1
|
Obaid MK, Shehla S, Guan G, Rashid M, Shams S. Genotyping of ticks: first molecular report of Hyalomma asiaticum and molecular detection of tick-borne bacteria in ticks and blood from Khyber Pakhtunkhwa, Pakistan. Front Cell Infect Microbiol 2024; 14:1346595. [PMID: 38533383 PMCID: PMC10963394 DOI: 10.3389/fcimb.2024.1346595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
Multiple ticks (Acari: Ixodoidea) carrying Rickettsiales bacteria have significant importance for both human and animal health. Thus, the purpose of this work was to genetically analyze tick species and their associated Rickettsiales bacteria in animal hosts. In order to achieve these objectives, various animals (including camels, cattle, goats, sheep, dogs, and mice) were inspected in four districts (Mardan, Peshawar, Kohat, and Karak) of Khyber Pakhtunkhwa to collect ticks, while blood samples were collected from all the symptomatic and asymptomatic cattle in all four districts. A total of 234 ticks were obtained from 86 out of 143 (60.14%) host animals, which were morphologically identified as Rhipicephalus turanicus, Rhipicephalus microplus, Haemaphysalis cornupunctata, and Hyalomma asiaticum. Among these, their representative ticks (126/234, 53.85%) were processed for molecular confirmation using cytochrome c oxidase (cox1) gene. Obtained cox1 sequences of four different tick species showed 99.72%-100% maximum identity with their corresponding species reported from Pakistan, China, India, and Kazakhstan and clustered phylogenetically. This study presented the first genetic report of Hy. asiaticum ticks in Pakistan. Moreover, genetically confirmed tick species were molecularly analyzed by PCR for detection of Rickettsiales DNA using partial fragments of 16S rDNA, 190-kDa outer membrane protein A (ompA), and 120-kDa outer membrane protein B (ompB) genes. In addition, blood samples were analyzed to identify Rickettsiales bacteria using the aforementioned genes. Rickettsiales bacteria were found in 24/126 (19.05%) ticks and 4/16 (25.00%) in symptomatic cattle's blood. The obtained ompA and ompB sequences from Hy. asiaticum ticks showed 99.73%-99.87% with Candidatus Rickettsia shennongii and unidentified Rickettsia sp., whereas the obtained 16S rDNA sequences from cattle's blood and ticks (Hae. cornupunctata) showed 99.67% highest identity with Anaplasma phagocytophilum. The 16S rDNA sequence of Rickettsiales DNA from Rh. turanicus ticks showed 100% identity with Ehrlichia canis and unidentified Ehrlichia sp. Obtained sequences of Rickettsiales bacteria were grouped along with their respective species in phylogenetic trees, which were previously reported in Greece, Cuba, Iraq, Turkey, Pakistan, South Korea, and China (mainland and Taiwan). This extensive study explores the wide range of damaging ticks and their corresponding tick-borne bacteria in the area, suggesting a possible danger to both livestock and human communities.
Collapse
Affiliation(s)
- Muhammad Kashif Obaid
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shehla Shehla
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Sumaira Shams
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Su S, Cui MY, Gui Z, Guo QQ, Ren H, Ma SF, Mu L, Yu JF, Fu SY, Qi DD. First detection of Candidatus Rickettsia tarasevichiae in Hyalomma marginatum ticks. PLoS One 2024; 19:e0296757. [PMID: 38306367 PMCID: PMC10836667 DOI: 10.1371/journal.pone.0296757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024] Open
Abstract
Ticks are important vectors of zoonotic diseases and play a major role in the circulation and transmission of many rickettsial species. The aim of this study was to investigate the carriage of Candidatus Rickettsia tarasevichiae (CRT) in a total of 1168 ticks collected in Inner Mongolia to elucidate the potential public health risk of this pathogen, provide a basis for infectious disease prevention, control and prediction and contribute diagnostic ideas for clinical diseases that present with fever in populations exposed to ticks. A total of four tick species, Haemaphysalis concinna (n = 21), Dermacentor nuttalli (n = 122), Hyalomma marginatum (n = 148), and Ixodes persulcatus (n = 877), were collected at nine sampling sites in Inner Mongolia, China, and identified by morphological and molecular biological methods. Reverse transcription PCR targeting the 16S ribosomal RNA (rrs), gltA, groEL, ompB and Sca4 genes was used to detect CRT DNA. Sequencing was used for pathogen species confirmation. The molecular epidemiological analysis showed that three species of ticks were infected with CRT, and the overall positive rate was as high as 42%. The positive rate of I. persulcatus collected in Hinggan League city was up to 96%, and that of I. persulcatus collected in Hulun Buir city was 50%. The pool positive rates of D. nuttalli and H. marginatum collected in Bayan Nur city and H. concinna collected in Hulun Buir city were 0%, 28% and 40%, respectively. This study revealed the high prevalence of CRT infection in ticks from Inner Mongolia and the first confirmation of CRT detected in H. marginatum in China. The wide host range and high infection rate in Inner Mongolia may dramatically increase the exposure of CRT to humans and other vertebrates. The role of H. marginatum in the transmission of rickettsiosis and its potential risk to public health should be further considered.
Collapse
Affiliation(s)
- Si Su
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Meng-Yu Cui
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zheng Gui
- First Hospital of Jilin University, Changchun, China
| | - Qi-Qi Guo
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hong Ren
- First Clinical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shi-Fa Ma
- Laboratory of Basic and Clinical Psychiatry, The Third People’s Hospital of Hulunbuir City, Hulunbuir, Inner Mongolia, China
| | - Lan Mu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot Inner Mongolia, China
| | - Jing-Feng Yu
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot Inner Mongolia, China
| | - Shao-Yin Fu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot, Inner Mongolia, China
| | - Dong-Dong Qi
- Laboratory of Basic and Clinical Psychiatry, The Third People’s Hospital of Hulunbuir City, Hulunbuir, Inner Mongolia, China
| |
Collapse
|
3
|
Huggins LG, Koehler AV, Gasser RB, Traub RJ. Advanced approaches for the diagnosis and chemoprevention of canine vector-borne pathogens and parasites-Implications for the Asia-Pacific region and beyond. ADVANCES IN PARASITOLOGY 2023; 120:1-85. [PMID: 36948727 DOI: 10.1016/bs.apar.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vector-borne pathogens (VBPs) of canines are a diverse range of infectious agents, including viruses, bacteria, protozoa and multicellular parasites, that are pernicious and potentially lethal to their hosts. Dogs across the globe are afflicted by canine VBPs, but the range of different ectoparasites and the VBPs that they transmit predominate in tropical regions. Countries within the Asia-Pacific have had limited prior research dedicated to exploring the epidemiology of canine VBPs, whilst the few studies that have been conducted show VBP prevalence to be high, with significant impacts on dog health. Moreover, such impacts are not restricted to dogs, as some canine VBPs are zoonotic. We reviewed the status of canine VBPs in the Asia-Pacific, with particular focus on nations in the tropics, whilst also investigating the history of VBP diagnosis and examining recent progress in the field, including advanced molecular methods, such as next-generation sequencing (NGS). These tools are rapidly changing the way parasites are detected and discovered, demonstrating a sensitivity equal to, or exceeding that of, conventional molecular diagnostics. We also provide a background to the armoury of chemopreventive products available for protecting dogs from VBP. Here, field-based research within high VBP pressure environments has underscored the importance of ectoparasiticide mode of action on their overall efficacy. The future of canine VBP diagnosis and prevention at a global level is also explored, highlighting how evolving portable sequencing technologies may permit diagnosis at point-of-care, whilst further research into chemopreventives will be essential if VBP transmission is to be effectively controlled.
Collapse
Affiliation(s)
- Lucas G Huggins
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| | - Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Guo J, Song S, Cao S, Sun Z, Zhou Q, Deng X, Zhao T, Chai Y, Zhu D, Chen C, Baryshnikov PI, Blair HT, Wang Z, Wang Y, Zhang H. Molecular Detection of Zoonotic and Veterinary Pathogenic Bacteria in Pet Dogs and Their Parasitizing Ticks in Junggar Basin, North-Western China. Front Vet Sci 2022; 9:895140. [PMID: 35898544 PMCID: PMC9311330 DOI: 10.3389/fvets.2022.895140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the recognized epidemiological importance of ticks as vectors for pathogens that cause numerous zoonotic and veterinary diseases, data regarding the pathogens of pet dogs and their parasitic ticks in the Junggar Basin are scarce. In this study, a total of 178 blood samples and 436 parasitic ticks were collected from pet dogs in Junggar Basin, Xinjiang Uygur Autonomous Region (XUAR), north-western China. All ticks were identified as Rhipicephalus turanicus sensu stricto (s.s.) according to morphological and molecular characteristics. Rh. turanicus s.s. ticks were collected from pet dogs in China for the first time. Seven tick-borne pathogens, such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, Rickettsia massiliae, Candidatus R. barbariae, Brucella spp., Rickettsia sibirica, and Anaplasma ovis, were detected from ticks, whereas the first five bacteria were detected from blood samples of dogs. Brucella spp. was the most predominant pathogen in both blood samples and ticks of pet dogs, with the detection rates of 16.29 and 16.74%, respectively. Moreover, 17 ticks and 1 blood sample were co-infected with two pathogens, and 1 tick was co-infected with three pathogens. This study provided molecular evidence for the occurrence of Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Brucella spp. circulating in pet dogs and their parasitic ticks in Junggar Basin, north-western China. These findings extend our knowledge of the tick-borne pathogens in pet dogs and their parasitic ticks in Central Asia; therefore, further research on these pathogens and their role in human and animal diseases is required.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Qiyue Zhou
- College of Pharmacy, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - P. I. Baryshnikov
- College of Veterinary, Altai National Agricultural University, Barnaul, Russia
| | - Hugh T. Blair
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zhen Wang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Zhen Wang
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi, China
- Yuanzhi Wang
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang
| |
Collapse
|
5
|
Chang QC, Hu Y, Wu TT, Ma XX, Jiang BG, Jia N, Wang AQ, Jiang JF. The Role of Ranged Horses in Eco-Epidemiology of Rickettsia raoultii Infection in China. Front Microbiol 2022; 12:795500. [PMID: 35111141 PMCID: PMC8801739 DOI: 10.3389/fmicb.2021.795500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Rickettsia raoultii is a tick-borne pathogen that infects humans; however, the vertebrate hosts of this pathogen have not been clearly defined. Our molecular examination of Rickettsia spp. infecting mammals and ticks in China, identified the gltA, ompA, and 17KD gene sequences of R. raoultii in horses and their ticks. This indicates a role of horses in R. raoultii epidemiology.
Collapse
Affiliation(s)
- Qiao-Cheng Chang
- School of Public Health, Shantou University, Shantou, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Qiao-Cheng Chang,
| | - Yang Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ting-Ting Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiao-Xiao Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - An-Qi Wang
- Animal Health Laboratory, JRU BIPAR ANSES ENVA UPEC, Maisons-Alfort, France
- An-Qi Wang,
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Jia-Fu Jiang,
| |
Collapse
|