1
|
SALTIK HS, KOÇ BT. First identification of canine parvovirus -2a/2b variant in unvaccinated domestic dogs with gastrointestinal signs in Türkiye. Vet Med Sci 2024; 10:e1523. [PMID: 38958584 PMCID: PMC11221316 DOI: 10.1002/vms3.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Canine parvovirus type 2 (CPV-2) is the most common enteric virus that infects canids. CPV is the causative agent of a contagious disease defined mostly by clinical gastrointestinal signs in dogs. During the late 1970s, CPV-2 emerged as a new virus capable of infecting domestic dogs and growing across the world. The VP2 gene stands out as a key determinant in the pathogenicity, antigenicity, and host interactions of CPV-2. AIMS The molecular characterization of the VP2 gene is crucial for understanding CPV evolution and epidemiology. MATERIALS & METHODS Genes encoding the VP2 protein were sequenced and compared to reference strains worldwide. The maximum likelihood method was used to build a phylogenetic tree using CPV VP2 gene nucleotide sequences. RESULTS Our phylogenetic analysis of the VP2 gene revealed that five strains were very similar and clustered together, and three strains were in the 2b clade, whereas the other two were in the 2a/2b clade. DISCUSSION This paper reports the molecular characterization of two novel CPV-2a/2b subtypes in dogs with gastrointestinal symptoms. Genetic analysis was conducted on a CPV genomic region encompassing one of the open reading frames (ORFs) encoding the structural protein VP2. Sequence analysis indicates new and unreported sequence changes, mainly affecting the VP2 gene, which includes the mutations Ser297Ala and Leu87Met. This study represents the first evidence of a new CPV-2a/2b subtype in Türkiye. Due to VP2's crucial role in encoding the capsid protein of CPV-2 and its significant involvement in the host-virus interaction, it is critical to closely monitor its evolutionary changes and be cautious while searching for novel or pre-existing subtypes. CONCLUSION This study highlights the significance of continuous molecular research for acquiring more insights on the circulation of novel CPV mutants.
Collapse
Affiliation(s)
- Hasbi Sait SALTIK
- Department of VirologyFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTürkiye
| | - B Taylan KOÇ
- Department of VirologyFaculty of Veterinary MedicineAydın Adnan Menderes UniversityAydınTürkiye
| |
Collapse
|
2
|
Pu J, Zhang Y, Zhong D, Chen Q. Detection and genetic characterization of circulating canine parvovirus from stray dogs in Shanghai, China. Virology 2024; 595:110041. [PMID: 38555807 DOI: 10.1016/j.virol.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
Canine parvovirus (CPV) is the main cause of viral diarrhea in dogs. CPV became a global disease in 1978 and was endemic all over the world. CPV-2 was the first strain to be identified, but with genetic mutations, new genotypes such as CPV-2a/2b/2c/new-2a/new-2b have emerged. In this study, 128 fecal samples of stray dogs suspected of CPV-2 infection were collected from January to March 2021 in Shanghai, China. All samples were screened by PCR and further analyzed by VP2 gene. The positive rate of CPV-2 was 9.4% (12/128), of which 6 CPV-2 isolates were successfully isolated. Phylogenetic tree analysis showed that 4 isolates were CPV-2c genotype and 2 were new-CPV-2b genotype. VP-2 is a key protein that determines the antigenic properties, host range and receptor binding of cpv-2. The results of VP2 amino acid sequence analysis in this study showed that the CPV-2c isolated strain was the same as the previous strains reported in China, including F267Y, Y324I, Q370R and A5G mutations in addition to the typical N426E mutations. Similarly, in addition to the conventional N426D, S297A, F267Y and Y324I mutations, the new CPV-2b isolate also had a new mutation of T440A. This study further confirmed the prevalence of CPV-2c and new-CPV-2b in Shanghai, and also found a new mutation site of new-CPV-2c, which provided a theoretical basis for further enriching the epidemiological data of CPV-2 in Shanghai, as well as the development of vaccines and the prevention and control of the disease.
Collapse
Affiliation(s)
- Junyi Pu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; SNLG Precision Medtech (Shanghai) Ltd, Shanghai, 201100, PR China
| | - Yan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dengke Zhong
- Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, PR China.
| | - Qiusheng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
3
|
Mira F, Schirò G, Franzo G, Canuti M, Purpari G, Giudice E, Decaro N, Vicari D, Antoci F, Castronovo C, Guercio A. Molecular epidemiology of canine parvovirus type 2 in Sicily, southern Italy: A geographical island, an epidemiological continuum. Heliyon 2024; 10:e26561. [PMID: 38420403 PMCID: PMC10900816 DOI: 10.1016/j.heliyon.2024.e26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Since it emerged as a major dog pathogen, canine parvovirus type 2 (CPV-2) has featured a remarkable genetic and phenotypic heterogeneity, whose biological, epidemiological, and clinical impact is still debated. The continuous monitoring of this pathogen is thus of pivotal importance. In the present study, the molecular epidemiology of CPV-2 in Sicily, southern Italy, has been updated by analysing 215 nearly complete sequences of the capsid protein VP2, obtained from rectal swabs/faeces or tissue samples collected between 2019 and 2022 from 346 dogs with suspected infectious gastrointestinal disease. The presence of the original CPV-2 type (4%) and CPV-2a (9%), CPV-2b (18%), or CPV-2c (69%) variants was documented. Over the years, we observed a decrease in the frequency of CPV-2a/-2b and a rapid increase of CPV-2c frequency, with a progressive replacement of the European lineage of CPV-2c by the Asian lineage. The observed scenario, besides confirming epidemiological relevance of CPV-2, highlights the occurrence of antigenic variant shifts over time, with a trend toward the replacement of CPV-2a, CPV-2b, and the European lineage of CPV-2c by the emerging Asian CPV-2c lineage. The comparison with other Italian and international sequences suggests the occurrence of viral exchange with other Italian regions and different countries, although the directionality of such viral flows could not be often established with confidence. In several instances, potential CPV-2 introductions led to epidemiological dead ends. However, major, long-lasting clades were also identified, supporting successful infection establishment, local spreading, and evolution. These results, besides demonstrating the need for implementing more effective control measures to prevent viral introductions and minimize circulation, stress the relevance of routine monitoring activities as the only tool to effectively understand CPV-2 epidemiology and evolution, and develop adequate countermeasures.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, 70010, Valenzano, (BA), Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| |
Collapse
|
4
|
Pearce J, Spibey N, Sutton D, Tarpey I. Development of a Novel Canine Parvovirus Vaccine Capable of Stimulating Protective Immunity in Four-Week-Old Puppies in the Face of High Levels of Maternal Antibodies. Vaccines (Basel) 2023; 11:1499. [PMID: 37766175 PMCID: PMC10534519 DOI: 10.3390/vaccines11091499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Many highly effective vaccines have been developed to protect dogs against disease caused by canine parvovirus, but despite this vaccine interference by maternally derived antibodies continues to cause immunisation failure. To help overcome this limitation we have developed a novel, recombinant canine parvovirus type 2c vaccine strain, based on the structural and non-structural elements of an established type 2 vaccine. This novel CPV-2c vaccine strain has unique efficacy in the field, it is able to induce sterilising immunity in naïve animals 3 days after vaccination and is able to overcome very high levels of maternally derived antibodies from 4 weeks of age-thus closing the immunity gap to canine parvovirus infection in young puppies. The vaccine strain, named 630a, has been combined with an established canine distemper virus Onderstepoort vaccine strain to produce a new bivalent vaccine (Nobivac DP PLUS), intended to immunise very young puppies in the face of high levels of maternally derived antibody. Here, we describe the onset of immunity and maternal antibody interference studies that support the unique efficacy of the strain, and present overdose studies in both dogs and cats that demonstrate the vaccine to be safe.
Collapse
Affiliation(s)
| | | | - David Sutton
- MSD Animal Health, Milton Keynes MK7 7AJ, UK; (D.S.); (I.T.)
| | - Ian Tarpey
- MSD Animal Health, Milton Keynes MK7 7AJ, UK; (D.S.); (I.T.)
| |
Collapse
|
5
|
Faraji R, Mostafavi B, Sadeghi M, Decaro N, Vasinioti V, Desario C, Miraei-Ashtiani SR, Mozhgani SH. Genomic characterization and Phylogenetic evolution of the canine parvoviruses in Iranian dogs, a nationwide study: CPV evolutionary analysis in Iran. Acta Trop 2023:106948. [PMID: 37224989 DOI: 10.1016/j.actatropica.2023.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Canine Parvo Virus 2(CPV-2) culminated in lots of fatalities in domestic dogs since its emergence in 1978. Mainly, it is responsible for severe hemorrhagic diarrhea, vomiting, and dehydration. CPV-2 has three main variants known 2a, 2b, and 2c. Due to the necessity of monitoring the evolutionary parameters of the virus, and also the lack of comprehensive study of CPV2 in Iran, this study is done for the first time in this country not only to characterize Iranian CPV genomes but also to study the evolutionary parameters and phylodynamics of CPV. The phylogenetic trees were constructed using the Maximum Likelihood (ML) method. By the use of the Bayesian Monte Carlo Markov Chain (BMCMC) method, evolutionary analysis and phylodynamics of the virus were investigated. Phylogenetic results showed that all Iranian isolates were classified in the CPV-2a variant. The central part of Iran was suggested to be the origin of the virus, especially the Alborz province. Before its prevalence throughout the country, the virus circulated in the central part, in Thran, Karaj, and Qom. Mutational analysis showed a positive selection pressure of CPV-2a. Investigating the evolutionary parameters of the virus proposed 1970 to be the date of birth of the virus, with a 95% credible interval between 1953 and 1987. The effective number of infections increased dramatically from 2012 to 2015, then faced a slightly decreasing trend from 2015 to 2019. A considerable up warding pattern was witnessed from the middle of 2019, which can be taken as a concern about the risk of vaccination failure.
Collapse
Affiliation(s)
- Reza Faraji
- Department of Animal Science, College of agriculture & natural resources, University of Tehran, Karaj, Iran
| | - Behnam Mostafavi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Tehran, Iran.; Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, College of agriculture & natural resources, University of Tehran, Karaj, Iran
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Italy
| | | | | | - Seyed Reza Miraei-Ashtiani
- Department of Animal Science, College of agriculture & natural resources, University of Tehran, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.; Non‑Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran..
| |
Collapse
|
6
|
Hasircioğlu S. Phylogenetic analysis of canine parvovirus isolates from west Mediterranean region of Türkiye. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:113-119. [PMID: 37033776 PMCID: PMC10073807 DOI: 10.30466/vrf.2022.545086.3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/13/2022] [Indexed: 04/11/2023]
Abstract
Canine parvovirus type 2 (CPV-2) causes hemorrhagic enteritis, and is one of the most important and contagious pathogens of dogs. In this study, we aimed to determine the prevalence and antigenic variants of CPV enteritis in dogs. Fecal samples were collected from 35 dogs with mucoid to hemorrhagic diarrhea in the Western Mediterranean region of Türkiye between October 2019 and March 2021. DNA was isolated from the samples and examined using PCR analysis. Twenty-eight out of 35 dogs (80.00%) were detected to be positive for CPV. Of these, three had already been vaccinated. The partial VP2 genes of 15 CPV positive samples producing strong bands in agarose gels were sequenced. All strains were identified as CPV-2b, and the amino acid changes were identified. Discriminative amino acid changes were detected for different amino acid positions clearly defining new CPV-2b variants. Of the 15 isolates, three had previously unreported synonymous mutations. Phylogenetic analysis indicated that the strains obtained in this study were closely related to isolates from the Mersin province of Türkiye, except for three isolates that had synonymous mutations and were located in a separate branch from the other CPV-2b genetic variants previously detected in Mersin Province and Urfa Province in Türkiye. This study demonstrates the increase in the prevalence rates for CPV-2b circulating in vaccinated and nonvaccinated dogs. Taking into account the data from phylogenetic trees which highlights differences between the vaccine strains and the isolates, re-designing immunization strategies needs necessary.
Collapse
Affiliation(s)
- Sibel Hasircioğlu
- Correspondence: Sibel Hasrcioğlu. DVM, PhD, Department of Virology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Türkiye, E-mail:
| |
Collapse
|
7
|
Hasırcıoglu S, Aslım HP, Kale M, Bulut O, Koçlu O, Orta YS. Molecular characterization of carnivore protoparvovirus strains circulating in cats in Turkey. PESQUISA VETERINÁRIA BRASILEIRA 2023. [DOI: 10.1590/1678-5150-pvb-7178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
ABSTRACT: Cats are susceptible to feline panleukopenia virus (FPV) and canine parvovirus type 2 (CPV-2). Therefore, coinfection and superinfection with multiple parvovirus strains may occur, resulting in high heterogeneity and recombination. Considering the importance of cats as a potential source of genetic diversity for parvoviruses, we investigated the frequency of parvovirus infection in cats using their blood and fecal samples and performed molecular characterization of parvovirus strains circulating in cat populations. Accordingly, the fecal and blood samples of 60 cats with gastroenteritis symptoms were collected from Turkey’s Burdur, Isparta, and Izmit provinces. Of these 15 fecal samples tested as parvovirus-positive by PCR, 14 were confirmed to have been infected with true FPV strains by sequencing analysis. Through the phylogeny analysis, those were located in the FPV cluster, closely related to CPV-2, and one was discriminated in the CPV-2b cluster. Additionally, sequence analysis of the VP2 gene of CPV and FPV revealed that the FPV strains detected in Turkey and the vaccine strains were highly related to each other, with a nucleotide identity of 97.7- 100%. Furthermore, 13 variable positions were detected in VP2 of the field and reference FPV strains. Three synonymous mutations were determined in the VP2 gene. Some amino acid mutations in the VP2 protein-affected sites were considered responsible for the virus’s biological and antigenic properties. The partial sequence analysis of the VP2 gene revealed that four FPV strains detected in Turkey have a single nucleotide change from T to G at the amino acid position 384 between the nucleotides 3939-3941, which was reported for the first time. Therefore, these four isolates formed a different branch in the phylogenetic tree. The results suggest that both FPV and CPV-2b strains are circulating in domestic cats in Turkey and cats should be considered as potential sources of new parvovirus variants for cats, dogs and other animals.
Collapse
|
8
|
Milićević V, Glišić D, Sapundžić ZZ, Ninković M, Milovanović B, Veljović L, Kureljušić B. Molecular characterization of Canine parvovirus type 2 from diarrheic dogs in Serbia from 2008 to 2020. Vet Res Commun 2023; 47:285-289. [PMID: 35384531 DOI: 10.1007/s11259-022-09924-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/29/2022] [Indexed: 01/27/2023]
Abstract
Canine parvovirus 2 (CPV-2) is the causal agent of canine parvovirosis an infectious disease with the high fatality rate among dogs. However, in Serbia, it has never been investigated thoroughly. This study was conducted on samples collected from dogs with diarrhea in anamnesis, submitted for various reasons to the Institute of Veterinary Medicine of Serbia, and stored in the sample bank. In total, 50 rectal swab samples were collected from the period 2008 to 2020, and consequently tested. Out of 50 rectal swab samples, the CPV-2 genome was detected in 14 (28%). This retrospective study showed the presence of three different subtypes of CPV-2 in diarrheic dogs during the last 12 years in Serbia. CPV-2a was the most prevalent subtype (60%) followed by CPV-2b (30%), and CPV-2c (10%). Interestingly, CPV-2a had been the predominantly detected subtype up until 2018. Nevertheless in 2019, there was the first detected occurrence of the CPV-2b, followed by the first detection of the CPV-2c in 2020. This study reports the evidence and distribution of CPV-2 from 2008 to 2020, providing new information about the presence of virus strains in Serbia.
Collapse
Affiliation(s)
- Vesna Milićević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia.
| | - Dimitrije Glišić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia
| | - Zorana Zurovac Sapundžić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia
| | - Milan Ninković
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia
| | - Bojan Milovanović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia
| | - Ljubiša Veljović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia
| | - Branislav Kureljušić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Republic of Serbia
| |
Collapse
|
9
|
Leopardi S, Milani A, Cocchi M, Bregoli M, Schivo A, Leardini S, Festa F, Pastori A, de Zan G, Gobbo F, Beato MS, Palei M, Bremini A, Rossmann MC, Zucca P, Monne I, De Benedictis P. Carnivore protoparvovirus 1 (CPV-2 and FPV) Circulating in Wild Carnivores and in Puppies Illegally Imported into North-Eastern Italy. Viruses 2022; 14:v14122612. [PMID: 36560617 PMCID: PMC9788561 DOI: 10.3390/v14122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The illegal trade of animals poses several health issues to the global community, among which are the underestimated risk for spillover infection and the potential for an epizootic in both wildlife and domestic naïve populations. We herein describe the genetic and antigenic characterization of viruses of the specie Carnivore protoparvovirus 1 detected at high prevalence in puppies illegally introduced in North Eastern Italy and compared them with those circulating in wild carnivores from the same area. We found evidence of a wide diversity of canine parvoviruses (CPV-2) belonging to different antigenic types in illegally imported pups. In wildlife, we found a high circulation of feline parvovirus (FPV) in golden jackals and badgers, whereas CPV-2 was observed in one wolf only. Although supporting a possible spillover event, the low representation of wolf samples in the present study prevented us from inferring the origin, prevalence and viral diversity of the viruses circulating in this species. Therefore, we suggest performing more thorough investigations before excluding endemic CPV-2 circulation in this species.
Collapse
Affiliation(s)
- Stefania Leopardi
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Adelaide Milani
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Monia Cocchi
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione Territoriale di Udine, 33030 Basaldella di Campoformido, Italy
| | - Marco Bregoli
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione Territoriale di Udine, 33030 Basaldella di Campoformido, Italy
| | - Alessia Schivo
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Sofia Leardini
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Francesca Festa
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Ambra Pastori
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Gabrita de Zan
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione Territoriale di Udine, 33030 Basaldella di Campoformido, Italy
| | - Federica Gobbo
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Maria Serena Beato
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Manlio Palei
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy
| | - Alessandro Bremini
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria
| | - Marie-Christin Rossmann
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria
- Agiculture, Forestry, Rural Areas Veterinary Department, Land Carinthia, 9020 Klagenfurt, Austria
| | - Paolo Zucca
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria
| | - Isabella Monne
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Paola De Benedictis
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
10
|
Identification and Molecular Characterization of a Divergent Asian-like Canine Parvovirus Type 2b (CPV-2b) Strain in Southern Italy. Int J Mol Sci 2022; 23:ijms231911240. [PMID: 36232542 PMCID: PMC9570342 DOI: 10.3390/ijms231911240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) is an infectious agent relevant to domestic and wild carnivorans. Recent studies documented the introduction and spread of CPV-2c strains of Asian origin in the Italian canine population. We investigated tissue samples from a puppy collected during necropsy for the presence of viral enteropathogens and all samples tested positive only for CPV-2. The full coding sequence of a CPV-2b (VP2 426Asp) strain was obtained. This virus was related to CPV-2c strains of Asian origin and unrelated to European CPV-2b strains. The sequence had genetic signatures typical of Asian strains (NS1: 60Val, 545Val, 630Pro; VP2: 5Gly, 267Tyr, 324Ile) and mutations rarely reported in Asian CPV-2b strains (NS1: 588N; VP2: 370Arg). Phylogenetic analyses placed this strain in well-supported clades, including Asian CPV-2c-like strains, but always as a basal, single-sequence long branch. No recombination was observed for this strain, and we speculate that it could have originated from an Asian CPV-2c-like strain that acquired the 426Asp mutation. This study reports the first evidence of an Asian-like CPV-2b strain in Italy, confirming the occurrence of continuous changes in the global CPV-2 spread. Since positive convergent mutations complicate data interpretation, a combination of phylogenetic and mutation pattern analyses is crucial in studying the origin and evolution of CPV-2 strains.
Collapse
|
11
|
Packianathan R, Hodge A, Wright J, Lavidis L, Ameiss K, Yip HYE, Akbarzadeh M, Sharifian M, Amanollahi R, Khabiri A, Hemmatzadeh F. Cross-Neutralization of Vanguard C4 Vaccine Against Australian Isolates of Canine Parvovirus Variants CPV-2a, CPV-2b, and CPV-2c. Viral Immunol 2022; 35:553-558. [PMID: 35997600 DOI: 10.1089/vim.2022.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) remains one of the most significant viral pathogens in dogs in Australia and worldwide despite the availability of safe and effective CPV vaccines. At least three different variants of CPV-2 have emerged and spread all around the world, namely CPV-2a, CPV-2b, and CPV-2c. The ability of the current vaccines containing either original CPV-2 type or CPV-2b variant to cross protect the heterologous variants has been well demonstrated in laboratory studies, despite some concerns regarding the vaccine efficacy against the emerging variants. Vanguard®, a series of multivalent vaccines, has been in the market for a considerable period of time and demonstrated to provide efficacy against all three types of CPV variants CPV-2a, CPV-2b, and CPV-2c. The purpose of this study was to evaluate the ability of the recently registered Vanguard C4 vaccine to induce cross-neutralizing antibodies against the Australian isolates of CPV-2a, CPV-2b, and CPV-2c variants. Blood samples collected from dogs vaccinated with Vanguard C4 were analyzed by virus neutralizing assays developed for each of three CPV variants. The results of the study demonstrated that Vanguard vaccine induced cross-neutralizing antibodies against the Australian isolates of CPV-2a, CPV-2b, and CPV-2c, thus offering cross protection against all three Australian CPV variants.
Collapse
Affiliation(s)
- Raj Packianathan
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Andrew Hodge
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Jacqueline Wright
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Lynette Lavidis
- Veterinary Medicine Research and Development, Zoetis Australia, Rhodes, New South Wales, Australia
| | - Keith Ameiss
- Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, Michigan, USA
| | - Hiu Ying Esther Yip
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Malihe Akbarzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Maryam Sharifian
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Reza Amanollahi
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Aliakbar Khabiri
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
12
|
Ndiana LA, Lanave G, Zarea AAK, Desario C, Odigie EA, Ehab FA, Capozza P, Greco G, Buonavoglia C, Decaro N. Molecular characterization of carnivore protoparvovirus 1 circulating in domestic carnivores in Egypt. Front Vet Sci 2022; 9:932247. [PMID: 35937285 PMCID: PMC9354892 DOI: 10.3389/fvets.2022.932247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in the unique species Carnivore protoparvovirus 1 (CPPV1), have been circulating in dogs and cats for several decades and are considered the causes of clinically important diseases, especially in young animals. While genetic evidence of the circulation of parvoviruses in Egyptian domestic carnivores has been provided since 2016, to date, all available data are based on partial fragments of the VP2 gene. This study reports the molecular characterization of CPPV strains from Egypt based on the full VP2 gene. Overall, 196 blood samples were collected from dogs and cats presented at veterinary clinics for routine medical assessment in 2019 in Egypt. DNA extracts were screened and characterized by real-time PCR. Positive samples were amplified by conventional PCR and then were sequenced. Nucleotide and amino acid changes in the sequences were investigated and phylogeny was inferred. Carnivore protoparvovirus DNA was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic analyses based on the full VP2 gene revealed that 9 sequenced strains clustered with different CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2) and 1 strain with the FPV clade. All three CPV variants were detected in dog and cat populations with a predominance of CPV-2c strains (7 of 18, 38.9%) in dog samples, thus mirroring the circulation of this variant in African, European, and Asian countries. Deduced amino acid sequence alignment revealed the presence of the previously unreported unique mutations S542L, H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.
Collapse
Affiliation(s)
- Linda A. Ndiana
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- *Correspondence: Gianvito Lanave
| | - Aya A. K. Zarea
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | | | - Eugene A. Odigie
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Fouad A. Ehab
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
13
|
Urbani L, Tirolo A, Balboni A, Troia R, Dondi F, Battilani M. Concomitant Infections With Canine Parvovirus Type 2 and Intracellular Tick-Borne Pathogens in Two Puppy Dogs. Front Vet Sci 2022; 9:964177. [PMID: 35928114 PMCID: PMC9343697 DOI: 10.3389/fvets.2022.964177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In this report the concomitant infection with canine parvovirus type 2 (CPV-2), Hepatozoon canis and Ehrlichia canis in two puppy dogs from Southern Italy is described. Dogs were referred to a veterinary university hospital for the acute onset of lethargy and gastrointestinal signs. A complete clinical and clinicopathological evaluation was carried out and the multiple infection was confirmed by microscopic detection of inclusion bodies in peripheral blood smear, rapid immunoenzymatic tests, indirect fluorescent antibody tests, and molecular assays. Sequence analysis revealed that the CPV-2 identified belonged to the 2c variant and had amino acid residues in the predicted VP2 protein typical of “Asian-like” strains widespread in Asia and occasionally reported in Romania, Nigeria and Italy, particularly in the region of Sicily. Numerous monocytes were infected by both H. canis gamonts and E. canis morulae, suggesting that this co-infection is not accidental and that E. canis preferably infects those cells parasitized by H. canis. The clinical presentation of these animals was severe but supportive cares associated with early etiological therapy allowed a good prognosis. Movement of puppies from geographic areas where vector-borne pathogens are endemic must be carefully evaluated and core vaccinations and ectoparasite prevention treatments must be rigorously adopted.
Collapse
|
14
|
Abayli H, Aslan O, Tumer KC, Can-Sahna K, Tonbak S. Predominance and first complete genomic characterization of canine parvovirus 2b in Turkey. Arch Virol 2022; 167:1831-1840. [PMID: 35716267 PMCID: PMC9206223 DOI: 10.1007/s00705-022-05509-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
Viral enteritis is a significant threat to domestic dogs. The two primary pathogens that cause viral enteritis in dogs are canine coronavirus (CCoV) and canine parvovirus (CPV). In this study, we investigated the occurrence of CPV-2, CCoV, and canine circovirus coinfection by characterizing circulating subtypes of CPV-2 in faecal samples from symptomatic dogs admitted to veterinary clinics located in Ankara, Elazığ, Kayseri, and Kocaeli provinces of Turkey, between 2019 and 2022. Virus detection by PCR and RT-PCR revealed that CPV-2 was present in 48 (77.4%) samples, and no other agents were detected. Based on the occurrence of the codon GAT at positions 1276 to 1278 (coding for aspartate at residue 426) of VP2, all CPV-2 isolates were confirmed to be of the CPV-2b subtype. The complete genome sequences of two CPV-2b isolates showed a high degree of similarity to and phylogenetic clustering with Australian and East Asian strains/isolates. The predominant CPV strain circulating in the three different regions of Turkey was found to be a CPV-2b strain containing the amino acid substitutions at Y324I and T440A, which commonly contribute to immune escape. This is the first report of complete genomic analysis of CPV-2 isolates circulating in symptomatic domestic dogs in Turkey. The evolution of CPV-2 has raised questions about the efficacy of current vaccination regimes and highlights the importance of monitoring the emergence and spread of new CPV-2 variants.
Collapse
Affiliation(s)
- Hasan Abayli
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey.
| | - Oznur Aslan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Kenan Cağrı Tumer
- Department of Internal Medicine, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Kezban Can-Sahna
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| | - Sukru Tonbak
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| |
Collapse
|
15
|
Molecular Investigation of Recent Canine Parvovirus-2 (CPV-2) in Italy Revealed Distinct Clustering. Viruses 2022; 14:v14050917. [PMID: 35632660 PMCID: PMC9143876 DOI: 10.3390/v14050917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023] Open
Abstract
Canine parvovirus Type 2 (CPV-2) is a worldwide distributed virus considered the major cause of viral gastroenteritis in dogs. Studies on Italian CPV-2 are restricted to viruses circulating until 2017. Only one study provided more updated information on CPV-2 but was limited to the Sicily region. No information regarding the circulation and genetic characteristics of CPV-2 in Northeast Italy has been made available since 2015. The present study investigated the genetic characteristics of CPV-2 circulating in the dog population of Northeast Italy between 2013 and 2019. The VP2 gene of 67 CPV-2 was sequenced, and phylogenetic analysis was performed to identify patterns of distribution. Phylogenetic and molecular analysis highlighted unique characteristics of Northeast Italian CPV-2 and interestingly depicted typical genetic clustering of the Italian CPV-2 strains, showing the existence of distinct CPV-2 genetic groups. Such analysis provided insights into the origin of some Italian CPV-2 genetic clusters, revealing potential introductions from East European countries and the spread of CPV-2 from South/Central to North Italy. This is the first report that describes the genetic characteristics of recent Italian CPV-2. Tracking the genetic characteristics of CPV-2 nationally and globally may have impact on understanding the evolution and distribution of CPV-2, in particular in light of the current humanitarian emergency involving Ukraine, with the massive and uncontrolled movement of people and pet animals.
Collapse
|
16
|
Luna Espinoza LR, Carhuaricra Huamán D, Quino Quispe R, Rosadio Alcántara RH, Maturrano Hernández AL. Carnivore protoparvovirus 1 in Peruvian dogs: Temporal/geographical and evolutionary dynamics of virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105255. [PMID: 35227878 DOI: 10.1016/j.meegid.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Canine parvovirus (CPV) has been recognized all around the world as the causal agent of a contagious and highly mortal disease in domestic dogs. In Peru, the infection is endemic and unvaccinated animals and puppies are the most at risk. In order to analyze viral diversity and determine the evolutionary genetic relationships and transmission dynamic of Peruvian CPV-2, were collected during the period of 2016-2017 rectal swabs from puppies with parvovirosis compatible symptoms. Viral DNA was amplified by PCR using primers that flanked the ends of the viral genome and sequenced by Illumina Miseq platform. Twenty-six genomic sequences (NSP1-VP1) of CPV from several districts in Lima Metropolitan area were obtained. The VP2 gene analysis demonstrated the presence of the New CPV-2a, New CPV-2b and 2c variants. The phylodynamic analysis of the viral genomes determined that all Peruvian sequences were clustered into a big clade named South American clade that emerged from the west region of Europe (Italy). The Time to the Most Recent Common Ancestor (TMRCA) of the South American clade was dated to 1993. Peruvian sequences were distributed into three subclades, and the 92% of these sequences were related to Ecuadorian CPV-2. The results suggests that three independent introduction events of virus from other countries could have occurred, in two of these events, CPV-2 from Ecuador were introduced in Peru in 2003 and 2009, and another introduction event, in 2000, from Europe. Overall, these results indicate a viral genetic relationship between Peruvian with Ecuadorian and European virus, and the circulation of several viral subpopulations in Lima Metropolitan.
Collapse
Affiliation(s)
- Luis R Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Raquel Quino Quispe
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Raúl H Rosadio Alcántara
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| | - Abelardo Lenin Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru.
| |
Collapse
|
17
|
Schirò G, Gambino D, Mira F, Vitale M, Guercio A, Purpari G, Antoci F, Licitra F, Chiaramonte G, La Giglia M, Randazzo V, Vicari D. Antimicrobial Resistance (AMR) of Bacteria Isolated from Dogs with Canine Parvovirus (CPV) Infection: The Need for a Rational Use of Antibiotics in Companion Animal Health. Antibiotics (Basel) 2022; 11:antibiotics11020142. [PMID: 35203745 PMCID: PMC8868125 DOI: 10.3390/antibiotics11020142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Canine parvovirus type 2 (CPV-2) represents a major viral threat to dogs. Considering the potential effects of pets on antimicrobial resistance, information on the CPV and associated bacterial co-infections is limited. The aim of this study was to analyze the antimicrobial susceptibility and multidrug-resistance profiles of bacterial species from tissue samples of dogs with canine parvovirus infection. A set of PCR assays and sequence analyses was used for the detection and the molecular characterization of the CPV strains and other enteric viruses. Bacterial isolation, the determination of antimicrobial susceptibility via the disk diffusion method, and the determination of the minimum inhibitory concentration were performed. The detection of β-lactamase genes and toxin genes for specific bacteria was also carried out. CPV infection was confirmed in 23 dogs. Forty-three bacterial strains were isolated and all showed phenotypic resistance. Seventeen multidrug-resistant bacteria and bacteria with high resistance to third- and fourth-generation cephalosporins and metronidazole were detected. Almost 50% of the isolated Enterobacteriaceae were positive for at least one β-lactamase gene, with the majority carrying more genes as well. The evidence for multi-resistant bacteria with the potential for intra- or cross-species transmission should be further considered in a One Health approach.
Collapse
|
18
|
Rakib TM, Nath BK, Das T, Yadav SK, Raidal SR, Das S. Retrospective Genotyping and Whole Genome Sequencing of a Canine Parvovirus Outbreak in Bangladesh. Pathogens 2021; 10:pathogens10111373. [PMID: 34832529 PMCID: PMC8619975 DOI: 10.3390/pathogens10111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Canine parvovirus 2 (CPV-2) outbreaks in close quarters such as kennels or shelters can cause substantial case fatality. Thirteen dead Labradors from a secluded kennel of security dogs presented with typical clinical signs and gross pathology of parvovirus infection. Whole genome shotgun sequencing from tissue-extracted genomic DNA detected new CPV-2a as the contributing antigenic variant. Further genotyping using polymerase chain reaction coupled with high-resolution melt assays (PCR-HRM) confirmed new CPV-2a infection in all deceased dogs. PCR-HRM of additional thirty-four clinically suspected dogs suggested that this variant is in wider community circulation, at least in the southeastern part of Bangladesh. We present complete genome sequence of the new CPV-2a variant circulating in the domestic canine population of Bangladesh.
Collapse
Affiliation(s)
- Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Babu Kanti Nath
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (B.K.N.); (T.D.); (S.R.R.)
| | - Tridip Das
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (B.K.N.); (T.D.); (S.R.R.)
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Saroj Kumar Yadav
- Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Shane R. Raidal
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (B.K.N.); (T.D.); (S.R.R.)
| | - Shubhagata Das
- School of Agriculture, Environment and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (B.K.N.); (T.D.); (S.R.R.)
- Correspondence: ; Tel.: +02-6933-4353
| |
Collapse
|
19
|
Balboni A, Terrusi A, Urbani L, Troia R, Stefanelli SAM, Giunti M, Battilani M. Canine circovirus and Canine adenovirus type 1 and 2 in dogs with parvoviral enteritis. Vet Res Commun 2021; 46:223-232. [PMID: 34671910 PMCID: PMC8528481 DOI: 10.1007/s11259-021-09850-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is one of the most relevant pathogens associated with enteritis in dogs and is frequently reported in association with the detection of other pathogens in faeces. In this study the concomitant presence of Canine circovirus (CanineCV) and Canine adenovirus (CAdV) DNA in faecal or intestine samples of 95 dogs with parvovirus enteritis sampled in Italy (1995–2017) was investigated and the viruses identified were genetically characterised. Potential correlations with the antigenic variant of CPV-2 and with signalment data and outcome were evaluated. Twenty-eight of 95 (29.5%) CPV-2 infected dogs tested positive to other viruses: 7/28 were also positive to CanineCV, 1/28 to CAdV-1, 18/28 to CAdV-2, 1/28 to CanineCV and CAdV-2, and 1/28 to CAdV-1 and CAdV-2. The frequency of CAdV DNA detection and coinfections was significantly higher in purebred dogs compared to mixed breed ones (P = 0.002 and 0.009, respectively). The presence of coinfection was not associated with any other relevant data available, including CPV-2 variant and final outcome. The detection of CanineCV in a dog sampled in 2009 allowed to backdating its circulation in dogs. The eight CanineCV completely sequenced were phylogenetically related to the CanineCV identified in dogs, wolves and a badger from Europe, USA, Argentina and China. Nine CAdV were partially sequenced and phylogenetic analysis showed a separate branch for the oldest CAdV-2 identified (1995). From the results obtained in this study population, CanineCV and CAdV coinfections in dogs with parvoviral enteritis did not result in more severe disease.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Roberta Troia
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Silvia A M Stefanelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Massimo Giunti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell'Emilia (BO), Italy.
| |
Collapse
|
20
|
Integrated Use of Molecular Techniques to Detect and Genetically Characterise DNA Viruses in Italian Wolves ( Canis lupus italicus). Animals (Basel) 2021; 11:ani11082198. [PMID: 34438655 PMCID: PMC8388400 DOI: 10.3390/ani11082198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In our study, different quantitative and qualitative molecular techniques were used to detect and genetically characterise Carnivore protoparvovirus 1, Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), and Canine circovirus (CanineCV) in Italian wolves (Canis lupus italicus) of the Italian Apennines. Carnivore protoparvoviruses were the most frequently detected viruses, followed by CanineCV and CAdV. All the wolves tested positive for at least one of the DNA viruses screened, and 47.8% of the subjects were coinfected with two or three viruses. From viral sequences analysis, close correlations emerged between the viruses identified in the wolves and those circulating in domestic dogs, suggesting that the same viruses infect wolves and domestic dogs. Further studies are needed to investigate if pathogens are transmitted between the two species. Abstract In this study, internal organs (tongue, intestine, and spleen) of 23 free-ranging Italian wolves (Canis lupus italicus) found dead between 2017 and 2019 were tested for Carnivore protoparvovirus 1, Canine adenovirus (CAdV), and Canine circovirus (CanineCV) using real-time PCR assays. Genetic characterisation of the identified viruses was carried out by amplification, sequencing, and analysis of the complete viral genome or informative viral genes. All the wolves tested positive for at least one of the DNA viruses screened, and 11/23 were coinfected. Carnivore protoparvoviruses were the most frequently detected viruses (21/23), followed by CanineCV (11/23) and CAdV (4/23). From the analysis of the partial VP2 gene of 13 carnivore protoparvoviruses, 12 were canine parvovirus type 2b, closely related to the strains detected in dogs and wild carnivores from Italy, and one was a feline panleukopenia-like virus. Of the four CAdV identified, two were CAdV-1 and two were CAdV-2. The complete genome of seven CanineCVs was sequenced and related to the CanineCV identified in dogs, wolves, and foxes worldwide. Close correlations emerged between the viruses identified in wolves and those circulating in domestic dogs. Further studies are needed to investigate if these pathogens may be potentially cross-transmitted between the two species.
Collapse
|
21
|
Dema A, Ganji VK, Yella NR, Putty K. A novel one-step amplification refractory mutation system PCR (ARMS-PCR) for differentiation of canine parvovirus-2 variants. Virus Genes 2021; 57:426-433. [PMID: 34255270 DOI: 10.1007/s11262-021-01861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Enteritis caused by CPV-2 antigenic variants (CPV-2a, 2b, and 2c) is frequently reported in dogs worldwide leading to significant morbidity and mortality. Here, we describe about a simple, single-step, ARMS-PCR strategy targeting the mutant 426 amino acid of VP2 to differentiate CPV-2 antigenic types. A total of 150 fecal samples were subjected to ARMS-PCR of which 18 were typed as CPV-2a, 79 were typed as CPV-2b, and 6 were typed as CPV-2c. The ARMS-PCR results were validated by randomly sequencing partial VP2 gene of 14 samples. Phylogenetic analysis of partial VP2 gene sequencing of each of the CPV-2 variants revealed that CPV-2a and CPV-2b isolates formed a separate clade of Indian lineage, while CPV-2c shared common evolutionary origin with Asian lineage. The developed technique is first of its kind, one-step, rapid, sequencing independent method for typing of CPV-2 antigenic variants.
Collapse
Affiliation(s)
- Anusha Dema
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030, India
| | - Vishweshwar Kumar Ganji
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030, India
| | - Narasimha Reddy Yella
- Department of Veterinary Microbiology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030, India
| | - Kalyani Putty
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad, 500030, India.
| |
Collapse
|
22
|
Balboni A, Niculae M, Di Vito S, Urbani L, Terrusi A, Muresan C, Battilani M. The detection of canine parvovirus type 2c of Asian origin in dogs in Romania evidenced its progressive worldwide diffusion. BMC Vet Res 2021; 17:206. [PMID: 34090429 PMCID: PMC8180150 DOI: 10.1186/s12917-021-02918-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Canine parvovirus (CPV) is one of the most important pathogens of dogs. Despite vaccination, CPV infections are still ubiquitous in dogs, and the three antigenic variants 2a, 2b and 2c are variously distributed in the canine population worldwide. To date, no information is available on CPV variants circulating in some European countries. The aim of this study was to genetically characterise the CPV detected in ten dogs with clinical signs of acute gastroenteritis in Romania. The presence of Carnivore protoparvovirus 1 DNA was investigated in faecal samples using an end-point PCR targeting the complete VP2 gene and positive amplicons were sequenced and analysed. Results All ten dogs with acute gastroenteritis tested positive to Carnivore protoparvovirus 1 DNA in faecal samples. The identified viruses belonged to CPV-2c type, showed identical sequences of the VP2 gene and were characterised by distinctive amino acid residues in the deduced VP2 protein: 5-glicine (5Gly), 267-tirosine (267Tyr), 324-isoleucine (324Ile) and 370-arginine (370Arg). These distinctive amino acid residues have already been reported in CPV-2c widespread in Asia and occasionally detected in Italy and Nigeria. Conclusions Since CPV-2c with VP2 amino acid residues 5Gly, 267Tyr, 324Ile and 370Arg were never reported before 2013, it can be assumed that this virus is progressively expanding its spread in the world dog population. This study adds new data about the presence of this new virus in Europe and underline worrying questions about its potential impact on the health of the canine population. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02918-6.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Mihaela Niculae
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Serena Di Vito
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Cosmin Muresan
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
23
|
Molecular survey of parvovirus, astrovirus, coronavirus, and calicivirus in symptomatic dogs. Vet Res Commun 2021; 45:31-40. [PMID: 33392909 PMCID: PMC7779159 DOI: 10.1007/s11259-020-09785-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Gastrointestinal disorders caused by enteric viruses are frequently reported in dogs worldwide, with significant mortality rates in unvaccinated individuals. This study reports the identification and molecular characterization of Canine parvovirus (CPV-2), Canine coronavirus (CcoV), Canine astrovirus (AstV), and Canine calicivirus (CcaV) in a panel of dogs showing severe enteric clinical signs sampled in a typical Mediterranean environment (Sardinia, Italy). At least one of these viral species was detected in 92.3% samples. CPV-2 was the most frequently detected virus (87.2%), followed by AsTv (20.5%), CCoV-IIa (18%), and CCoV-I (10.3%). CCoV-IIb and CaCV were not detected in any sample. Single infection was detected in 24 samples (66.7%), mainly related to CPV-2 (91.7%). Coinfections were present in 33.3% samples with constant detection of CPV-2. Canine coronavirus was present only in coinfected animals. The VP2 sequence analysis of CPV-2 positive samples confirmed the presence of all variants, with CPV-2b most frequently detected. Phylogeny based on the CcoV-IIa spike protein (S) gene allowed to identify 2 different clades among Sardinian isolates but failed to distinguish enteric from pantropic viruses. Study on presence and prevalence of enteroviruses in dogs increase our knowledge about the circulation of these pathogens in the Mediterranean area and highlight the need for dedicated routine vaccine prophylaxis. Molecular analyses of enteric viruses are fundamental to avoid failure of vaccines caused by frequent mutations observed in these enteroviruses.
Collapse
|
24
|
Ghajari M, Pourtaghi H, Lotfi M. Phylogenetic analysis of canine parvovirus 2 subtypes from diarrheic dogs in Iran. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:347-351. [PMID: 35126544 PMCID: PMC8806170 DOI: 10.22099/ijvr.2021.40878.5925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 04/12/2023]
Abstract
BACKGROUND Canine parvovirus type 2 (CPV-2) causes gastroenteritis and leukopenia in dogs worldwide. They are three subtypes of CPV-2 including CPV-2a, CPV-2b, and CPV-2c. The distribution status of CPV-2 subtypes has been shown differences in many countries. AIMS The aim of the present study was detection and phylogenetic analysis of different subtypes of CPV-2 circulating in two provinces of Iran, Tehran and Alborz. METHODS CPV-2 was detected using 555 primer pairs in collected samples. Phylogenetic analysis of CPV-2 subtypes was done using sequencing of the partial length of VP2 gene. RESULTS Twenty-eight CPV-2 were detected using 555 primer pair. The sequences of isolates were deposited in the GenBank database. Phylogenetic analysis revealed that all CPV-2c subtype isolates had very high sequence identity to China and Zambia that form a distinct cluster. CONCLUSION In conclusion, this study revealed the emergence of all CPV-2 variants in dogs in Iran. Thus, the continual monitoring of CPV-2 in domestic dogs should be further conducted on a large scale to determine the predominant variants and their distributions in the country and to follow the dynamics of CPV-2 in the Middle East region of Asia.
Collapse
Affiliation(s)
- M. Ghajari
- Department of Clinical Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - H. Pourtaghi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
- Correspondence: H. Pourtaghi, Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran. E-mail:
| | - M. Lotfi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
25
|
Ndiana LA, Lanave G, Desario C, Berjaoui S, Alfano F, Puglia I, Fusco G, Colaianni ML, Vincifori G, Camarda A, Parisi A, Sgroi G, Elia G, Veneziano V, Buonavoglia C, Decaro N. Circulation of diverse protoparvoviruses in wild carnivores, Italy. Transbound Emerg Dis 2020; 68:2489-2502. [PMID: 33176056 DOI: 10.1111/tbed.13917] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Protoparvovirus is a monophyletic viral genus that includes the species Carnivore protoparvovirus-1 infecting domestic and wild carnivores. In this paper, the results of an epidemiological survey for Carnivore protoparvovirus-1 in wild carnivores in Italy are reported. Overall, 34 (11.4%) out of 297 tested animals were positive for Carnivore protoparvovirus-1, but the frequency of detection was much higher in intestine (54%) than in spleen samples (2.8%), thus suggesting that the intestine is the best sample to collect from wild animals for parvovirus detection. Feline panleukopenia virus (FPV) was detected in red foxes (Vulpes vulpes) (2.8%, 7/252) and Eurasian badgers (Meles meles) (10%, 1/10), whilst canine parvovirus (CPV) was found in wolves (54.3%, 19/35), Eurasian badgers (60%, 6/10) and one beech marten (Martes foina) (100%, 1/1), with more than one parvovirus type detected in some animals. Protoparvoviral DNA sequences from this study were found to be related to CPV/FPV strains detected in Asia and Europe, displaying some amino acid changes in the main capsid protein VP2 in comparison with other parvovirus strains from wildlife. In particular, the two most common mutations were Ile418Thr and Ala371Gly, which were observed in 6/12 (50%) and 5/12 (41.7%) of the CPV sequences from this study. Continuous surveillance for parvoviruses in wild carnivores and genetic analysis of the detected strains may help obtain new insight into the role of these animals in the evolution and epidemiology of carnivore parvoviruses.
Collapse
Affiliation(s)
- Linda A Ndiana
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Flora Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | - Giacomo Vincifori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Giovanni Sgroi
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Vincenzo Veneziano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| |
Collapse
|
26
|
Decaro N, Buonavoglia C, Barrs VR. Canine parvovirus vaccination and immunisation failures: Are we far from disease eradication? Vet Microbiol 2020; 247:108760. [PMID: 32768213 PMCID: PMC7295477 DOI: 10.1016/j.vetmic.2020.108760] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Abstract
Despite extensive vaccination, canine parvovirus (CPV) remains a leading infectious cause of canine mortality, especially among juveniles. This review provides an update on CPV vaccine types and vaccination protocols. The design of CPV prevention strategies and vaccination programs with a goal of herd immunity has been hampered by deficiencies of studies that model companion animal viral infections and inform an understanding of the basic reproduction number. However, the most important issue in eradication of CPV disease is represented by immunisation failures including: i) the presence of interfering titres of maternally-derived antibodies; ii) the presence of non-responders; and iii) possible reversion to virulence. In contrast, the role of the CPV variants in immunisation failures is widely debated. Taking into account the reduced circulation of canine distemper virus and canine adenovirus type 1 in countries where extensive vaccination is carried out, more effort should be made to aim for CPV eradication, including antibody testing to determine the optimal time for vaccinations of pups and adults and homogeneous vaccine coverage of dog population.
Collapse
Affiliation(s)
- N Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy.
| | - C Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - V R Barrs
- City University of Hong Kong, Department of Infectious Diseases & Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, Kowloon, Hong Kong SAR, China
| |
Collapse
|
27
|
Kwan E, Carrai M, Lanave G, Hill J, Parry K, Kelman M, Meers J, Decaro N, Beatty JA, Martella V, Barrs VR. Analysis of canine parvoviruses circulating in Australia reveals predominance of variant 2b and identifies feline parvovirus-like mutations in the capsid proteins. Transbound Emerg Dis 2020; 68:656-666. [PMID: 32657506 DOI: 10.1111/tbed.13727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Canine parvovirus (CPV) is a major enteric pathogen of dogs worldwide that emerged in the late 1970s from a feline parvovirus (FPV)-like ancestral virus. Shortly after its emergence, variant CPVs acquired amino acid (aa) mutations in key capsid residues, associated with biological and/or antigenic changes. This study aimed to identify and analyse CPV variants and their capsid mutations amongst Australian dogs, to gain insights into the evolution of CPV in Australia and to investigate relationships between the disease and vaccination status of dogs from which viruses were detected. CPV VP2 sequences were amplified from 79 faecal samples collected from dogs with parvoviral enteritis at 20 veterinary practices in five Australian states. The median age at diagnosis was 4 months (range 1-96 months). Only 3.7% of dogs with vaccination histories had completed recommended vaccination schedules, while 49% were incompletely vaccinated and 47.2% were unvaccinated. For the first time, CPV-2b has emerged as the dominant antigenic CPV variant circulating in dogs with parvoviral enteritis in Australia, comprising 54.4% of viruses, while CPV-2a and CPV-2 comprised 43.1% and 2.5%, respectively. The antigenic variant CPV-2c was not identified. Analysis of translated VP2 sequences revealed a vast repertoire of amino acid (aa) mutations. Several Australian CPV strains displayed signatures in the VP2 protein typical of Asian CPVs, suggesting possible introduction of CPV strains from Asia, and/or CPV circulation between Asia and Australia. Canine parvoviruses were identified containing aa residues typical of FPV at key capsid (VP2) positions, representing reverse mutations or residual mutations retained from CPV-2 during adaptation from an FPV-like ancestor, suggesting that evolutionary intermediates between CPV-2 and FPV are circulating in the field. Similarly, intermediates between CPV-2a-like viruses and CPV-2 were also identified. These findings help inform a better understanding of the evolution of CPV in dogs.
Collapse
Affiliation(s)
- Emily Kwan
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Maura Carrai
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | | | | | - Mark Kelman
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Saint Lucia, QLD, Australia
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Julia A Beatty
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Vanessa R Barrs
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
28
|
Lifestyle as Risk Factor for Infectious Causes of Death in Young Dogs: A Retrospective Study in Southern Italy (2015-2017). Vet Med Int 2020; 2020:6207297. [PMID: 32566119 PMCID: PMC7293748 DOI: 10.1155/2020/6207297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
Infectious diseases are a common cause of death in young dogs. Several factors are thought to predispose young dogs to microbiological infections. Identifying the cause of death is often a challenge, and broad diagnostic analysis is often needed. Here, we aimed to determine the infectious causes of death in young dogs aged up to 1 year, examining how it relates to age (under and over 6 months), lifestyle (owned versus ownerless), breed (purebred and crossbreed), and gender. A retrospective study was conducted in a 3-year period (2015-2017) on 138 dead dogs that had undergone necropsy and microbiological diagnostics. Enteritis and pneumonia were the most commonly observed lesions. Polymicrobism was more prevalent (62.3%) than single-agent infections and associated with a higher rate of generalised lesions. Ownerless dogs showed over a three-fold higher predisposition to viral coinfections than owned dogs. Above all, canine parvovirus was the most prevalent agent (77.5%), followed by canine coronavirus (31.1%) and canine adenovirus (23.9%); ownerless pups had a higher predisposition to these viruses. Escherichia coli (23.9%), Clostridium perfringens type A (18.1%), and Enterococcus spp. (8.7%) were the most commonly identified bacteria, which mostly involved in coinfections. A lower prevalence of CDV and Clostridium perfringens type A was observed in puppies under 6 months of age. In conclusion, this study is the first comprehensive survey on a wide panel of microbiological agents related to necropsy lesions. It lays the groundwork for future studies attempting to understand the circulation of infectious agents in a determined area.
Collapse
|