1
|
KLUTHCOVSKY LC, JENNIFER M, MERISIO TM, CASTRO JLC, FILHO JRE. Treatment of mammary gland tumors in bitches: effects of sodium dichloroacetate as neoadjuvant therapy. J Vet Med Sci 2024; 86:677-683. [PMID: 38692860 PMCID: PMC11187584 DOI: 10.1292/jvms.23-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Mastectomy is the standard treatment for mammary gland tumors in dogs. In addition to traditional therapy, sodium dichloroacetate (DCA) can act as target therapy, as it may promote autophagy, reduce metastatic potential, and tumor proliferation in mammary tumor cell lines. This study aimed to analyze the effects of DCA as preoperative therapy for mammary tumors in bitches. Nineteen animals were selected, and they received DCA at a dose of 10 mg/kg orally every 12 hr, for 15 days. The periodic evaluation included hematological analysis (complete blood count and biochemical markers), evaluation of gastrointestinal adverse effects, evaluation of tumor volume, histopathological analysis, and immunohistochemical evaluation (Ki67 and cyclooxygenase-2/COX-2 markers). After treatment, there was a significant reduction in hematocrit (P=0.02) and leukocyte (P=0.04) means. Despite the variations for these two hematological parameters, the means remained within the reference range for the species. There were two cases of vomiting and one case of diarrhea. Most cases were classified as carcinoma in mixed tumor (n=7, 36.8%), followed by solid carcinoma (n=6, 31.6%). Nine cases (47.4%) showed reduced tumor volume, nine (47.4%) had stable disease, and one showed progressive disease. While there was no sample with a COX-2 score higher than 6, tumor samples with COX-2 scores 3 and 4 were significantly associated with stable disease or progression. DCA preoperative treatment for bitches with mammary gland tumors showed safety and potential cytoreduction in some cases.
Collapse
Affiliation(s)
- Lucas Cavalli KLUTHCOVSKY
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Megan JENNIFER
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Tassia Mariane MERISIO
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Jorge Luiz Costa CASTRO
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| | - Jair Rodini Engracia FILHO
- Postgraduate Program in Animal Science, School of Life
Sciences, Pontifical Catholic University of Parana (PUCPR), Curitiba, Brazil
| |
Collapse
|
2
|
Lee R, Lee WY, Park HJ. Anticancer Effects of Mitoquinone via Cell Cycle Arrest and Apoptosis in Canine Mammary Gland Tumor Cells. Int J Mol Sci 2024; 25:4923. [PMID: 38732133 PMCID: PMC11084895 DOI: 10.3390/ijms25094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Treating female canine mammary gland tumors is crucial owing to their propensity for rapid progression and metastasis, significantly impacting the overall health and well-being of dogs. Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion, and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ's potential anticancer properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly suppressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells. These findings were supported using western blot analysis, demonstrating elevated levels of cleaved caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its potential as a preventive or therapeutic agent against canine mammary cancer.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
- Department Smart Life Science, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
3
|
Tamarindo GH, Novais AA, Chuffa LGA, Zuccari DAPC. Metabolic Alterations in Canine Mammary Tumors. Animals (Basel) 2023; 13:2757. [PMID: 37685021 PMCID: PMC10487042 DOI: 10.3390/ani13172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Canine mammary tumors (CMTs) are among the most common diseases in female dogs and share similarities with human breast cancer, which makes these animals a model for comparative oncology studies. In these tumors, metabolic reprogramming is known as a hallmark of carcinogenesis whereby cells undergo adjustments to meet the high bioenergetic and biosynthetic demands of rapidly proliferating cells. However, such alterations are also vulnerabilities that may serve as a therapeutic strategy, which has mostly been tested in human clinical trials but is poorly explored in CMTs. In this dedicated review, we compiled the metabolic changes described for CMTs, emphasizing the metabolism of carbohydrates, amino acids, lipids, and mitochondrial functions. We observed key factors associated with the presence and aggressiveness of CMTs, such as an increase in glucose uptake followed by enhanced anaerobic glycolysis via the upregulation of glycolytic enzymes, changes in glutamine catabolism due to the overexpression of glutaminases, increased fatty acid oxidation, and distinct effects depending on lipid saturation, in addition to mitochondrial DNA, which is a hotspot for mutations. Therefore, more attention should be paid to this topic given that targeting metabolic fragilities could improve the outcome of CMTs.
Collapse
Affiliation(s)
- Guilherme Henrique Tamarindo
- Department of Molecular Biology, São José do Rio Preto Faculty of Medicine, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Adriana Alonso Novais
- Health Sciences Institute (ICS), Mato Grosso Federal University (UFMT), Sinop 78550-728, MT, Brazil
| | - Luiz Gustavo Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | | |
Collapse
|
4
|
Filippou A, Damianou C. Ultrasonic attenuation of canine mammary tumours. ULTRASONICS 2022; 125:106798. [PMID: 35785631 DOI: 10.1016/j.ultras.2022.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Canine mammary tumours (CMTs) are the most common neoplasm appearing in female dogs and are considered the equivalent animal model of human breast cancer. However, in the literature, there is a gap for ultrasonic characterisation of these tumours. In this study, experimental measurements for acoustic attenuation and propagation speed of three surgically excised malignant CMTs were implemented. METHODS The three tumours were fixed in formaldehyde for up to 72 h and a total of five sample pieces were sectioned from the three tumours to account for the varied morphology observed along the tumours. The through-transmission and pulse-echo techniques were employed for experimental measurements of the acoustic attenuation and propagation speed. RESULTS Acoustic propagation speed of the five samples as measured at 2.7 MHz was in the range of 1568-1636 m/s. Correspondingly, acoustic attenuation was in the range of 1.95-3.45 dB/cm.MHz. Variations in both speed and attenuation were observed between samples acquired from the same tumour. CONCLUSIONS Present findings suggest that both acoustic attenuation and propagation speed of CMTs are higher than normal canine tissues due to increased heterogeneity and varied morphology visually observed between the tumour specimens and evidenced by histological examination. Nevertheless, experimental results could aid in enhancing the use of ultrasound in the diagnosis and treatment of CMTs as well as provide essential data for comparative oncology.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| |
Collapse
|
5
|
Petroušková P, Hudáková N, Maloveská M, Humeník F, Cizkova D. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer. Life (Basel) 2022; 12:life12040524. [PMID: 35455015 PMCID: PMC9032658 DOI: 10.3390/life12040524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Canine mammary cancer (CMC), similar to human breast cancer (HBC) in many aspects, is the most common neoplasm associated with significant mortality in female dogs. Due to the limited therapy options, biomarkers are highly desirable for early clinical diagnosis or cancer progression monitoring. Since the discovery of microRNAs (miRNAs or miRs) as post-transcriptional gene regulators, they have become attractive biomarkers in oncological research. Except for intracellular miRNAs and cell-free miRNAs, exosome-derived miRNAs (exomiRs) have drawn much attention in recent years as biomarkers for cancer detection. Analysis of exosomes represents a non-invasive, pain-free, time- and money-saving alternative to conventional tissue biopsy. The purpose of this review is to provide a summary of miRNAs that come from non-exosomal sources (canine mammary tumor, mammary tumor cell lines or canine blood serum) and from exosomes as promising biomarkers of CMC based on the current literature. As is discussed, some of the miRNAs postulated as diagnostic or prognostic biomarkers in CMC were also altered in HBC (such as miR-21, miR-29b, miR-141, miR-429, miR-200c, miR-497, miR-210, miR-96, miR-18a, miR19b, miR-20b, miR-93, miR-101, miR-105a, miR-130a, miR-200c, miR-340, miR-486), which may be considered as potential disease-specific biomarkers in both CMC and HBC.
Collapse
Affiliation(s)
- Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Filip Humeník
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia; (P.P.); (N.H.); (M.M.); (F.H.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 10 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-918-752-157
| |
Collapse
|
6
|
Sorrenti S, Baldini E, Pironi D, Lauro A, D'Orazi V, Tartaglia F, Tripodi D, Lori E, Gagliardi F, Praticò M, Illuminati G, D'Andrea V, Palumbo P, Ulisse S. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021; 13:4469. [PMID: 34960019 PMCID: PMC8709459 DOI: 10.3390/nu13124469] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
The present review deals with the functional roles of iodine and its metabolism. The main biological function of iodine concerns its role in the biosynthesis of thyroid hormones (THs) by the thyroid gland. In addition, however, further biological roles of iodine have emerged. Precisely, due to its significant action as scavenger of reactive oxygen species (ROS), iodine is thought to represent one of the oldest antioxidants in living organisms. Moreover, iodine oxidation to hypoiodite (IO-) has been shown to possess strong bactericidal as well as antiviral and antifungal activity. Finally, and importantly, iodine has been demonstrated to exert antineoplastic effects in human cancer cell lines. Thus, iodine, through the action of different tissue-specific peroxidases, may serve different evolutionarily conserved physiological functions that, beyond TH biosynthesis, encompass antioxidant activity and defense against pathogens and cancer progression.
Collapse
Affiliation(s)
- Salvatore Sorrenti
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Enke Baldini
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesco Tartaglia
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Domenico Tripodi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Eleonora Lori
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Federica Gagliardi
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Marianna Praticò
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giulio Illuminati
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Vito D'Andrea
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Piergaspare Palumbo
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
7
|
Exosomes Derived from Radioresistant Breast Cancer Cells Promote Therapeutic Resistance in Naïve Recipient Cells. J Pers Med 2021; 11:jpm11121310. [PMID: 34945782 PMCID: PMC8704086 DOI: 10.3390/jpm11121310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation resistance is a significant challenge in the treatment of breast cancer in humans. Human breast cancer is commonly treated with surgery and adjuvant chemotherapy/radiotherapy, but recurrence and metastasis upon the development of therapy resistance results in treatment failure. Exosomes are extracellular vesicles secreted by most cell types and contain biologically active cargo that, when transferred to recipient cells, can influence the cells’ genome and proteome. We propose that exosomes secreted by radioresistant (RR) cells may be able to disseminate the RR phenotype throughout the tumour. Here, we isolated exosomes from the human breast cancer cell line, MDA-MB-231, and the canine mammary carcinoma cell line, REM134, and their RR counterparts to investigate the effects of exosomes derived from RR cells on non-RR recipient cells. Canine mammary cancer cells lines have previously been shown to be excellent translational models of human breast cancer. This is consistent with our current data showing that exosomes derived from RR cells can increase cell viability and colony formation in naïve recipient cells and increase chemotherapy and radiotherapy resistance, in both species. These results are consistent in cancer stem cell and non-cancer stem cell populations. Significantly, exosomes derived from RR cells increased the tumoursphere-forming ability of recipient cells compared to exosomes derived from non-RR cells. Our results show that exosomes are potential mediators of radiation resistance that could be therapeutically targeted.
Collapse
|
8
|
Cuenca-Micó O, Delgado-González E, Anguiano B, Vaca-Paniagua F, Medina-Rivera A, Rodríguez-Dorantes M, Aceves C. Effects of Molecular Iodine/Chemotherapy in the Immune Component of Breast Cancer Tumoral Microenvironment. Biomolecules 2021; 11:biom11101501. [PMID: 34680134 PMCID: PMC8533888 DOI: 10.3390/biom11101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in breast cancer cells. Little is known about its effects on the tumor immune microenvironment. We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFβ; p = 0.049), whereas in Cht+I2 tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ gene promoter (by increasing its unmethylated form) and silences TGFβ in Cht+I2. In conclusion, our data showed that I2 supplements induce the activation of the immune response and that when combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in these responses are being analyzed, but preliminary data suggest that methylation/demethylation mechanisms could also participate.
Collapse
Affiliation(s)
- Olga Cuenca-Micó
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Evangelina Delgado-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14160, Mexico
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, UNAM-Juriquilla, Querétaro 76230, Mexico;
| | | | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (O.C.-M.); (E.D.-G.); (B.A.)
- Correspondence:
| |
Collapse
|
9
|
Alexandrov VA, Tochilnikov GV, Zhilinskaya NT, Gubareva EA, Romanov VA, Ermakova ED, Dorofeeva AA, Zmitrichenko YG, Tumanyan IA, Semenov AL. Therapeutic effect of iodised serum milk protein, lycopene and their combination on benign prostatic hyperplasia induced in rats. Andrologia 2021; 53:e14173. [PMID: 34185339 DOI: 10.1111/and.14173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common chronic disease in ageing men. Synthetic inhibitors of 5α-reductase commonly used in BPH treatment have limited effectiveness and may cause side effects. Evaluation of iodised serum milk protein and lycopene therapeutic effect in rat BPH model was the aim of the present study. BPH was induced in male Wistar rats by surgical castration and subsequent testosterone administrations (25 mg/kg, 7 injections). Rats with induced BPH received lycopene (5 mg/kg), iodised serum milk protein (200 µg/kg) or their combination for 1 month daily. The efficacy of the treatment was evaluated by the prostate weight, prostatic index and ventral lobe epithelium thickness. In lycopene and iodised serum milk protein-treated rats, prostate weight and prostatic index were significantly reduced compared to control group; and lycopene and iodised serum milk protein used in combination yielded an additive effect. Thus, further investigation of combined supplementation with micronutrients and plant-derived substances in BPH models may help to find new opportunities or its safe and effective treatment.
Collapse
Affiliation(s)
- Valerij A Alexandrov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | | | - Nadezhda T Zhilinskaya
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ekaterina A Gubareva
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Vladimir A Romanov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| | - Elena D Ermakova
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Anastasia A Dorofeeva
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yuliya G Zmitrichenko
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Irina A Tumanyan
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia.,International Research Centre 'Biotechnologies of the Third Millennium', ITMO University, St. Petersburg, Russia
| | - Alexander L Semenov
- N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russia
| |
Collapse
|
10
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Molecular Iodine Has Extrathyroidal Effects as an Antioxidant, Differentiator, and Immunomodulator. Int J Mol Sci 2021; 22:ijms22031228. [PMID: 33513754 PMCID: PMC7865438 DOI: 10.3390/ijms22031228] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022] Open
Abstract
Most investigations of iodine metabolism in humans and animals have focused on its role in thyroid function. However, considerable evidence indicates that iodine could also be implicated in the physiopathology of other organs. We review the literature that shows that molecular iodine (I2) exerts multiple and complex actions on the organs that capture it, not including its effects as part of thyroid hormones. This chemical form of iodine is internalized by a facilitated diffusion system that is evolutionary conserved, and its effects appear to be mediated by a variety of mechanisms and pathways. As an oxidized component, it directly neutralizes free radicals, induces the expression of type II antioxidant enzymes, or inactivates proinflammatory pathways. In neoplastic cells, I2 generates iodolipids with nuclear actions that include the activation of apoptotic pathways and the inhibition of markers related to stem cell maintenance, chemoresistance, and survival. Recently, I2 has been postulated as an immune modulator that depending on the cellular context, can function as an inhibitor or activator of immune responses. We propose that the intake of molecular iodine is increased in adults to at least 1 mg/day in specific pathologies to obtain the potential extrathyroid benefits described in this review.
Collapse
|
13
|
Wustefeld-Janssens B, Smith L, Wilson-Robles H. Neoadjuvant chemotherapy and radiation therapy in veterinary cancer treatment: a review. J Small Anim Pract 2020; 62:237-243. [PMID: 33305431 DOI: 10.1111/jsap.13245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Multi-modality treatment strategies are more becoming commonplace in veterinary oncology practice yet the evidence base is far inferior to what has been generated in people. Surgery is unquestionably the cornerstone of most solid tumour treatment plans but certain scenarios dictate combining surgery with systemic chemotherapy and radiation therapy as an adjunct. By using these in the neoadjuvant setting, one can leverage certain effects of the treatment to improve local disease control, improve overall survival, gain insight into drug efficacy, reduce surgical morbidity and reduce long-term complications. An unintended consequence of combining therapies is an increased flow of information between members of the care team upfront that in almost all cases leads to improved patient outcomes albeit a difficult metric to quantify. This review sets out to explore some of the principles of neoadjuvant therapies and discuss potential opportunities to expand the evidence base in veterinary medicine.
Collapse
Affiliation(s)
- B Wustefeld-Janssens
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - L Smith
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - H Wilson-Robles
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
14
|
Cuenca-Micó O, Aceves C. Micronutrients and Breast Cancer Progression: A Systematic Review. Nutrients 2020; 12:nu12123613. [PMID: 33255538 PMCID: PMC7759972 DOI: 10.3390/nu12123613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies on micronutrient consumption have reported protective associations in the incidence and/or progression of various cancer types. Supplementation with some of these micronutrients has been analyzed, showing chemoprotection, low toxicity, antiproliferation, and the ability to modify epigenetic signatures in various cancer models. This review investigates the reported effects of micronutrient intake or supplementation in breast cancer progression. A PubMed search was conducted with the keywords "micronutrients breast cancer progression", and the results were analyzed. The selected micronutrients were vitamins (C, D, and E), folic acid, metals (Cu, Fe, Se, and Zn), fatty acids, polyphenols, and iodine. The majority of in vitro models showed antiproliferative, cell-cycle arrest, and antimetastatic effects for almost all the micronutrients analyzed, but these effects do not reflect animal or human studies. Only one clinical trial with vitamin D and one pilot study with molecular iodine showed favorable overall survival and disease-free interval.
Collapse
|
15
|
Peña M, Delgado-Gonzalez E, López-Marín LM, Millán-Chiu BE, Fernández F, Rodriguez-Castelan J, Muñoz-Torres C, Carrasco G, Anguiano B, Loske AM, Aceves C. Shock Wave Application Increases the Antineoplastic Effect of Molecular Iodine Supplement in Breast Cancer Xenografts. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:649-659. [PMID: 31883734 DOI: 10.1016/j.ultrasmedbio.2019.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
We evaluated the effect of oral molecular iodine supplementation and shock wave application under three different conditions on human MDA-MB231 cancer cell xenografts. After tumor volume reached 1 cm3, mice were randomly assigned to groups and treated for 3 weeks. The results revealed that high-dose shock wave treatment (150 shock waves at a pressure of 21.7 MPa, SW150/21.7) generated tissue lesions without decreasing tumor growth, canceled the antineoplastic action of iodine and promoted pro-tumor conditions (increased hypoxia-induced factor [HIF] and vascular endothelial growth factor [VEGF]). In contrast, moderate (SW35/21.7) and low (SW35/9.9) doses of shock waves had significant antineoplastic effects and, in combination with iodine supplement, attenuated the aggressiveness of these cells by decreasing expression of the markers of stem cells (CD44 and Sox2) and invasion (HIF and VEGF). These results allow us to propose the combination of shock waves and iodine as a possible adjuvant in breast cancer therapy.
Collapse
Affiliation(s)
- Mirle Peña
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | | | - Luz M López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Blanca E Millán-Chiu
- CONACyT-Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Julia Rodriguez-Castelan
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Carolina Muñoz-Torres
- Centro de Geociencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Giovana Carrasco
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| |
Collapse
|
16
|
Aldoxorubicin-loaded nanofibers are cytotoxic for canine mammary carcinoma and osteosarcoma cell lines in vitro: A short communication. Res Vet Sci 2019; 128:86-89. [PMID: 31760317 DOI: 10.1016/j.rvsc.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Abstract
Chemotherapeutic drugs are given parenterally to treat various canine tumors. A limitation of parenteral administration is low drug penetration into the tumor, which reduces tumoricidal activity. Various drug carriers have been used to enhance tumor delivery, including albumin, liposomes and nanoparticles. A novel peptide-based nanofiber precursor (NFP) has been developed that is designed to take advantage of the leaky tumor neovasculature to promote drug delivery after parenteral administration. In this study, we loaded aldoxorubicin, an albumin-bound prodrug version of doxorubicin, onto NFP and tested the in vitro cytotoxicity in canine mammary carcinoma (CMT12, CMT25) and osteosarcoma (HMPOS, D-17, Abrams) cell lines. The half maximal inhibitory concentration (IC50) was determined with a luminescence-based cell viability assay. The IC50 for aldoxorubicin-loaded NFP was lower than free aldoxorubicin or doxorubicin in all cell lines, whereas non-drug loaded NFP had no cytotoxic effects. There were differences in IC50 between the osteosarcoma lines, with lower and higher IC50 for HMPOS and D-17 cells, respectively, with all drugs (aldoxorubicin-loaded NFP, free aldoxorubicin or free doxorubicin). Our results indicate that drug-loaded NFPs are cytotoxic for various canine mammary carcinoma and osteosarcoma cell lines in vitro and hold promise as a mechanism for enhancing delivery of chemotherapeutic agents to canine tumors.
Collapse
|
17
|
Gao J, Fan K, Jin Y, Zhao L, Wang Q, Tang Y, Xu H, Liu Z, Wang S, Lin J, Lin D. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden. Eur J Pharm Sci 2019; 140:105070. [PMID: 31518679 DOI: 10.1016/j.ejps.2019.105070] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/13/2023]
Abstract
Homogeneous PEGylated lipid bilayer coated highly ordered MSNs (PLMSNs) which were systematically optimized and characterized to co-encapsulate paclitaxel (Tax) and curcumin (Cur) were verified to manifest prolonged and enhanced cytotoxic effect against canine breast cancer cells in our previous study. In this article, we took further study of the pharmacokinetic property, cellular uptake, subcellular localization, in vivo distribution and tumor accumulation ability, and treatment efficacy of the drug delivery system. The results revealed that the delivery system could significantly increase the AUC of two drugs, and the anti-tumor effect showed that both intravenous and intratumoral administration group better controlled the tumor weight than that of other groups (P < .05), and the anti-tumor rates were 58.4% and 58.3% respectively. Cell uptake and localization study showed that PLMSNs could effectively carry drugs into cancer cells with sustained release characteristics. The subcellular localization of PLMSNs was mainly in lysosomes and mitochondria. In vivo fluorescence tracing results showed that PLMSNs could be effectively accumulated in the tumor site. The results revealed that the delivery system could effectively reduce the clinical dosage of drugs and reduce its toxic side effects, effectively carry drugs into cancer cells, and exhibit good targeting characteristics for breast cancer.
Collapse
Affiliation(s)
- Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Kai Fan
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Linna Zhao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Qian Wang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Yinian Tang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Huihao Xu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Zhongjie Liu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Shuaiyu Wang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China.
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, PR China.
| |
Collapse
|
18
|
Moreno-Vega A, Vega-Riveroll L, Ayala T, Peralta G, Torres-Martel JM, Rojas J, Mondragón P, Domínguez A, De Obaldía R, Avecilla-Guerrero C, Anguiano B, Delgado-González E, Zambrano-Estrada X, Cuenca-Micó O, De La Puente Flores O, Varela-Echavarría A, Aceves C. Adjuvant Effect of Molecular Iodine in Conventional Chemotherapy for Breast Cancer. Randomized Pilot Study. Nutrients 2019; 11:nu11071623. [PMID: 31319484 PMCID: PMC6682905 DOI: 10.3390/nu11071623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
This study analyzes an oral supplement of molecular iodine (I2), alone and in combination with the neoadjuvant therapy 5-fluorouracil/epirubicin/cyclophosphamide or taxotere/epirubicin (FEC/TE) in women with Early (stage II) and Advanced (stage III) breast cancer. In the Early group, 30 women were treated with I2 (5 mg/day) or placebo (colored water) for 7–35 days before surgery. For the Advanced group, 30 patients received I2 or placebo, along with FEC/TE treatment. After surgery, all patients received FEC/TE + I2 for 170 days. I2 supplementation showed a significant attenuation of the side effects and an absence of tumor chemoresistance. The control, I2, FEC/TE, and FEC/TE + I2 groups exhibited response rates of 0, 33%, 73%, and 100%, respectively, and a pathologic complete response of 18%, and 36% in the last two groups. Five-year disease-free survival rate was significantly higher in patients treated with the I2 supplement before and after surgery compared to those receiving the supplement only after surgery (82% versus 46%). I2-treated tumors exhibit less invasive potential, and significant increases in apoptosis, estrogen receptor expression, and immune cell infiltration. Transcriptomic analysis indicated activation of the antitumoral immune response. The results led us to register a phase III clinical trial to analyze chemotherapy + I2 treatment for advanced breast cancer.
Collapse
Affiliation(s)
- Aura Moreno-Vega
- Instituto de Neurobiología UNAM-Juriquilla, Querétaro 76230, Mexico
| | | | - Tonatiuh Ayala
- Instituto de Neurobiología UNAM-Juriquilla, Querétaro 76230, Mexico
| | | | | | - Joel Rojas
- Hospital General Regional #1 IMSS, Querétaro 76000, Mexico
| | - Perla Mondragón
- Instituto de Neurobiología UNAM-Juriquilla, Querétaro 76230, Mexico
| | | | | | | | - Brenda Anguiano
- Instituto de Neurobiología UNAM-Juriquilla, Querétaro 76230, Mexico
| | | | | | - Olga Cuenca-Micó
- Instituto de Neurobiología UNAM-Juriquilla, Querétaro 76230, Mexico
| | | | | | - Carmen Aceves
- Instituto de Neurobiología UNAM-Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
19
|
Mendieta I, Nuñez-Anita RE, Nava-Villalba M, Zambrano-Estrada X, Delgado-González E, Anguiano B, Aceves C. Molecular iodine exerts antineoplastic effects by diminishing proliferation and invasive potential and activating the immune response in mammary cancer xenografts. BMC Cancer 2019; 19:261. [PMID: 30902074 PMCID: PMC6431076 DOI: 10.1186/s12885-019-5437-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
Background The immune system is a crucial component in cancer progression or regression. Molecular iodine (I2) exerts significant antineoplastic effects, acting as a differentiation inductor and immune modulator, but its effects in antitumor immune response are not elucidated. Methods The present work analyzed the effect of I2 in human breast cancer cell lines with low (MCF-7) and high (MDA-MB231) metastatic potential under both in vitro (cell proliferation and invasion assay) and in vivo (xenografts of athymic nude mice) conditions. Results In vitro analysis showed that the 200 μM I2 supplement decreases the proliferation rate in both cell lines and diminishes the epithelial-mesenchymal transition (EMT) profile and the invasive capacity in MDA-MB231. In immunosuppressed mice, the I2 supplement impairs implantation (incidence), tumoral growth, and proliferation of both types of cells. Xenografts of the animals treated with I2 decrease the expression of invasion markers like CD44, vimentin, urokinase plasminogen activator and its receptor, and vascular endothelial growth factor; and increase peroxisome proliferator-activated receptor gamma. Moreover, in mice with xenografts, the I2 supplement increases the circulating level of leukocytes and the number of intratumoral infiltrating lymphocytes, some of them activated as CD8+, suggesting the activation of antitumor immune responses. Conclusions I2 decreases the invasive potential of a triple negative basal cancer cell line, and under in vivo conditions the oral supplement of this halogen activates the antitumor immune response, preventing progression of xenografts from laminal and basal mammary cancer cells. These effects allow us to propose iodine supplementation as a possible adjuvant in breast cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12885-019-5437-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irasema Mendieta
- Instituto de Neurobiología, UNAM-Juriquilla, 76230, Querétaro, Mexico
| | | | | | | | | | - Brenda Anguiano
- Instituto de Neurobiología, UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, UNAM-Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|