID: 34671910 PMCID: PMC8528481 DOI: 10.1007/s11259-021-09850-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is one of the most relevant pathogens associated with enteritis in dogs and is frequently reported in association with the detection of other pathogens in faeces. In this study the concomitant presence of Canine circovirus (CanineCV) and Canine adenovirus (CAdV) DNA in faecal or intestine samples of 95 dogs with parvovirus enteritis sampled in Italy (1995–2017) was investigated and the viruses identified were genetically characterised. Potential correlations with the antigenic variant of CPV-2 and with signalment data and outcome were evaluated. Twenty-eight of 95 (29.5%) CPV-2 infected dogs tested positive to other viruses: 7/28 were also positive to CanineCV, 1/28 to CAdV-1, 18/28 to CAdV-2, 1/28 to CanineCV and CAdV-2, and 1/28 to CAdV-1 and CAdV-2. The frequency of CAdV DNA detection and coinfections was significantly higher in purebred dogs compared to mixed breed ones (P = 0.002 and 0.009, respectively). The presence of coinfection was not associated with any other relevant data available, including CPV-2 variant and final outcome. The detection of CanineCV in a dog sampled in 2009 allowed to backdating its circulation in dogs. The eight CanineCV completely sequenced were phylogenetically related to the CanineCV identified in dogs, wolves and a badger from Europe, USA, Argentina and China. Nine CAdV were partially sequenced and phylogenetic analysis showed a separate branch for the oldest CAdV-2 identified (1995). From the results obtained in this study population, CanineCV and CAdV coinfections in dogs with parvoviral enteritis did not result in more severe disease.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Roberta Troia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Silvia A M Stefanelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Massimo Giunti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy.
| |
Collapse
|
8
|
Carrai M, Decaro N, Van Brussel K, Dall'Ara P, Desario C, Fracasso M, Šlapeta J, Colombo E, Bo S, Beatty JA, Meers J, Barrs VR. Canine parvovirus is shed infrequently by cats without diarrhoea in multi-cat environments. Vet Microbiol 2021; 261:109204. [PMID: 34399298 DOI: 10.1016/j.vetmic.2021.109204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/06/2021] [Indexed: 01/24/2023]
Abstract
Whether subclinical shedding of canine parvovirus (CPV) by cats might contribute to the epidemiology of canine CPV infections, particularly in facilities housing both cats and dogs, requires clarification. Conflicting results are reported to date. Using conventional PCR (cPCR) to amplify the VP2 gene, shedding of the CPV variants (CPV-2a, 2b, 2c) by healthy cats in multi-cat environments was reportedly common in Europe but rare in Australia. The aim of this study was to determine whether low-level faecal CPV shedding occurs in multi-cat environments in Australia and Italy using a TaqMan real-time PCR to detect Carnivore protoparvovirus 1 (CPV and feline parvovirus, FPV) DNA, and minor-groove binder probe real-time PCR assay to differentiate FPV and CPV types and to characterize CPV variants. In total, 741 non-diarrhoeic faecal samples from shelters in Australia (n = 263) and from shelters or cat colonies in Italy (n = 478) were tested. Overall, Carnivore protoparvovirus 1 DNA was detected in 49 of 741 (6.61 %) samples. Differentiation was possible for 31 positive samples. FPV was most common among positive samples (28/31, 90.3 %). CPV was detected in 4/31 samples (12.9 %) including CPV-2a in one sample, CPV-2b in another and co-infections of FPV/CPV-2b and CPV-2a/CPV-2b in the remaining two samples. A high rate of subclinical FPV infection was detected in one shelter during an outbreak of feline panleukopenia, during which 21 of 22 asymptomatic cats (95.5 %) sampled were shedding FPV. Faecal shedding of CPV by cats in multi-cat environments is uncommon suggesting that domestic cats are not significant reservoirs of CPV.
Collapse
Affiliation(s)
- Maura Carrai
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Kate Van Brussel
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia.
| | - Paola Dall'Ara
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Marco Fracasso
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia.
| | - Elena Colombo
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.
| | - Stefano Bo
- Ambulatorio Vetarinario Associato, Via Fratelli Calandra, 2, 10123 Torino, Italy.
| | - Julia A Beatty
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| | - Joanne Meers
- University of Queensland, School of Veterinary Science, Gatton, Queensland 4343, Australia.
| | - Vanessa R Barrs
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales 2006, Australia; Jockey Club College of Veterinary Medicine & Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
9
|
Integrated Use of Molecular Techniques to Detect and Genetically Characterise DNA Viruses in Italian Wolves ( Canis lupus italicus). Animals (Basel) 2021; 11:ani11082198. [PMID: 34438655 PMCID: PMC8388400 DOI: 10.3390/ani11082198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In our study, different quantitative and qualitative molecular techniques were used to detect and genetically characterise Carnivore protoparvovirus 1, Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), and Canine circovirus (CanineCV) in Italian wolves (Canis lupus italicus) of the Italian Apennines. Carnivore protoparvoviruses were the most frequently detected viruses, followed by CanineCV and CAdV. All the wolves tested positive for at least one of the DNA viruses screened, and 47.8% of the subjects were coinfected with two or three viruses. From viral sequences analysis, close correlations emerged between the viruses identified in the wolves and those circulating in domestic dogs, suggesting that the same viruses infect wolves and domestic dogs. Further studies are needed to investigate if pathogens are transmitted between the two species. Abstract In this study, internal organs (tongue, intestine, and spleen) of 23 free-ranging Italian wolves (Canis lupus italicus) found dead between 2017 and 2019 were tested for Carnivore protoparvovirus 1, Canine adenovirus (CAdV), and Canine circovirus (CanineCV) using real-time PCR assays. Genetic characterisation of the identified viruses was carried out by amplification, sequencing, and analysis of the complete viral genome or informative viral genes. All the wolves tested positive for at least one of the DNA viruses screened, and 11/23 were coinfected. Carnivore protoparvoviruses were the most frequently detected viruses (21/23), followed by CanineCV (11/23) and CAdV (4/23). From the analysis of the partial VP2 gene of 13 carnivore protoparvoviruses, 12 were canine parvovirus type 2b, closely related to the strains detected in dogs and wild carnivores from Italy, and one was a feline panleukopenia-like virus. Of the four CAdV identified, two were CAdV-1 and two were CAdV-2. The complete genome of seven CanineCVs was sequenced and related to the CanineCV identified in dogs, wolves, and foxes worldwide. Close correlations emerged between the viruses identified in wolves and those circulating in domestic dogs. Further studies are needed to investigate if these pathogens may be potentially cross-transmitted between the two species.
Collapse
|
10
|
Emerging Parvoviruses in Domestic Cats. Viruses 2021; 13:v13061077. [PMID: 34200079 PMCID: PMC8229815 DOI: 10.3390/v13061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus infections in cats have been well known for around 100 years. Recently, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus lineages and/or species infecting the feline host. However, the involvement of emerging parvoviruses in the onset of gastroenteritis or other feline diseases is still uncertain.
Collapse
|
11
|
Molecular survey of parvovirus, astrovirus, coronavirus, and calicivirus in symptomatic dogs. Vet Res Commun 2021; 45:31-40. [PMID: 33392909 PMCID: PMC7779159 DOI: 10.1007/s11259-020-09785-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Gastrointestinal disorders caused by enteric viruses are frequently reported in dogs worldwide, with significant mortality rates in unvaccinated individuals. This study reports the identification and molecular characterization of Canine parvovirus (CPV-2), Canine coronavirus (CcoV), Canine astrovirus (AstV), and Canine calicivirus (CcaV) in a panel of dogs showing severe enteric clinical signs sampled in a typical Mediterranean environment (Sardinia, Italy). At least one of these viral species was detected in 92.3% samples. CPV-2 was the most frequently detected virus (87.2%), followed by AsTv (20.5%), CCoV-IIa (18%), and CCoV-I (10.3%). CCoV-IIb and CaCV were not detected in any sample. Single infection was detected in 24 samples (66.7%), mainly related to CPV-2 (91.7%). Coinfections were present in 33.3% samples with constant detection of CPV-2. Canine coronavirus was present only in coinfected animals. The VP2 sequence analysis of CPV-2 positive samples confirmed the presence of all variants, with CPV-2b most frequently detected. Phylogeny based on the CcoV-IIa spike protein (S) gene allowed to identify 2 different clades among Sardinian isolates but failed to distinguish enteric from pantropic viruses. Study on presence and prevalence of enteroviruses in dogs increase our knowledge about the circulation of these pathogens in the Mediterranean area and highlight the need for dedicated routine vaccine prophylaxis. Molecular analyses of enteric viruses are fundamental to avoid failure of vaccines caused by frequent mutations observed in these enteroviruses.
Collapse
|
12
|
Ndiana LA, Lanave G, Desario C, Berjaoui S, Alfano F, Puglia I, Fusco G, Colaianni ML, Vincifori G, Camarda A, Parisi A, Sgroi G, Elia G, Veneziano V, Buonavoglia C, Decaro N. Circulation of diverse protoparvoviruses in wild carnivores, Italy. Transbound Emerg Dis 2020; 68:2489-2502. [PMID: 33176056 DOI: 10.1111/tbed.13917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Protoparvovirus is a monophyletic viral genus that includes the species Carnivore protoparvovirus-1 infecting domestic and wild carnivores. In this paper, the results of an epidemiological survey for Carnivore protoparvovirus-1 in wild carnivores in Italy are reported. Overall, 34 (11.4%) out of 297 tested animals were positive for Carnivore protoparvovirus-1, but the frequency of detection was much higher in intestine (54%) than in spleen samples (2.8%), thus suggesting that the intestine is the best sample to collect from wild animals for parvovirus detection. Feline panleukopenia virus (FPV) was detected in red foxes (Vulpes vulpes) (2.8%, 7/252) and Eurasian badgers (Meles meles) (10%, 1/10), whilst canine parvovirus (CPV) was found in wolves (54.3%, 19/35), Eurasian badgers (60%, 6/10) and one beech marten (Martes foina) (100%, 1/1), with more than one parvovirus type detected in some animals. Protoparvoviral DNA sequences from this study were found to be related to CPV/FPV strains detected in Asia and Europe, displaying some amino acid changes in the main capsid protein VP2 in comparison with other parvovirus strains from wildlife. In particular, the two most common mutations were Ile418Thr and Ala371Gly, which were observed in 6/12 (50%) and 5/12 (41.7%) of the CPV sequences from this study. Continuous surveillance for parvoviruses in wild carnivores and genetic analysis of the detected strains may help obtain new insight into the role of these animals in the evolution and epidemiology of carnivore parvoviruses.
Collapse
Affiliation(s)
- Linda A Ndiana
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | - Giacomo Vincifori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| |
Collapse
|
13
|
Chaiyasak S, Piewbang C, Banlunara W, Techangamsuwan S. Carnivore Protoparvovirus-1 Associated With an Outbreak of Hemorrhagic Gastroenteritis in Small Indian Civets. Vet Pathol 2020; 57:706-713. [PMID: 32880233 DOI: 10.1177/0300985820932144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carnivore protoparvovirus-1 (CPPV-1) infection has been reported frequently in both domestic and wildlife species including wild carnivores. Fifty-five captive small Indian civets (Viverricula indica), farmed for perfume production in Eastern Thailand, showed clinical signs of acute bloody diarrhea, anorexia, vomiting, circling, and seizures. The disease spread within the farm and resulted in the death of 38 of the 55 civets (69% mortality) within a month. Fecal swabs were collected from the 17 surviving civets, and necropsy was performed on 7 of the dead civets. Pathologic findings were severe hemorrhagic gastroenteritis with generalized lymphadenopathy. CPPV-1 was identified in both fecal swabs and postmortem samples by species-specific polymerase chain reaction. Further whole-gene sequencing and restriction fragment length polymorphism analysis suggested feline panleukopenia virus (FPV) as the causative agent. The viral tropism and tissue distribution were confirmed by immunohistochemistry, with immunolabeling in the cytoplasm and nucleus of small intestinal crypt epithelial cells, villous enterocytes, histiocytes in lymphoid tissues, myenteric nerve plexuses, and cerebral and cerebellar neurons. Phylogenetic analysis of civet-derived CPPV-1 indicated a genetic similarity close to the FPV HH-1/86 strain detected in a jaguar (Panthera onca) in China. To our knowledge, this mass die-off of civets is the first evidence of disease associated with CPPV-1 infection in the subfamily Viverrinae. These findings support the multi-host range of parvovirus infection and raises awareness for CPPV-1 disease outbreaks in wildlife species.
Collapse
|
14
|
Li Y, Gordon E, Idle A, Altan E, Seguin MA, Estrada M, Deng X, Delwart E. Virome of a Feline Outbreak of Diarrhea and Vomiting Includes Bocaviruses and a Novel Chapparvovirus. Viruses 2020; 12:v12050506. [PMID: 32375386 PMCID: PMC7291048 DOI: 10.3390/v12050506] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
An unexplained outbreak of feline diarrhea and vomiting, negative for common enteric viral and bacterial pathogens, was subjected to viral metagenomics and PCR. We characterized from fecal samples the genome of a novel chapparvovirus we named fechavirus that was shed by 8/17 affected cats and identified three different feline bocaviruses shed by 9/17 cats. Also detected were nucleic acids from attenuated vaccine viruses, members of the normal feline virome, viruses found in only one or two cases, and viruses likely derived from ingested food products. Epidemiological investigation of disease signs, time of onset, and transfers of affected cats between three facilities support a possible role for this new chapparvovirus in a highly contagious feline diarrhea and vomiting disease.
Collapse
Affiliation(s)
- Yanpeng Li
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - Emilia Gordon
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC V5T1R1, Canada; (E.G.); (A.I.)
| | - Amanda Idle
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC V5T1R1, Canada; (E.G.); (A.I.)
| | - Eda Altan
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - M. Alexis Seguin
- IDEXX Reference Laboratories, Inc., West Sacramento, CA 95605, USA; (M.A.S.); (M.E.)
| | - Marko Estrada
- IDEXX Reference Laboratories, Inc., West Sacramento, CA 95605, USA; (M.A.S.); (M.E.)
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
- Correspondence: ; Tel.: +1-(415)-531-0763
| |
Collapse
|
15
|
Jenkins E, Davis C, Carrai M, Ward MP, O’Keeffe S, van Boeijen M, Beveridge L, Desario C, Buonavoglia C, Beatty JA, Decaro N, Barrs VR. Feline Parvovirus Seroprevalence Is High in Domestic Cats from Disease Outbreak and Non-Outbreak Regions in Australia. Viruses 2020; 12:v12030320. [PMID: 32188115 PMCID: PMC7150783 DOI: 10.3390/v12030320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple, epizootic outbreaks of feline panleukopenia (FPL) caused by feline parvovirus (FPV) occurred in eastern Australia between 2014 and 2018. Most affected cats were unvaccinated. We hypothesised that low population immunity was a major driver of re-emergent FPL. The aim of this study was to (i) determine the prevalence and predictors of seroprotective titres to FPV among shelter-housed and owned cats, and (ii) compare the prevalence of seroprotection between a region affected and unaffected by FPL outbreaks. FPV antibodies were detected by haemagglutination inhibition assay on sera from 523 cats and titres ≥1:40 were considered protective. Socioeconomic indices based on postcode and census data were included in the risk factor analysis. The prevalence of protective FPV antibody titres was high overall (94.3%), even though only 42% of cats were known to be vaccinated, and was not significantly different between outbreak and non-outbreak regions. On multivariable logistic regression analysis vaccinated cats were 29.94 times more likely to have protective FPV titres than cats not known to be vaccinated. Cats from postcodes of relatively less socioeconomic disadvantage were 5.93 times more likely to have protective FPV titres. The predictors identified for FPV seroprotective titres indicate targeted vaccination strategies in regions of socioeconomic disadvantage would be beneficial to increase population immunity. The critical level of vaccine coverage required to halt FPV transmission and prevent FPL outbreaks should be determined.
Collapse
Affiliation(s)
- Elizabeth Jenkins
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown 2050, Australia; (E.J.); (C.D.); (M.C.); (M.P.W.); (J.A.B.)
| | - Conor Davis
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown 2050, Australia; (E.J.); (C.D.); (M.C.); (M.P.W.); (J.A.B.)
| | - Maura Carrai
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown 2050, Australia; (E.J.); (C.D.); (M.C.); (M.P.W.); (J.A.B.)
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown 2050, Australia; (E.J.); (C.D.); (M.C.); (M.P.W.); (J.A.B.)
| | - Susan O’Keeffe
- School of Veterinary and Life Sciences, Murdoch University, Murdoch 6150, Australia
| | | | | | - Costantina Desario
- Department of Veterinary Medicine, University of Bari, Valenzano, 70121 Bari, Italy; (C.D.); (C.B.); (N.D.)
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, 70121 Bari, Italy; (C.D.); (C.B.); (N.D.)
| | - Julia A. Beatty
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown 2050, Australia; (E.J.); (C.D.); (M.C.); (M.P.W.); (J.A.B.)
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, 70121 Bari, Italy; (C.D.); (C.B.); (N.D.)
| | - Vanessa R. Barrs
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown 2050, Australia; (E.J.); (C.D.); (M.C.); (M.P.W.); (J.A.B.)
- Correspondence: ; Tel.: +61-2-9351-3437
| |
Collapse
|
16
|
Limited Intrahost Diversity and Background Evolution Accompany 40 Years of Canine Parvovirus Host Adaptation and Spread. J Virol 2019; 94:JVI.01162-19. [PMID: 31619551 DOI: 10.1128/jvi.01162-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.
Collapse
|
17
|
Zhang Q, Niu J, Yi S, Dong G, Yu D, Guo Y, Huang H, Hu G. Development and application of a multiplex PCR method for the simultaneous detection and differentiation of feline panleukopenia virus, feline bocavirus, and feline astrovirus. Arch Virol 2019; 164:2761-2768. [PMID: 31506786 PMCID: PMC7086731 DOI: 10.1007/s00705-019-04394-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 02/04/2023]
Abstract
A multiplex polymerase chain reaction (mPCR) assay was developed to detect and distinguish feline panleukopenia virus (FPV), feline bocavirus (FBoV) and feline astrovirus (FeAstV). Three pairs of primers were designed based on conserved regions in the genomic sequences of the three viruses and were used to specifically amplify targeted fragments of 237 bp from the VP2 gene of FPV, 465 bp from the NP1 gene of FBoV and 645 bp from the RdRp gene of FeAstV. The results showed that this mPCR assay was effective, because it could detect at least 2.25-4.04 × 104 copies of genomic DNA of the three viruses per μl, was highly specific, and had a good broad-spectrum ability to detect different genotypes of the targeted viruses. A total of 197 faecal samples that had been screened previously for FeAstV and FBoV were collected from domestic cats in northeast China and were tested for the three viruses using the newly developed mPCR assay. The total positive rate for these three viruses was 59.89% (118/197). From these samples, DNA from FPV, FBoV and FeAstV was detected in 73, 51 and 46 faecal samples, respectively. The mPCR testing results agreed with the routine PCR results with a coincidence rate of 100%. The results of this study show that this mPCR assay can simultaneously detect and differentiate FPV, FBoV and FeAstV and can be used as an easy, specific and efficient detection tool for clinical diagnosis and epidemiological investigation of these three viruses.
Collapse
Affiliation(s)
- Qian Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jiangting Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Shushuai Yi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guoying Dong
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Dejing Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanbing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Jilin Institute of Animal Husbandry and Veterinary Science, Changchun, 130062, Jilin, China
| | - Hailong Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
18
|
Molecular Characterization and Evolutionary Analyses of Carnivore Protoparvovirus 1 NS1 Gene. Viruses 2019; 11:v11040308. [PMID: 30934948 PMCID: PMC6520740 DOI: 10.3390/v11040308] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Carnivore protoparvovirus 1 is the etiological agent of a severe disease of terrestrial carnivores. This unique specie encompasses canine parvovirus type 2 (CPV-2) and feline panleukopenia virus (FPLV). Studies widely analyzed the main capsid protein (VP2), but limited information is available on the nonstructural genes (NS1/NS2). This paper analyzed the NS1 gene sequence of FPLV and CPV strains collected in Italy in 2009–2017, along with worldwide related sequences. Differently from VP2, only one NS1 amino-acid residue (248) clearly and constantly distinguished FPLV from CPV-2, while five possible convergent amino-acid changes were observed that may affect the functional domains of the NS1. Some synonymous mutation in NS1 were non-synonymous in NS2 and vice versa. No evidence for recombination between the two lineages was found, and the predominance of negative selection pressure on NS1 proteins was observed, with low and no overlap between the two lineages in negatively and positively selected codons, respectively. More sites were under selection in the CPV-2 lineage. NS1 phylogenetic analysis showed divergent evolution between FPLV and CPV, and strains were clustered mostly by country and year of detection. We highlight the importance of obtaining the NS1/NS2 coding sequence in molecular epidemiology investigations.
Collapse
|
19
|
Detection of parvovirus and herpesvirus DNA in the blood of feline and canine blood donors. Vet Microbiol 2018; 224:66-69. [DOI: 10.1016/j.vetmic.2018.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022]
|