1
|
Shi H, Wang L, Li G, Li D, Zhai H, Ji S, Hu Y, Lv T, Yao L. Characteristic profiles of molecular types, antibiotic resistance, antibiotic resistance genes, and virulence genes of Staphylococcus aureus isolates from caprine mastitis in China. Front Cell Infect Microbiol 2025; 15:1533844. [PMID: 40041149 PMCID: PMC11876158 DOI: 10.3389/fcimb.2025.1533844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Staphylococcus aureus is a significant pathogen in dairy animals, particularly when it infects the mammary gland; however, its prevalence among dairy goats in China remains poorly understood. This study aimed to investigate the distribution and characteristics of S. aureus isolates in dairy goats across China. A total of 515 milk samples were collected from goats diagnosed with mastitis in 14 provinces. These samples underwent bacterial isolation and identification, capsular polysaccharides typing, spa typing, antimicrobial susceptibility testing, and assessment of antimicrobial resistance and virulence gene. The findings revealed the isolation of 61 S. aureus strains. The highest prevalence rate was recorded in 2018, at 20.4% (11 out of 54 samples), while the lowest prevalence rate was noted in 2023, at 5.2% (3 out of 58 samples). Among the five regions studied, southern China exhibited the highest prevalence rate of 17.5% (10 out of 57 samples), whereas northeastern China showed the lowest rate at 8.2% (8 out of 97 samples). Capsular polysaccharide type 5 emerged as the most prevalent, accounting for 52.5%, and spa type t521 was identified most frequently, at 19.7%. Notably, 52 isolates (85.2%) demonstrated multidrug resistance, displaying resistance to three or more antibiotics. The resistance rates of S. aureus isolates were significantly high to penicillin (95.1%), followed by enrofloxacin (82.0%), kanamycin (78.7%), and levofloxacin (77.0%). Trimethoprim-sulfamethoxazole exhibited the lowest resistance rate at 11.5%. Resistance rates varied across the five different regions. Additionally, eight genes associated with resistance to six classes of antimicrobials were detected, with the blaZ gene (93.4%) being the most prevalent at 93.4%. Furthermore, nine virulence-associated genes were identified, with clfA being the most common virulence gene, present in all isolates. In conclusion, most S. aureus isolates were multiresistant with diverse resistance patterns. Those diverse antimicrobial resistance profiles associated with corresponding resistance genes (p < 0.05) were reported for the first time in S. aureus from caprine mastitis. Sulfonamides could be prioritized preferentially for the treatment of S. aureus mastitis.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Long Wang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Guoguang Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Dandan Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Hongyue Zhai
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Shidong Ji
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Yun Hu
- Henan Province Engineering Technology Research Center of Animal Disease Control and Prevention, Nanyang Vocational College of Agriculture, Nanyang, China
| | - Tingting Lv
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| |
Collapse
|
2
|
Tong X, Barkema HW, Nobrega DB, Xu C, Han B, Zhang C, Yang J, Li X, Gao J. Virulence of Bacteria Causing Mastitis in Dairy Cows: A Literature Review. Microorganisms 2025; 13:167. [PMID: 39858935 PMCID: PMC11767654 DOI: 10.3390/microorganisms13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Bovine mastitis, a prevalent disease in dairy farms, exerts a profound negative influence on both the health and productivity of dairy cattle, leading to substantial economic losses for the dairy industry. The disease is associated with different bacterial agents, primarily Gram-positive cocci (e.g., Staphylococcus spp., Streptococcus spp.) and Gram-negative bacilli (e.g., Escherichia coli, Klebsiella pneumoniae). These pathogens induce mastitis through diverse mechanisms, intricately linked to the virulence factors they carry. Despite previous research on the virulence factors of mastitis-causing bacteria in dairy cattle, there remains a significant gap in our comprehensive understanding of these factors. To bridge these gaps, this manuscript reviews and compiles research on the virulence factors of these pathogens, focusing on their roles in mammary tissue infection, immune evasion, adherence to mammary epithelial cells, and invasion and colonization of the mammary gland. These processes are analyzed in depth to provide a comprehensive framework to promote a deeper understanding of dairy pathogenic bacteria and their pathogenic mechanisms and to provide new insights into the control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Xiaofang Tong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (H.W.B.); (D.B.N.)
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Chenyibo Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jingyue Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Xiaoping Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.T.); (C.X.); (B.H.); (C.Z.); (J.Y.); (X.L.)
| |
Collapse
|
3
|
Xu Y, Luan Y, Wang R, Su Z, Wang L, Liu Y, Jiang G, Wang B. Advancing treatment strategies against MRSA: unveiling the potency of tubuloside A in targeting sortase A and mitigating pathogenicity. World J Microbiol Biotechnol 2025; 41:29. [PMID: 39789193 DOI: 10.1007/s11274-024-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 01/30/2025]
Abstract
In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics. TnA significantly impedes Staphylococcus aureus' adherence to fibrinogen, notably disrupting biofilm development and the integration of staphylococcal protein A (SpA) into the cell wall. Enhanced survival in MRSA-infected A549 cells treated with TnA was demonstrated by live-dead cell assays, confirming its efficacy. The interaction between TnA and SrtA, as indicated by fluorescence quenching and molecular docking studies, shows that TnA has a targeted mechanism of action. Notably, TnA exhibited significant efficacy in reducing MRSA pathogenicity, as demonstrated in a murine pneumonia model. Treatment with TnA resulted in a marked decrease in the bacterial load and improved survival in infected mice. This research highlights the potential of targeting specific bacterial virulence factors as an effective strategy against antibiotic-resistant pathogens and paves the way for the development of innovative antivirulence therapies.
Collapse
Affiliation(s)
- Yangming Xu
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- Jilin Province People's Hospital, Changchun, China
| | - Yanhe Luan
- Surgery Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rong Wang
- Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhengjie Su
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Jilin Province People's Hospital, Changchun, China.
| | | | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
4
|
Straub C, Taylor W, French NP, Murdoch DR, Priest P, Anderson T, Scott P. Zoonotic transmission of asymptomatic carriage Staphylococcus aureus on dairy farms in Canterbury, New Zealand. Microb Genom 2024; 10:001318. [PMID: 39630492 PMCID: PMC11616781 DOI: 10.1099/mgen.0.001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Zoonotic pathogen transmission is of growing concern globally, with agricultural intensification facilitating interactions between humans, livestock and wild animals. Staphylococcus aureus is a major human pathogen, but it also causes mastitis in dairy cattle, leading to an economic burden on the dairy industry. Here, we investigated transmission within and between cattle and humans, including potential zoonotic transmission of S. aureus isolated from cattle and humans from three dairy farms and an associated primary school in New Zealand. Nasal swabs (N=170) were taken from healthy humans. Inguinal and combined nasal/inguinal swabs were taken from healthy cattle (N=1163). Whole-genome sequencing was performed for 96 S. aureus isolates (44 human and 52 cattle). Multilocus sequence typing and assessments of antimicrobial resistance and virulence were carried out. Potential within- and across-species transmission events were determined based on single nucleotide polymorphisms (SNPs). Thirteen potential transmission clusters were detected, with 12 clusters restricted to within-species and one potential zoonotic transmission cluster (ST5). Potential transmission among cattle was mostly limited to single age groups, likely because different age groups are managed separately on farms. While the prevalence of antimicrobial resistance (AMR) was low among both bovine and human isolates, the discovery of an extended-spectrum beta-lactamase gene (bla TEM-116) in a bovine isolate was concerning. This study provides evidence around frequency and patterns of potential transmission of S. aureus on dairy farms and highlights the AMR and virulence profile of asymptomatic carriage S. aureus isolates.
Collapse
Affiliation(s)
- Christina Straub
- The Institute of Environmental Science and Research, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - William Taylor
- The Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Nigel P. French
- Tāwharau Ora, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David R. Murdoch
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Patricia Priest
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Trevor Anderson
- Microbiology Department, Canterbury Health Laboratories, Te Whatu Ora – Health New Zealand Waitaha, Christchurch, New Zealand
| | - Pippa Scott
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
5
|
Sezzi E, Fanelli R, Gobbi D, Scandurra P, Mannucci V, Usai I, Ragionieri G, Mezher Z, Fichi G. An Investigation of Virulence Genes of Staphylococcus aureus in Autologous Vaccines Against Sheep Mastitis. Animals (Basel) 2024; 14:3172. [PMID: 39595225 PMCID: PMC11591023 DOI: 10.3390/ani14223172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Staphylococcus aureus is well known to be the primary causal agent of clinical or subclinical mastitis in dairy sheep. The production of virulence factors allows S. aureus strains to cause mastitis. In the present study, 96 strains isolated from dairy sheep farms used for the production of autologous vaccines were tested for enterotoxin and hemolysin genes by PCR. In addition, 14 strains isolated from half udders of ewes with subclinical mastitis belonging to a single farm were also tested for the same genes. The phylogenetic trees were constructed, and spatial analysis was performed. Overall, 20 gene patterns were identified, but 43.64% of the tested strains showed the same profile (sec+, sel+, hla+, hld+, hlgAC+). Considering only the enterotoxin genes, four profiles were identified while the evaluation of the hemolysin genes revealed the presence of 12 gene patterns. In the farm with subclinical mastitis, six gene profiles were found. Spatial analysis of the isolated strains and their virulence genes did not show a specific pattern. The present study highlights the importance of identifying and analyzing virulence genes of S. aureus strains involved in dairy sheep mastitis, and the presence of different strains in the same farm.
Collapse
Affiliation(s)
- Erminia Sezzi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Lazio Nord, Strada Terme 4/a, 01100 Viterbo, Italy; (E.S.); (R.F.); (D.G.)
| | - Rita Fanelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Lazio Nord, Strada Terme 4/a, 01100 Viterbo, Italy; (E.S.); (R.F.); (D.G.)
| | - Deborah Gobbi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Lazio Nord, Strada Terme 4/a, 01100 Viterbo, Italy; (E.S.); (R.F.); (D.G.)
| | - Paolo Scandurra
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Toscana Sud, Via Toselli 12, 53100 Siena, Italy; (P.S.); (V.M.); (I.U.); (G.R.); (Z.M.)
| | - Valerio Mannucci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Toscana Sud, Via Toselli 12, 53100 Siena, Italy; (P.S.); (V.M.); (I.U.); (G.R.); (Z.M.)
| | - Isabella Usai
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Toscana Sud, Via Toselli 12, 53100 Siena, Italy; (P.S.); (V.M.); (I.U.); (G.R.); (Z.M.)
| | - Giovanni Ragionieri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Toscana Sud, Via Toselli 12, 53100 Siena, Italy; (P.S.); (V.M.); (I.U.); (G.R.); (Z.M.)
| | - Ziad Mezher
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Toscana Sud, Via Toselli 12, 53100 Siena, Italy; (P.S.); (V.M.); (I.U.); (G.R.); (Z.M.)
| | - Gianluca Fichi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, UOT Toscana Sud, Via Toselli 12, 53100 Siena, Italy; (P.S.); (V.M.); (I.U.); (G.R.); (Z.M.)
| |
Collapse
|
6
|
Sharifi A, Mahmoudi P, Sobhani K. The prevalence of adhesion and biofilm genes in Staphylococcus aureus isolates from bovine mastitis: A comprehensive meta-analysis. Vet Med Sci 2024; 10:e31378. [PMID: 38358017 PMCID: PMC10867877 DOI: 10.1002/vms3.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Mastitis poses significant challenges to the dairy industry, resulting in economic losses and increased veterinary expenses. Staphylococcus aureus is a common cause of bovine mastitis, relying on efficient adhesion and biofilm formation for infection. OBJECTIVES This study aimed to employ meta-analysis to investigate the occurrence of adhesion and biofilm genes in S. aureus associated with bovine mastitis, as documented in previous studies. METHODS This meta-analysis was done according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses, examined 22 eligible articles and revealed varying prevalence rates of adhesion and biofilm genes in S. aureus isolates from bovine mastitis. RESULTS Among the genes, clfB showed the highest prevalence (p-estimate = 0.905), followed by fnbA (p-estimate = 0.689) and fnbB (p-estimate = 0.502). The icaA and icaD genes also showed a relatively high prevalence (p-estimate = 0.694 and 0.814, respectively). Conversely, the biofilm-associated proteins gene had the lowest prevalence (p-estimate = 0.043). Subgroup analyses based on mastitis types and publication years revealed no significant differences in gene prevalence. Insufficient data hindered the analysis of fib, sasG , eno and bbp genes. CONCLUSION This study provides valuable insights for managing S. aureus-induced bovine mastitis. Additionally, larger-scale research, particularly on less-studied genes, is necessary to comprehend the molecular roles of adhesion and biofilm genes in S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Aram Sharifi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Peyman Mahmoudi
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| | - Keyvan Sobhani
- Department of Animal ScienceFaculty of AgricultureUniversity of KurdistanSanandajKurdistanIran
| |
Collapse
|
7
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
8
|
Shahid M, Hussain R, Nawaz Z, Aslam B, Ahmad MZ, Siddique AB, Ahsan H, Fatima A, Khan I, Mustafa B, Iqbal R, Al Syaad KM, Shami A. Occurrence of Virulence Genes among Methicillin-Resistant Staphylococcus aureus Isolated from Subclinical Bovine Mastitis. ACS OMEGA 2023; 8:38111-38117. [PMID: 37867719 PMCID: PMC10586173 DOI: 10.1021/acsomega.3c04206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The occurrence of Staphylococcus aureus-induced subclinical mastitis holds significant implications for public health. This specific microorganism possesses a wide array of pathogenic factors that enable it to adhere to, colonize, invade, and infect the host. The objective of the current study was to assess the prevalence of S. aureus, determine antimicrobial resistance patterns, and identify virulence genes of methicillin-resistant S. aureus (MRSA) strains responsible for subclinical mastitis in bovines. A total of 249 milk samples were collected from various farms in the district of Faisalabad. The presence of subclinical mastitis was assessed by using the California mastitis test. Positive milk samples (n = 100) were then subjected to standard microbiological techniques for isolation and identification of S. aureus. Antibiogram analysis was conducted by using the disc diffusion method to assess antimicrobial resistance. For the molecular detection of S. aureus and its virulence genes, the polymerase chain reaction (PCR) was performed with species-specific primers. The overall prevalence of S. aureus was found to be 40% (40/100), which was confirmed through molecular detection of the nuc gene in 40/40 (100%) of samples using PCR. Antimicrobial susceptibility tests indicated the highest susceptibility to vancomycin, sulfamethoxazole/trimethoprim, erythromycin, gentamicin, ciprofloxacin, and chloramphenicol, while the highest resistance rate was observed against tetracycline. Additionally, 30% of samples (12/40) tested positive for methicillin resistance. PCR analysis revealed that 100% of MRSA-tested isolates harbored the mecA and clfA genes. Furthermore, the MRSA isolates showed the presence of pvl, hla, hlb, sec, icaA, icaD, icaB, and icaC genes at rates of 92, 75, 67, 42, 42, 75, 8, and 25%, respectively. These findings underscore the need for stricter aseptic control in dairy farms to prevent disease transmission between animals and ensure the production of safe and uncontaminated food for human consumption.
Collapse
Affiliation(s)
- Maryam Shahid
- Institute
of Microbiology, Government College University, Faisalabad 38040, Pakistan
| | - Riaz Hussain
- Department
of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zeeshan Nawaz
- Institute
of Microbiology, Government College University, Faisalabad 38040, Pakistan
| | - Bilal Aslam
- Institute
of Microbiology, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Zishan Ahmad
- Department
Veterinary Pathology, Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Abu Baker Siddique
- Institute
of Microbiology, Government College University, Faisalabad 38040, Pakistan
| | - Hira Ahsan
- Institute
of Microbiology, Government College University, Faisalabad 38040, Pakistan
| | - Aiman Fatima
- Institute
of Microbiology and Molecular Genetics University of the Punjab Lahore, Lahore 54590 Pakistan
| | - Iahtasham Khan
- Section
of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore Sub-Campus, Jhang 35200, Pakistan
| | - Bilal Mustafa
- University
of Oxford, Department of Biology, Wildlife
Conservation Research Unit (WildCRU), Oxford Ox13 5QL, U.K.
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan
| | - Khalid M. Al Syaad
- Biology
Department, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Ashwag Shami
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
9
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
10
|
Yang F, Shi W, Meng N, Zhao Y, Ding X, Li Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front Microbiol 2023; 14:1190790. [PMID: 37455736 PMCID: PMC10344457 DOI: 10.3389/fmicb.2023.1190790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common pathogens causing bovine mastitis worldwide. In this study, we investigated the antimicrobial resistance and virulence profiles of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Antimicrobial resistance was determined by disc diffusion combined with E-test method. Genes of antimicrobial resistance and virulence factors were determined by PCR. A total of 332 staphylococcal isolates were confirmed from 1,519 mastitic milk samples, including 172 S. aureus and 160 CNS isolates. Fifteen CNS species were identified, with S. chromogenes being the most frequent found (49.4%), followed by S. equorum (13.8%). Noticeably, 2 S. agnetis isolates were found among the CNS isolates. To our knowledge, this is the first report documenting the presence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates showed high resistance against penicillin, followed by erythromycin and tetracycline. Multidrug resistance was found in 11.6 and 16.3% of the S. aureus and CNS isolates, respectively. Resistance to penicillin was attributed to the presence of blaZ, erythromycin resistance to ermC (alone or combined with ermB) and tetracycline resistance to tetK (alone or combined with tetM). Notably, one S. equorum isolate and one S. saprophyticus isolate were both methicillin-resistant and mecA positive. Additionally, all S. aureus isolates carried the adhesin genes fnbpA, clfA, clfB, and sdrC, and most of them contained cna and sdrE. Conversely, only a few of the CNS isolates carried clfA, cna, and fnbA. Regarding toxin genes, all S. aureus isolates harbored hlb, and most of them were hlg positive. The lukE-lukD, lukM, sec, sed, sei, sen, seo, tst, seg, seh, and sej were also detected with low frequencies. However, no toxin genes were observed in CNS isolates. This study reveals high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. The findings for the genetic determinants of antimicrobial resistance and virulence factor provide valuable information for control and prevention of staphylococcal bovine mastitis.
Collapse
Affiliation(s)
- Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Wenli Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Majumder S, Sackey T, Viau C, Park S, Xia J, Ronholm J, George S. Genomic and phenotypic profiling of Staphylococcus aureus isolates from bovine mastitis for antibiotic resistance and intestinal infectivity. BMC Microbiol 2023; 23:43. [PMID: 36803552 PMCID: PMC9940407 DOI: 10.1186/s12866-023-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.
Collapse
Affiliation(s)
- Satwik Majumder
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Trisha Sackey
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Charles Viau
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Soyoun Park
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jianguo Xia
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Jennifer Ronholm
- grid.14709.3b0000 0004 1936 8649Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada ,grid.14709.3b0000 0004 1936 8649Department of Animal Science, Macdonald Campus, McGill University, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9 Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Macdonald-Stewart Building, Room-1039, 21, 111 Lakeshore Ste Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
12
|
Komodromos D, Kotzamanidis C, Giantzi V, Pappa S, Papa A, Zdragas A, Angelidis A, Sergelidis D. Prevalence, Infectious Characteristics and Genetic Diversity of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) in Two Raw-Meat Processing Establishments in Northern Greece. Pathogens 2022; 11:1370. [PMID: 36422621 PMCID: PMC9697755 DOI: 10.3390/pathogens11111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
In the present study, we investigated the isolation frequency, the genetic diversity, and the infectious characteristics of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from the incoming meat and the meat products, the environment, and the workers' nasal cavities, in two meat-processing establishments in northern Greece. The isolated S. aureus strains were examined for their resistance to antimicrobials, carriage of the mecA and mecC genes, carriage of genes encoding for the production of nine staphylococcal enterotoxins, carriage of the Panton-Valentine Leukocidin and Toxic Shock Syndrome genes, and the ability to form biofilm. The genetic diversity of the isolates was evaluated using Pulsed Field Gel Electrophoresis (PFGE) and spa typing. S. aureus was isolated from 13.8% of the 160 samples examined, while only one sample (0.6%) was contaminated by MRSA carrying the mecA gene. The evaluation of the antimicrobial susceptibility of the isolates revealed low antimicrobial resistance. The higher resistance frequencies were observed for penicillin (68.2%), amoxicillin/clavulanic acid (36.4%) and tetracycline (18.2%), while 31.8% of the isolates were sensitive to all antimicrobials examined. Multidrug resistance was observed in two isolates. None of the isolates carried the mecC or lukF-PV genes, and two isolates (9.1%) harbored the tst gene. Eight isolates (36.4%) carried the seb gene, one carried the sed gene, two (9.1%) carried both the sed and sei genes, and one isolate (4.5%) carried the seb, sed and sei genes. Twenty-one (95.5%) of the isolates showed moderate biofilm production ability, while only one (4.5%) was characterized as a strong biofilm producer. Genotyping of the isolates by PFGE indicates that S. aureus from different meat-processing establishments represent separate genetic populations. Ten different spa types were identified, while no common spa type isolates were detected within the two plants. Overall, our findings emphasize the need for the strict application of good hygienic practices at the plant level to control the spread of S. aureus and MRSA to the community through the end products.
Collapse
Affiliation(s)
- Dimitrios Komodromos
- Laboratory of Food Hygiene-Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Charalampos Kotzamanidis
- Hellenic Agricultural Organization—DIMITRA, Veterinary Research Institute of Thessaloniki, 57001 Thermi, Greece
| | - Virginia Giantzi
- Hellenic Agricultural Organization—DIMITRA, Veterinary Research Institute of Thessaloniki, 57001 Thermi, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zdragas
- Hellenic Agricultural Organization—DIMITRA, Veterinary Research Institute of Thessaloniki, 57001 Thermi, Greece
| | - Apostolos Angelidis
- Laboratory of Safety and Quality of Milk and Dairy Products, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Daniel Sergelidis
- Laboratory of Food Hygiene-Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Wang X, Ma Q, Niu X, Liu Z, Kang X, Mao Y, Li N, Wang G. Inhibitory Effect of Andrographis paniculata Lactone on Staphylococcus aureus α-Hemolysin. Front Pharmacol 2022; 13:891943. [PMID: 35571108 PMCID: PMC9091351 DOI: 10.3389/fphar.2022.891943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of andrographolide (AP) on the hemolytic capacity of Staphylococcus aureus (S. aureus) isolated from our region. AP is a labdane diterpenoid isolated from the stem and leaves of Andrographis paniculata. The hla gene from 234 S. aureus strains and the quality control standard strain ATCC29213 in dairy cows in some areas of Ningxia was analyzed. Evolutionary analysis, homology modeling, and functional enrichment annotation of α-hemolysin Hla detected from our region were performed through bioinformatics. The hemolytic ability of S. aureus isolates from the region was examined using the hemolysis test, and the effect of AP on S. aureus was quantified. Moreover, the effect of AP on the transcript levels of hla and genes highly related to hla (i.e., clfA and fnbA) was examined through fluorescence quantitative PCR. The mode of action of AP on the detected Hla was analyzed through molecular docking and dynamic simulation. The results showed that S. aureus in our region has a high rate of hla carriage. The hemolytic activity of strains NM98 and XF10 was significant, and ATCC29213 also exhibited some hemolytic activity. AP could inhibit the expression of Hla and its related proteins by downregulating hla, clfA, and fnbA transcript levels, which in turn attenuated the S. aureus hemolytic activity. Meanwhile, the AP molecule can form three hydrogen bonds with residues ASN105, SER106, and THR155 of Hla protein; bind with PRO103 through alkyl intermolecular forces; and form carbon hydrogen bonds with LYS154, reflecting that the AP molecule has a comparatively ideal theoretical binding activity with Hla protein. Among them, PRO103 and LYS154 are highly conserved in Hla protein molecules and play pivotal roles in the biological functions of Hla, and their binding may affect these functions. Their binding may also prevent the conformational transition of Hla from a monomer to an oligomer, thus inhibiting Hla hemolytic activity. This study offers a molecular basis for use of AP as an antivirulence drug and new ideas for developing novel drugs against S. aureus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
14
|
Brahma U, Suresh A, Murthy S, Bhandari V, Sharma P. Antibiotic Resistance and Molecular Profiling of the Clinical Isolates of Staphylococcus aureus Causing Bovine Mastitis from India. Microorganisms 2022; 10:833. [PMID: 35456882 PMCID: PMC9024461 DOI: 10.3390/microorganisms10040833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic bacterium known to cause severe infections in humans and animals. It is one of the major bacteria causing subclinical and clinical mastitis, leading to significant economic losses in livestock industry. In this study, we have isolated and characterized 80 S. aureus clinical isolates from mastitis-infected animals. The analysis of antimicrobial susceptibility, molecular typing, biofilm production and genetic determinants was performed to understand molecular and phenotypic features of the prevalent pathogen. Our antibiotic susceptibility assays showed the majority (57.5%) of isolates to be multidrug-resistant (MDR), 38.75% resistant and 3.75% sensitive. We found 25% isolates to be methicillin-resistant S. aureus (MRSA) based on oxacillin susceptibility assays. In the MRSA group, maximum isolates (95%) were MDR compared to 45% in MSSA. Multilocus sequence typing (MLST) revealed 15 different STs; ST-97 was the most common ST, followed by ST-2459, ST-1, ST-9 and ST-72. The agr typing showed agr-I as the most common type, followed by type II and III. Most isolates developed biofilms, which ranged in intensity from strong to weak. The presence or absence of lukS, a virulence-related gene, was found to have a substantial relationship with the biofilm phenotype. However, no significant association was found between biofilm formation and antimicrobial resistance or other virulence genes. We also found four MRSA isolates that were mecA negative based on molecular assays. Our findings reveal the prevalence of multidrug-resistant S. aureus clinical isolates in India that are biofilm positive and have critical genetic factors for disease pathogenesis causing bovine mastitis. This study emphasizes the need for the comprehensive surveillance of S. aureus and other mastitis-causing pathogens to control the disease effectively.
Collapse
Affiliation(s)
- Umarani Brahma
- Department of Infectious Diseases, National Institute of Animal Biotechnology, Hyderabad 500032, India; (U.B.); (A.S.); (S.M.)
| | - Akash Suresh
- Department of Infectious Diseases, National Institute of Animal Biotechnology, Hyderabad 500032, India; (U.B.); (A.S.); (S.M.)
- Manipal Academy of Higher Education, Manipal 576104, India
| | - Shweta Murthy
- Department of Infectious Diseases, National Institute of Animal Biotechnology, Hyderabad 500032, India; (U.B.); (A.S.); (S.M.)
| | - Vasundhra Bhandari
- Department of Infectious Diseases, National Institute of Animal Biotechnology, Hyderabad 500032, India; (U.B.); (A.S.); (S.M.)
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paresh Sharma
- Department of Infectious Diseases, National Institute of Animal Biotechnology, Hyderabad 500032, India; (U.B.); (A.S.); (S.M.)
| |
Collapse
|
15
|
Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Vet Res 2022; 18:115. [PMID: 35331225 PMCID: PMC8944054 DOI: 10.1186/s12917-022-03197-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
Staphylococcus aureus is a leading cause of bovine mastitis worldwide. Despite some improved understanding of disease pathogenesis, progress towards new methods for the control of intramammary infections (IMI) has been limited, particularly in the field of vaccination. Although herd management programs have helped to reduce the number of clinical cases, S. aureus mastitis remains a major disease burden. This review summarizes the past 16 years of research on bovine S. aureus population genetics, and molecular pathogenesis that have been conducted worldwide. We describe the diversity of S. aureus associated with bovine mastitis and the geographical distribution of S. aureus clones in different continents. We also describe studies investigating the evolution of bovine S. aureus and the importance of host-adaptation in its emergence as a mastitis pathogen. The available information on the prevalence of virulence determinants and their functional relevance during the pathogenesis of bovine mastitis are also discussed. Although traits such as biofilm formation and innate immune evasion are critical for the persistence of bacteria, the current understanding of the key host-pathogen interactions that determine the outcome of S. aureus IMI is very limited. We suggest that greater investment in research into the genetic and molecular basis of bovine S. aureus pathogenesis is essential for the identification of novel therapeutic and vaccine targets.
Collapse
|
16
|
Wei MJ, Wang ZN, Yang Y, Zhang SJ, Tang H, Li H, Bi CL. Selenium Attenuates S. aureus-Induced Inflammation by Regulation TLR2 Signaling Pathway and NLRP3 Inflammasome in RAW 264.7 Macrophages. Biol Trace Elem Res 2022; 200:761-767. [PMID: 33754304 DOI: 10.1007/s12011-021-02676-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the effects of selenium (Se) on the expression of Toll-like receptor (TLR) 2 and pyrin domain-containing protein (NLRP)3 inflammasome in macrophages infected by Staphylococcus aureus (S. aureus). RAW 264.7 macrophages were treated with 2 μmol/L Na2SeO3 for 12 h before infection with S. aureus for 2 h. Through Western blot, qRT-PCR, and ELISA analysis, the core molecules of TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages were detected. Results showed that Se significantly reduced the elevated mRNA expression of TLR2, myeloid differentiation factor-88 (Myd88), NLRP3, Caspase-recruitment domain (ASC), and Caspase-1 induced by S. aureus. Furthermore, compared with I group, the protein expression of TLR2, Myd88, NLRP3, ASC, and Caspase-1 were suppressed in T group. In addition, the mRNA and protein expression of interleukin-1 beta (IL-1β) induced by S. aureus were also decreased after Se treatment. In conclusion, Se inhibits S. aureus-induced inflammation by suppressing the activation of the TLR2 signaling pathway and NLRP3 inflammasome in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Ming-Ji Wei
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Zhen-Nan Wang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Yan Yang
- Linyi Academy of Agricultural Sciences, Linyi, 276012, Shandong, China
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
- Drug Micro Vector Engineering Center of Linyi, Shuangling Road, Linyi, 276005, Shandong, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China
| | - Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong, China.
| |
Collapse
|
17
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
18
|
The in vitro and in vivo anti-virulent effect of organic acid mixtures against Eimeria tenella and Eimeria bovis. Sci Rep 2021; 11:16202. [PMID: 34376718 PMCID: PMC8355357 DOI: 10.1038/s41598-021-95459-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.
Collapse
|
19
|
Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41:107-136. [PMID: 33509059 PMCID: PMC7906113 DOI: 10.1080/01652176.2021.1882713] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhavani Puvvala
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Balta I, Marcu A, Linton M, Kelly C, Gundogdu O, Stef L, Pet I, Ward P, Deshaies M, Callaway T, Sopharat P, Gradisteanu-Pircalabioru G, Corcionivoschi N. Mixtures of natural antimicrobials can reduce Campylobacter jejuni, Salmonella enterica and Clostridium perfringens infections and cellular inflammatory response in MDCK cells. Gut Pathog 2021; 13:37. [PMID: 34099034 PMCID: PMC8182910 DOI: 10.1186/s13099-021-00433-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC® 13124 invasion of Madin–Darby Canine Kidney cells (MDCK). Results Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1β, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide (H2O2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). Conclusion The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate). Moreover, we provide further insights into pathogen invasion mechanisms through restoration of cellular structures and describe their ability to block the ERK–MAPK kinase pathway responsible for inflammatory cytokine release
Collapse
Affiliation(s)
- Igori Balta
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK. .,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania. .,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania.
| | - Adela Marcu
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania.
| | - Mark Linton
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Carmel Kelly
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania
| | | | | | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | | | | | - Nicolae Corcionivoschi
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK. .,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania. .,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania.
| |
Collapse
|
21
|
Integrative Analysis of miRNA and mRNA Expression Profiles in Mammary Glands of Holstein Cows Artificially Infected with Staphylococcus aureus. Pathogens 2021; 10:pathogens10050506. [PMID: 33922375 PMCID: PMC8145100 DOI: 10.3390/pathogens10050506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus- induced mastitis is one of the most intractable problems for the dairy industry, which causes loss of milk yield and early slaughter of cows worldwide. Few studies have used a comprehensive approach based on the integrative analysis of miRNA and mRNA expression profiles to explore molecular mechanism in bovine mastitis caused by S. aureus. In this study, S. aureus (A1, B1 and C1) and sterile phosphate buffered saline (PBS) (A2, B2 and C2) were introduced to different udder quarters of three individual cows, and transcriptome sequencing and microarrays were utilized to detected miRNA and gene expression in mammary glands from the challenged and control groups. A total of 77 differentially expressed microRNAs (DE miRNAs) and 1625 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple DEGs were enriched in significant terms and pathways associated with immunity and inflammation. Integrative analysis between DE miRNAs and DEGs proved that miR-664b, miR-23b-3p, miR-331-5p, miR-19b and miR-2431-3p were potential factors regulating the expression levels of CD14 Molecule (CD14), G protein subunit gamma 2 (GNG2), interleukin 17A (IL17A), collagen type IV alpha 1 chain (COL4A1), microtubule associated protein RP/EB family member 2 (MAPRE2), member of RAS oncogene family (RAP1B), LDOC1 regulator of NFKB signaling (LDOC1), low-density lipoprotein receptor (LDLR) and S100 calcium binding protein A9 (S100A9) in bovine mastitis caused by S. aureus. These findings could enhance the understanding of the underlying immune response in bovine mammary glands against S. aureus infection and provide a useful foundation for future application of the miRNA–mRNA-based genetic regulatory network in the breeding cows resistant to S. aureus.
Collapse
|
22
|
The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Liu Y, Zheng X, Xu L, Tong P, Zhu M, Peng B, Yao G. Prevalence, Antimicrobial Resistance, and Molecular Characterization of Staphylococcus aureus Isolated from Animals, Meats, and Market Environments in Xinjiang, China. Foodborne Pathog Dis 2021; 18:718-726. [PMID: 33534639 DOI: 10.1089/fpd.2020.2863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus has been recognized as an important foodborne pathogen. However, knowledge about the epidemiology and genetic characteristics of S. aureus in the meat production chain from farm to market is limited. The aim of this study was to investigate the genetic characteristics of S. aureus in animal samples isolated from Xinjiang province farms and farmer' markets, by determining staphylococcal protein A (spa) repeat region and virulence factor typing, and by assessment of antimicrobial resistance. Out of 1324 samples, 128 (9.7%) were positive for S. aureus, 26 (2.0%) of them were identified as methicillin-resistant S. aureus (MRSA) and 88 (6.6%) of them were identified as vancomycin-resistant S. aureus (VRSA). Antimicrobial resistance was determined using the disk diffusion method. S. aureus isolates showed resistance to penicillin G (98.4%), clarithromycin (69.5%), erythromycin (69.5%), vancomycin (68.8%), and tetracycline (67.2%). A total of 80.4% of isolates showed resistance to three or more antimicrobial classes. PCR was used to detect ten virulence genes such as the enterotoxin (sea, seb, and sec), hemolysin (hla and hlb), clumping factor (clfA), and fibronectin-binding proteins A and B (fnbA and fnbB). Our study showed that isolates harbored two or seven virulence genes. All strains encode hla and clfA, and half of them encode hlb and enterotoxin genes. The spa typing results showed that the 128 isolates were grouped into 32 spa types. The main spa types were t127 (22.7%), t2592 (12.5%), t437 (10.9%), and t2616 (10.9%). Notably, isolates of t437 type accounted for 46.2% of the MRSA. Our data indicate that meats in the slaughterhouse and farmers' markets were contaminated with S. aureus. S. aureus virulence genes and spa types were diverse, and its antibiotic resistance was serious. The presence of MRSA and VRSA represents potential public health risks and warrants further investigation regarding the driving factors of such resistance and their transmission to humans.
Collapse
Affiliation(s)
- Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Lan Xu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Mingyue Zhu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Bin Peng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
24
|
Bi CL, Zhang SJ, Shen YZ, Pauline M, Li H, Tang H. Selenium Plays an Anti-Inflammatory Role by Regulation NLRP3 Inflammasome in Staphylococcus aureus-Infected Mouse Mammary Gland. Biol Trace Elem Res 2021; 199:604-610. [PMID: 32436066 DOI: 10.1007/s12011-020-02166-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an essential micronutrient that plays an important role in immunity. However, the mechanism that Selenium modulates mastitis is not fully clear. In this experiment, we investigated whether selenium can inhibit the activation of the NLRP3 inflammasome in a mouse model of Staphylococcus aureus-induced mastitis. Eighty BALB/c female mice were fed with experimental Selenium deficiency basal diet for 2 weeks to achieve the purpose of selenium consumption until pregnancy. Pregnant mice were randomly divided into four groups (control group; selenium supplement group; Staphylococcus aureus infection group and Staphylococcus aureus infection after selenium supplement group). Twenty-four hours after challenging, all mice were euthanized and mammary tissue samples were aseptically collected. Through pathological staining, western blot analysis, real-time fluorescence quantitative polymerase chain reaction analysis, and enzyme-linked immunosorbent assay, the regulation effect of Selenium on NLRP3 inflammasome was detected. The result showed that compared with the control group, selenium significantly inhibited the expression of NLRP3, ASC, Caspase-1, Caspase-1 p20, and Pro-IL-1β (p < 0.01). Meanwhile the mRNA expression and release of IL-1β was suppressed in the treatment group compared with Staphylococcus aureus infection group (p < 0.01). Therefore, these results suggest that dietary selenium can attenuate Staphylococcus aureus mastitis by inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China.
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China.
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| | - Yi-Zhao Shen
- College of animal science and technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, China
| | - Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| |
Collapse
|
25
|
Chenouf NS, Mama OM, Messaï CR, Ruiz-Ripa L, Fernández-Fernández R, Carvalho I, Zitouni A, Hakem A, Torres C. Detection of methicillin-resistant coagulase-negative staphylococci and PVL/mecA genes in cefoxitin-susceptible Staphylococcus aureus (t044/ST80) from unpasteurized milk sold in stores in Djelfa, Algeria. J Dairy Sci 2021; 104:2684-2692. [PMID: 33455787 DOI: 10.3168/jds.2020-19270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023]
Abstract
This study was designed to determine antimicrobial resistance phenotypes and genotypes and virulence factors in Staphylococcus aureus and coagulase-negative staphylococci (CNS) in unpasteurized milk sold in Djelfa, Algeria. Eighty-two unpasteurized cow milk samples were randomly obtained from 82 retail stores in Djelfa and tested to detect staphylococci. Species were identified by biochemical tests and MALDI-TOF. Antimicrobial resistance phenotypes and genotypes were determined by disk diffusion test, PCR, and sequencing. The Staph. aureus isolates were subjected to spa typing, multilocus sequence typing, and detection of virulence genes and the scn gene by PCR and sequencing. Forty-five (54.9%) milk samples were contaminated by staphylococci and 45 isolates were recovered: 10 Staph. aureus (12.2% of total samples) and 35 CNS (42.7%). Resistance to penicillin (blaZ), tetracycline (tetL/tetK), and erythromycin (ermB/msrA/ermC) were the most common phenotypes (genotypes). Three CNS were methicillin-resistant and all were mecA-positive. The Staph. aureus isolates were ascribed to the following lineages [spa type/sequence type/associated clonal complex (number of isolates)]: t267/ST479/CC479 (n = 6), t1510/ST5651/CC45 (n = 1), t359/ST97/CC97/ (n = 1), t346/ST15/CC15 (n = 1), and t044/ST80 (n = 1). The mecA gene was detected in the cefoxitin-susceptible t044/ST80 isolate and co-harbored the lukF/lukS-PV and scn genes. The detection of mecA-PVL-positive Staph. aureus, methicillin-resistant CNS, and multidrug-resistant staphylococcal species indicates a potentially serious health issue and reveals that unpasteurized milk sold in Djelfa city could be a potential vehicle for pathogenic and antimicrobial-resistant staphylococci.
Collapse
Affiliation(s)
- Nadia Safia Chenouf
- Laboratoire d'Exploration et de Valorisation des Ecosystèmes Steppiques, BP3117, University of Djelfa, 17000 Algeria; Faculté des Sciences de la Nature et de la Vie, BP3117, University of Djelfa, 17000 Algeria; Laboratoire de Biologie des Systèmes Microbiens (LBSM), BP92, 16050, Ecole Normale Supérieure de Kouba, Algiers, Algeria; Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Olouwafemi Mistourah Mama
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Chafik Redha Messaï
- Laboratoire de Santé et Productions Animales, Rue Issad Abbes, Oued Smar 16000, Ecole Supérieure Nationale Vétérinaire, Algiers, Algeria
| | - Laura Ruiz-Ripa
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Rosa Fernández-Fernández
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Isabel Carvalho
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain; University of Trás-os-Montes e Alto Douro (UTAD), 5000 Vila Real, Portugal
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), BP92, 16050, Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Ahcène Hakem
- Laboratoire d'Exploration et de Valorisation des Ecosystèmes Steppiques, BP3117, University of Djelfa, 17000 Algeria; Center of Research in Agropastoralism, Djelfa, 17000, Algeria
| | - Carmen Torres
- Area Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, 26006 Logroño, Spain.
| |
Collapse
|
26
|
Liu K, Tao L, Li J, Fang L, Cui L, Li J, Meng X, Zhu G, Bi C, Wang H. Characterization of Staphylococcus aureus Isolates From Cases of Clinical Bovine Mastitis on Large-Scale Chinese Dairy Farms. Front Vet Sci 2020; 7:580129. [PMID: 33426015 PMCID: PMC7793989 DOI: 10.3389/fvets.2020.580129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022] Open
Abstract
Bovine mastitis is a prevalent disease that causes serious economic problems globally in the dairy industry. Staphylococcus aureus is an important pathogen of bovine mastitis. This study was conducted to characterize S. aureus isolates from clinical bovine mastitis cases in large-scale dairy herds in China. S. aureus was isolated from 624 clinical mastitis cases and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In total, 62 S. aureus isolates were obtained. Cluster analysis, genetic diversity, quantification of biofilm formation, antimicrobial resistance, and detection of virulence genes were performed on these isolates of S. aureus. Eight isolates harbored the mecA gene and were sensitive to oxacillin. MALDI-TOF MS cluster analysis revealed that the 62 isolates were divided into three major clusters (I, II, III) and eight main groups (A–H) at the distance level of 700. The agr II was the most prevalent (56.5%). The 62 S. aureus isolates were assigned to seven spa types. The most common spa type was t529(58.1%), followed by t2196 (14.5%), t518 (14.5%), t571(6.5%), t034 (3.2%), t2734 (1.6%), and t730 (1.6%). Five STs were identified from seven representative isolates as follows: ST630/CC8, ST97/CC97, ST50, ST398, and ST705. All isolates had the ability to form biofilm. Antimicrobial resistance was most frequently observed to ciprofloxacin (29%), followed by penicillin (24.2%), and streptomycin (9.6%). All isolates harbored the fnbA, clfB (100%), icaA, and icaD genes. This study provides the basis for the development of bovine mastitis prevention program on large-scale dairy farms.
Collapse
Affiliation(s)
- Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Luyao Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Li Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| | - Chongliang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
27
|
G. Abril A, G. Villa T, Barros-Velázquez J, Cañas B, Sánchez-Pérez A, Calo-Mata P, Carrera M. Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins (Basel) 2020; 12:toxins12090537. [PMID: 32825515 PMCID: PMC7551672 DOI: 10.3390/toxins12090537] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus constitutes a major food-borne pathogen, as well as one of the main causative agents of mastitis in dairy ruminants. This pathogen can produce a variety of extracellular toxins; these include the shock syndrome toxin 1 (TSST-1), exfoliative toxins, staphylococcal enterotoxins (SE), hemolysins, and leukocidins. S. aureus expresses many virulence proteins, involved in evading the host defenses, hence facilitating microbial colonization of the mammary glands of the animals. In addition, S. aureus exotoxins play a role in the development of both skin infections and mastitis. Indeed, if these toxins remain in dairy products for human consumption, they can cause staphylococcal food poisoning (SFP) outbreaks. As a result, there is a need for procedures to identify the presence of exotoxins in human food, and the methods used must be fast, sensitive, reliable, and accurate. It is also essential to determine the best medical therapy for human patients suffering from S. aureus infections, as well as establishing the relevant veterinary treatment for infected ruminants, to avoid economic losses in the dairy industry. This review summarizes the role of S. aureus toxins in the development of mastitis in ruminants, their negative effects in the food and dairy industries, and the different methods used for the identification of these toxins in food destined for human consumption.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Correspondence: (T.G.V.); (M.C.)
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Benito Cañas
- Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
- Correspondence: (T.G.V.); (M.C.)
| |
Collapse
|
28
|
Genomic Analysis of Bovine Staphylococcus aureus Isolates from Milk To Elucidate Diversity and Determine the Distributions of Antimicrobial and Virulence Genes and Their Association with Mastitis. mSystems 2020; 5:5/4/e00063-20. [PMID: 32636332 PMCID: PMC7343304 DOI: 10.1128/msystems.00063-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus causes persistent clinical and subclinical bovine intramammary infections (IMI) worldwide. However, there is a lack of comprehensive information regarding genetic diversity, the presence of antimicrobial resistance (AMR), and virulence genes for S. aureus in bovine milk in Canada. Here, we performed whole-genome sequencing (WGS) of 119 Canadian bovine milk S. aureus isolates and determined they belonged to 8 sequence types (ST151, ST352, ST351, ST2187, ST2270, ST126, ST133, and ST8), 5 clonal complexes (CC151, CC97, CC126, CC133, and CC8), and 18 distinct Spa types. Pan-, core, and accessory genomes were composed of 6,340, 1,279, and 2,431 genes, respectively. Based on phenotypic screening for AMR, resistance was common against beta-lactams (19% of isolates) and sulfonamides (7% of isolates), whereas resistance against pirlimycin, tetracycline, ceftiofur, and erythromycin and to the combination of penicillin and novobiocin was uncommon (3, 3, 3, 2, and 2% of all isolates, respectively). We also determined distributions of 191 virulence factors (VFs) in 119 S. aureus isolates after classifying them into 5 functional categories (adherence [n = 28], exoenzymes [n = 21], immune evasion [n = 20], iron metabolism [n = 29], and toxins [n = 93]). Additionally, we calculated the pathogenic potential of distinct CCs and STs and determined that CC151 (ST151 and ST351) had the highest pathogenic potential (calculated by subtracting core-VFs from total VFs), followed by CC97 (ST352 and ST2187) and CC126 (ST126 and ST2270), potentially linked to their higher prevalence in bovine IMI worldwide. However, there was no statistically significant link between the presence of VF genes and mastitis.IMPORTANCE Staphylococcus aureus is a major cause of bovine intramammary infections, leading to significant economic losses to dairy industry in Canada and worldwide. There is a lack of knowledge regarding genetic diversity, the presence of antimicrobial resistance (AMR), and virulence genes for S. aureus isolated from bovine milk in Canada. Based on whole-genome sequencing and genomic analysis, we have determined the phylogeny and diversity of S. aureus in bovine milk and concluded that it had a large accessory genome, limited distribution of AMR genes, variable VF gene profiles and sequence types (ST), and clonal complex (CC)-specific pathogenic potentials. Comprehensive information on the population structure, as well as the virulence and resistance characteristics of S. aureus from bovine milk, will allow for source attribution, risk assessment, and improved therapeutic approaches in cattle.
Collapse
|
29
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Rama JLR, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance, and Production of Antimicrobial and Virulence Factors in Streptococcus Species Associated with Bovine Mastitis. Could Enzybiotics Represent Novel Therapeutic Agents Against These Pathogens? Antibiotics (Basel) 2020; 9:antibiotics9060302. [PMID: 32512932 PMCID: PMC7344566 DOI: 10.3390/antibiotics9060302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
Streptococcus spp. are major mastitis pathogens present in dairy products, which produce a variety of virulence factors that are involved in streptococcal pathogenicity. These include neuraminidase, pyrogenic exotoxin, and M protein, and in addition they might produce bacteriocins and antibiotic-resistance proteins. Unjustifiable misuse of antimicrobials has led to an increase in antibiotic-resistant bacteria present in foodstuffs. Identification of the mastitis-causing bacterial strain, as well as determining its antibiotic resistance and sensitivity is crucial for effective therapy. The present work focused on the LC–ESI–MS/MS (liquid chromatography–electrospray ionization tandem mass spectrometry) analysis of tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2706 non-redundant peptides belonging to 2510 proteins was identified and analyzed. Among them, 168 peptides were determined, representing proteins that act as virulence factors, toxins, anti-toxins, provide resistance to antibiotics that are associated with the production of lantibiotic-related compounds, or play a role in the resistance to toxic substances. Protein comparisons with the NCBI database allowed the identification of 134 peptides as specific to Streptococcus spp., while two peptides (EATGNQNISPNLTISNAQLNLEDKNK and DLWC*NM*IIAAK) were found to be species-specific to Streptococcus dysgalactiae. This proteomic repository might be useful for further studies and research work, as well as for the development of new therapeutics for the mastitis-causing Streptococcus strains.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain;
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - José-Luis R. Rama
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
- Correspondence:
| |
Collapse
|
30
|
Zhang DX, Li Y, Yang XQ, Su HY, Wang Q, Zhang ZH, Liu YC, Tian CL, Cui CC, Liu MC. In vitro Antibiotic Susceptibility, Virulence Genes Distribution and Biofilm Production of Staphylococcus aureus Isolates from Bovine Mastitis in the Liaoning Province of China. Infect Drug Resist 2020; 13:1365-1375. [PMID: 32494168 PMCID: PMC7234830 DOI: 10.2147/idr.s247765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to identify the subtype, characterize the antimicrobial resistance, determine the virulence gene distribution, and analyze the biofilm production of Staphylococcus aureus isolates from bovine mastitis milk samples in the Liaoning Province of China. Materials and Methods In total, 56 Staph. aureus isolates were collected and identified in this study; the isolates were divided into different spa types based on the sequence of the polymorphic X region of the spa gene. Additionally, antimicrobial susceptibility was investigated using the broth microdilution method, and 18 virulence genes were detected using PCR. Biofilm formation was measured by spectrophotometry with crystal violet staining and observed using confocal laser scanning microscopy. Results There were 12.12% (56/462) milk samples that were positive for Staph. aureus. These isolates were nonsusceptible to sulfamethoxazole (100%), penicillin (76.9%), daptomycin (76.79%), clindamycin (69.64%), and oxacillin (60.71%); however, the majority of the isolates (80.4%) were susceptible to amoxicillin/clavulanate. The predominant virulence genes encoded the cytotoxins, hla (94.64%) and hlb (89.29%), and the adhesion factors clfA (89.29%), clfB (89.29%), and fnbB (80.36%). Comparatively, virulence genes related to other adhesion factors such as cna (8.93%) and enterotoxins, such as seg (26.79%), sea (16.07%), seb (7.14%), and sec (7.14%) were detected at relatively lower rates. The following eight spa types were identified: t267 (35.84%), t730 (22.64%), t518 (15.09%), t1190 (11.32%), t1456 (9.43%), t224 (1.88%), t9129 (1.88%), and t177 (1.88%). The highest biofilm production was observed for t267. Staph. aureus exhibited various patterns of biofilm formation, with the biofilm often being associated with a tower-shaped structure or a thicker biofilm. Conclusion Our results indicated that Staph. aureus isolates from dairy cows with mastitis in the Liaoning Province of China were non-susceptible to sulfamethoxazole, penicillin, daptomycin, oxacillin, and clindamycin. Additionally, the most prevalent subtype was t267, which displayed resistance to multiple antimicrobial agents and harbored several virulence genes, including clfA, clfB, fnbB, hla, and hlb.
Collapse
Affiliation(s)
- De-Xian Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Yao Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Xiao-Qing Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Hong-Yu Su
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Qi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ze-Hui Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Yao-Chuan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Chun-Lian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Can-Can Cui
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ming-Chun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
31
|
Jia F, Ma W, Zhang X, Wang D, Zhou X. Matrine and baicalin inhibit apoptosis induced by Panton-Valentine leukocidin of Staphylococcus aureus in bovine mammary epithelial cells. J Dairy Sci 2020; 103:2731-2742. [PMID: 31954568 DOI: 10.3168/jds.2019-17619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022]
Abstract
It was previously thought that the Panton-Valentine leukocidin (PVL) toxin of Staphylococcus aureus (S. aureus) was not the main cause of cow mastitis. However, in recent years, detection of the gene encoding PVL has been increasing in dairy cow mastitis, which implies that PVL may be related to bovine mastitis. Therefore, we wanted to search for drugs inhibiting PVL or PVL-induced apoptosis. In this report, we investigated the apoptosis mechanism of PVL in bovine mammary epithelial cells (BMEC) and the inhibition mechanism of matrine and baicalin on PVL-induced apoptosis of BMEC. The results demonstrated that BMEC were damaged and underwent apoptosis by a standard PVL-producing strain of S. aureus (ATCC 49775), a PVL knockout mutant Δpvl 49775, complemented mutant C-Δpvl 49775, or recombinant (r)PVL in vitro. The rates of apoptosis and necrosis induced by S. aureus ATCC 49775 and C-Δpvl 49775 were significantly higher than those induced by Δpvl 49775, demonstrating that BMEC apoptosis and necrosis were associated with PVL. In addition, this research found matrine and baicalin could inhibit the apoptosis of BMEC induced by PVL-producing S. aureus and by rPVL. Matrine downregulated protein expression levels of endogenous and exogenous cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9, and the effect was pronounced at a concentration of 50 μg/mL. Baicalin downregulated the expression of cleaved caspase-9. These results suggested that matrine and baicalin may have potential value against cow mastitis caused by the toxin PVL.
Collapse
Affiliation(s)
- Fang Jia
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Medicine, Hetao College, BayanNur, Inner Mongolia 015000, China
| | - Weiwu Ma
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiangjun Zhang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Dong Wang
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
32
|
El-Ashker M, Gwida M, Monecke S, El-Gohary F, Ehricht R, Elsayed M, Akinduti P, El-Fateh M, Maurischat S. Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt. Vet Microbiol 2019; 240:108535. [PMID: 31902507 DOI: 10.1016/j.vetmic.2019.108535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 01/18/2023]
Abstract
Methicillin resistant S. aureus from cows with mastitis has received a growing interest worldwide. The present study aimed to provide a detailed description of the resistance and virulence traits of isolates from bovine mastitis samples. A total of 550 quarter milk samples were collected from 140 mastitic household dairy cows and buffalo from five herds at Dakahlia Governorate, Egypt, during 2017 and 2018. Staphylococcus spp. were isolated and differentiated using MALDI-TOF MS. A genotypic characterization was performed for S. aureus isolates using DNA-microarray and staphylococcal protein A (spa) typing. Furthermore, antibiotic resistances were phenotypically confirmed using broth microdilution. Six different clonal lineages (CC1-MRSA, CC5-MRSA, CC45-MRSA, CC97-MSSA, CC50-MSSA and CC1153-MSSA), including seven spa types (t127, t688, t132, t267, t521, t224 and t903) were identified. Spa type t267 was the most dominant among the investigated herds. This is the first report of the occurrence of clonal lineages CC97, CC1, CC45, CC50 and CC1153 from bovine mastitis in Egypt. All MRSA isolates and 33.3 % of MSSA were multi-resistant (i.e. resistant to more than three classes of compounds). Various virulence determinants were also observed including leukocidins, hemolysins, and enterotoxins. The study demonstrates a low diversity of S. aureus isolates recovered from several dairy herds. The findings of the observed virulotypes can be useful for future studies on anti-virulence therapies, immunogenicity and vaccine development.
Collapse
Affiliation(s)
- Maged El-Ashker
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Mayada Gwida
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516 Egypt
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (IPHT), Department for Optical Molecular Diagnostics and System Technology, Jena, Germany; InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany; Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Fatma El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516 Egypt
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (IPHT), Department for Optical Molecular Diagnostics and System Technology, Jena, Germany; InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany; Friedrich Schiller University, Institute of Physical Chemistry, Jena, Germany
| | - Mona Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516 Egypt
| | - Paul Akinduti
- Microbiology Unit, Department of Biological Sciences, Covenant University, Otta, Nigeria
| | - Mohamed El-Fateh
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, 35516 Egypt
| | - Sven Maurischat
- German Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
| |
Collapse
|
33
|
Yang F, Zhang S, Shang X, Li H, Zhang H, Cui D, Wang X, Wang L, Yan Z, Sun Y. Short communication: Detection and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. J Dairy Sci 2019; 103:840-845. [PMID: 31733844 DOI: 10.3168/jds.2019-16317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022]
Abstract
This study investigated the antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) isolated from cases of subclinical bovine mastitis in China, as well as resistance mechanisms and virulence genes encoding adhesins and toxins. We determined antimicrobial susceptibility using the disk diffusion method, and analyzed resistance, adhesin, and toxin genes using PCR. We confirmed MRSA in 73 of 498 (14.7%) Staph. aureus isolates recovered from subclinical mastitic milk samples. All isolates were positive for mecA. The MRSA isolates showed high resistance to penicillin (100.0%), gentamicin (100.0%), and tetracycline (98.6%). All MRSA isolates harbored resistance genes blaZ (penicillin), aacA/aphD (gentamicin), and tetM (alone or in combination with tetK, tetracycline). Moreover, all isolates carried the adhesin genes fnbpA, clfA, clfB, cna, sdrE, and map/eap, and most carried sdrC (98.6%), sdrD (95.9%), bbp (94.5%), and ebpS (80.8%). The toxin genes seh, hla, and hld were present in all isolates, and most isolates carried sea (71.2%), seg (84.9%), sei (82.2%), lukE-lukD (97.3%), and hlg (72.6%). These findings of high-level resistance to antimicrobials commonly used in dairy cattle should lead to calls for antibiogram analysis before antimicrobial therapy. The high frequency of adhesin and toxin genes in MRSA indicates their potential virulence in bovine mastitis in China.
Collapse
Affiliation(s)
- Feng Yang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China.
| | - Shidong Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Xiaofei Shang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Hongsheng Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Hang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Xurong Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Ling Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Zuoting Yan
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Yan Sun
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China.
| |
Collapse
|
34
|
Genotyping and antimicrobial resistance of Staphylococcus aureus isolates from dairy ruminants: differences in the distribution of clonal types between cattle and small ruminants. Arch Microbiol 2019; 202:115-125. [PMID: 31501949 DOI: 10.1007/s00203-019-01722-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/03/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Staphylococcus aureus is part of the normal flora of animals, and represents one of the leading causes of contagious mastitis in dairy herds worldwide. Sixty-seven epidemiologically unrelated S. aureus isolates from nasal and mastitis milk samples of dairy-producing animals (32 cows, 25 sheep, and 10 goats) were characterized by antimicrobial susceptibility testing and spa typing followed by multilocus sequence typing (MLST) on representative isolates and SCCmec-typing on methicillin-resistant S. aureus (MRSA) isolates. The highest resistance was observed to penicillin (64.2%, 43/67), followed by tetracycline (23.9%, 16/67), erythromycin (22.4%, 15/67), and streptomycin (17.9%, 12/67). In general, 18 spa types (including newly identified t16958) and 13 sequence types (STs) belonging to 8 clonal complexes (CCs) were detected. The cow-associated isolates were mainly assigned to CC5 (n = 18, related to t267-ST97, t521-ST352, t527-ST97, t304-ST6, and t084-ST15), followed by CC398 (n = 6, t937-ST291), CC45 (n = 3, t230-ST45), CC88 (n = 2, t2526-ST88), CC22 (n = 2, t3680-ST22), and CC522 (n = 1, t3576-ST522). Small ruminant isolates were mostly clustered into CC522 (n = 29, related to t3576, t1534, t16958, t7308, t7311, t7305 [ST522], t1534-ST2057, and t5428-ST2079). Two isolates from cows with mastitis were found to be MRSA, exhibited a composite profile of t937-ST291-SCCmecIV. No isolates carried the PVL and mecC genes. A significant difference in clonal types of S. aureus isolates from cows in comparison with those from small ruminants was found. This study demonstrated the circulation of diverse clones of S. aureus among dairy animals in Iran, with a different clonal composition between cows and small ruminants. The current study also reports MRSA-related mastitis in dairy cows, emphasizing the need for comprehensive surveillance.
Collapse
|
35
|
Zaatout N, Ayachi A, Kecha M, Kadlec K. Identification of staphylococci causing mastitis in dairy cattle from Algeria and characterization of Staphylococcus aureus. J Appl Microbiol 2019; 127:1305-1314. [PMID: 31356718 DOI: 10.1111/jam.14402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
AIMS This study was conducted to determine the occurrence of staphylococci from cows with subclinical mastitis from independent herds in Algeria, and to characterize Staphylococcus aureus isolates. METHODS AND RESULTS Quarter milk samples were collected separately, somatic cells were counted and samples with more than 200 000 somatic cells per ml were cultured on blood agar. Staphylococci isolates were identified by routine diagnostics, and S. aureus isolates were tested for antibiotic susceptibility by disk diffusion and microdilution. Congo red agar was used to detect biofilm formation and capsule synthesis was detected on serum soft agar (SSA). The S. aureus isolates were characterized by spa typing. DNA microarray analysis was performed to detect resistance and virulence genes. Overall, 40·0% (167/418) of the cows suffered from mastitis. In 63·5% (106/167) of the cows staphylococci were identified. Nine of the 106 Staphylococcus isolates (8·5%) were S. aureus. The coagulase-negative staphylococci belonged to 14 species. All S. aureus isolates were multiresistant and biofilm forming, with 66·67% of them showing diffuse colonies on SSA and belonged to CC97-agrI-cap5. Biofilm genes (icaA/C/D), 13 genes encoding for adhesion, six genes encoding proteases, 11 genes encoding superantigen like toxins were found. Genes conferring resistance to tetracycline (tet(K)), penicillin (blaZ/I/R) and macrolide-lincosamide-streptogramin B (erm(B), erm(A)) were also detected in the S. aureus from this study. CONCLUSIONS The current investigation provides a detailed molecular and biofilm formation ability of S. aureus involved in subclinical mastitis in Algeria and shows the wide distribution of adhesion and enterotoxin(-like) genes among S. aureus responsible for causing subclinical bovine mastitis. SIGNIFICANCE AND IMPACT OF THE STUDY These findings are valuable in tracking the evolution and genomic variation of S. aureus from bovine origin.
Collapse
Affiliation(s)
- N Zaatout
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - A Ayachi
- Institute of Veterinary and Agricultural Sciences, University of Batna, Batna, Algeria
| | - M Kecha
- Laboratory of Applied Microbiology, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia, Algeria
| | - K Kadlec
- Dairy Herd Consulting and Research Company (MBFG), Wunstorf, Germany
| |
Collapse
|
36
|
Phylogenetic and Molecular Profile of Staphylococcus aureus Isolated from Bloodstream Infections in Northeast Brazil. Microorganisms 2019; 7:microorganisms7070210. [PMID: 31336623 PMCID: PMC6680844 DOI: 10.3390/microorganisms7070210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections, such as pneumonia, meningitis, endocarditis, toxic shock syndrome, and sepsis, among others. The objective of this study was to investigate the molecular profile, antimicrobial resistance, and clonal diversity of S. aureus isolated from the bloodstream. The determination of the minimum inhibitory concentration (MIC) of the antimicrobial was performed by an automated method. The presence of several virulence and resistance genes was evaluated by PCR. In addition, multilocus sequence typing (MLST) was used to analyze the clonal diversity of S. aureus. A high resistance to oxacillin (78%), clindamycin (78%), erythromycin (70%), ciprofloxacin (61%), and gentamicin (52%) was observed among the isolates. In most of them, the following virulence genes were detected: hlb (83%), ebpS (61%), icaA (57%), fnbpA (17%), and clfA (13%). Only one isolate carried the pvl gene. MLST analysis identified five new sequence types (STs): 5429, 5430, 5431, 5432, and 5433, as well as another seven-ST5, ST97, ST398, ST101, ST30, ST461, and ST2779-among the remaining strains. These seven STs and the four new STs are clustered in four clonal complexes: CC1, CC2, CC7, and CC17. Phylogenetic analysis showed the genetic relationship of the five new ST strains with another 18 strains. Altogether, these analyses indicate the horizontal transfer acquisition of virulence factor genes and multidrug resistance.
Collapse
|
37
|
Cheng J, Qu W, Barkema HW, Nobrega DB, Gao J, Liu G, De Buck J, Kastelic JP, Sun H, Han B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J Dairy Sci 2019; 102:2416-2426. [PMID: 30639013 DOI: 10.3168/jds.2018-15135] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
Abstract
The prevalence of antimicrobial resistance (AMR) is increasing in human and animal pathogens, becoming a concern worldwide. However, prevalence and characteristics of AMR of bovine mastitis pathogens in large Chinese dairy herds are still unclear. Therefore, our objective was to determine the AMR profile of bacteria isolated from clinical mastitis in large (>500 cows) Chinese dairy herds. A total of 541 isolates of the 5 most common species, Staphylococcus aureus (n = 103), non-aureus staphylococci (NAS; n = 107), Streptococcus species (n = 101), Klebsiella species (n = 130), and Escherichia coli (n = 100), isolated from bovine clinical mastitis on 45 dairy farms located in 10 provinces of China were included. Presence of AMR was determined by minimum inhibitory concentrations using the microdilution method. Prevalence of multidrug resistance (resistance to >2 antimicrobials) was 27% (148/541). A very wide distribution of minimum inhibitory concentrations was screened in all isolates, including Staph. aureus isolates, which were resistant to penicillin (66%). In addition, NAS (30%) were more resistant than Staph. aureus to oxacillin (84%), penicillin (62%), tetracycline (34%), and clindamycin (33%). Prevalence of resistance to tetracycline was high (59%) in Streptococcus spp. Additionally, prevalence of resistance of both E. coli and Klebsiella spp. was high to amoxicillin/clavulanate potassium (81 and 38%, respectively), followed by tetracycline (only Klebsiella spp. 32%). A high proportion (27%) of isolates were multidrug resistant; the most frequent combinations were clindamycin-cefalexin-tetracycline or enrofloxacin-cefalexin-penicillin patterns for Staph. aureus; enrofloxacin-oxacillin-penicillin-tetracycline patterns for NAS; clindamycin-enrofloxacin-tetracycline patterns for Streptococcus spp.; amoxicillin/clavulanate potassium-ceftiofur-polymyxin B patterns for Klebsiella spp.; and amoxicillin/clavulanate potassium-ceftiofur-polymyxin B patterns for E. coli. Resistance for 4 kinds of antimicrobials highly critical for human medicine, including daptomycin, vancomycin, imipenem, and polymyxin B, ranged from 0 to 24%. In conclusion, prevalence of AMR in mastitis pathogens was high on large Chinese dairy farms, potentially jeopardizing both antimicrobial efficacy and public health. Results of this study highlighted the need for improvements in antimicrobial stewardship and infection control programs in large Chinese dairy farms to reduce emergence of AMR.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, P.R. China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Diego B Nobrega
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Hong Sun
- China Animal Husbandry Industry Co. Ltd., Beijing 100070, P.R. China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|