1
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
2
|
Wilkie I, Orellana LH. Elusive marine Verrucomicrobiota: Seasonally abundant members of the novel genera Seribacter and Chordibacter specialize in degrading sulfated glycans. Syst Appl Microbiol 2025; 48:126562. [PMID: 39637512 DOI: 10.1016/j.syapm.2024.126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Members of the phylum Verrucomicrobiota play a significant role in various ecosystems, yet they are underrepresented in databases due to their comparatively lower abundance and isolation challenges. The use of cultivation-independent approaches has unveiled their hidden diversity and specialized metabolic capabilities, yet many of these populations remain uncharacterized. In this study, we focus on members of the family MB11C04 associated with North Sea spring blooms. Our analyses revealed recurrent MB11C04 populations with increased abundance in the late stages of spring blooms over ten-years. By examining their genomic content, we identified specialized genetic features for the degradation of complex polysaccharides, particularly sulfated and fucose-rich compounds, suggesting their role in utilizing organic matter during the collapse of the bloom. Furthermore, we describe two novel genera each with a novel species (Seribacter gen. Nov., Chordibacter gen. Nov.) in accordance with the SeqCode initiative based on high quality metagenome-assembled genomes. We also propose a new name for the family MB11C04, Seribacteraceae. Our findings shed light on the ecological significance and metabolic potential of Verrucomicrobiota populations in spring bloom events.
Collapse
Affiliation(s)
- Isabella Wilkie
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
| |
Collapse
|
3
|
Coba-Males MA, Díaz M, Molina CA, Medrano-Vizcaíno P, Brito-Zapata D, Martin-Solano S, Ocaña-Mayorga S, Carrillo-Bilbao GA, Narváez W, Arrivillaga-Henríquez J, González-Suárez M, Enríquez S, Poveda A. Gut bacterial communities in roadkill animals: A pioneering study of two species in the Amazon region in Ecuador. PLoS One 2024; 19:e0313263. [PMID: 39775386 PMCID: PMC11684718 DOI: 10.1371/journal.pone.0313263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Studying the microbial communities within the gastrointestinal tract of vertebrate species can provide insights into biodiversity, disease ecology, and conservation. Currently, we have very limited understanding of the composition of endogenous microbiota in wildlife, particularly in high biodiversity tropical areas. Knowledge is limited by the logistical and ethical challenges of obtaining samples for free-living animals. Roadkill carcasses offer a largely untapped source for biological material, including endogenous gut microbiota. These animals that have died on roads due to collisions with vehicles are suitable for accessible, opportunistic sampling. Here, we used metabarcoding for the V3-V4 region of the 16S rRNA gene in gut samples of nine roadkill samples collected from a road in Ecuador representing two vertebrate species: the speckled worm lizard (Amphisbaena bassleri) and the smooth-billed ani (Crotophaga ani). We successfully identify microbial phyla in both samples including Firmicutes, Bacteroidetes, and Proteobacteria for A. bassleri, and Firmicutes and Actinobacteria for C. ani. Our study provides the first description of the gut microbiota for these two vertebrates, and demonstrates the feasibility of studying endogenous microbial communities from roadkill material that can be opportunistically collected and preserved in biobanks.
Collapse
Affiliation(s)
- Manuel Alejandro Coba-Males
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Magdalena Díaz
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - C. Alfonso Molina
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Pablo Medrano-Vizcaíno
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Grupo de Investigación Población y Ambiente, Universidad Regional Amazónica IKIAM, Tena, Ecuador
- Red Ecuatoriana para el Monitoreo de Fauna Atropellada – REMFA, Quito, Ecuador
| | - David Brito-Zapata
- Red Ecuatoriana para el Monitoreo de Fauna Atropellada – REMFA, Quito, Ecuador
- Museo de Zoología & Laboratorio de Zoología Terrestre, Instituto iBIOTROP, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, CISeAL Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Gabriel Alberto Carrillo-Bilbao
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Wilmer Narváez
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Jazzmín Arrivillaga-Henríquez
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Sandra Enríquez
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Ana Poveda
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Facultad de Ciencias Químicas (FCQ), Facultad de Ingeniería Química (FIQ), Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
4
|
Caprari C, Bucci A, Ciotola AC, Del Grosso C, Dell'Edera I, Di Bartolomeo S, Di Pilla D, Divino F, Fortini P, Monaco P, Palmieri D, Petraroia M, Quaranta L, Lima G, Ranalli G. Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:2505. [PMID: 39273989 PMCID: PMC11396915 DOI: 10.3390/plants13172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
One of the major problems related to climate change is the increase in land area affected by higher salt concentrations and desertification. Finding economically and environmentally friendly sustainable solutions that effectively mitigate salt stress damage to plants is of great importance. In our work, some natural products and microbial biocontrol agents were evaluated for their long-term effectiveness in reducing salt stress in lettuce (Lactuca sativa L. var. romana) plants. Fourteen different treatments applied to soil pots, with and without salt stress, were analyzed using biometric (leaf and root length and width), physiological (chlorophyll and proline content), and morphological (microscopic preparations) techniques and NGS to study the microbial communities in the soil of plants subjected to different treatments. Under our long-term experimental conditions (90 days), the results showed that salt stress negatively affected plant growth. The statistical analysis showed a high variability in the responses of the different biostimulant treatments. Notably, the biocontrol agents Papiliotrema terrestris (strain PT22AV), Bacillus amyloliquefaciens (strain B07), and Rahnella aquatilis (strain 36) can act as salt stress mitigators in L. sativa. These findings suggest that both microbial biocontrol agents and certain natural products hold promise for reducing the adverse effects of salt stress on plants.
Collapse
Affiliation(s)
- Claudio Caprari
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Anastasia C Ciotola
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Carmine Del Grosso
- Department of Agriculture, Environment and Food Sciences, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy
- Institute for Sustainable Plant Protection, National Research Council (CNR), 70126 Bari, Italy
| | - Ida Dell'Edera
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Danilo Di Pilla
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Fabio Divino
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
- Department of Mathematics and Statistics, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Paola Fortini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Pamela Monaco
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Davide Palmieri
- Department of Agriculture, Environment and Food Sciences, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Luca Quaranta
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| | - Giuseppe Lima
- Department of Agriculture, Environment and Food Sciences, University of Molise, Via F. De Sanctis snc, 86100 Campobasso, Italy
| | - Giancarlo Ranalli
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone snc, 86090 Pesche, Italy
| |
Collapse
|
5
|
Strompfová V, Štempelová L. Composition and diversity of 16S rRNA based skin bacterial microbiome in healthy horses. Vet Res Commun 2024; 48:2847-2855. [PMID: 38900396 PMCID: PMC11315781 DOI: 10.1007/s11259-024-10444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Characterization of microbiota structure on the skin of healthy horses is important for further development of modulation strategies to ensure optimal bacterial composition for physiological processes. This requirement is also supported by the relatively high incidence of dermatological diseases in horses and thus the need to manage them therapeutically. The taxonomic analysis of skin samples (n = 30) from five different body parts of clinically healthy Shetlands ponies females (neck, back, abdomen, pastern, muzzle) kept under homogeneous conditions (in open stalls with paddock, feed with dry hay, green grass ad libitum and granulated feed) was performed using amplification of V3-V4 region of the 16S rRNA gene. Results indicate that bacteria associated with healthy equine skin represent 18 phyla, 29 classes and 119 families. The most abundant phyla were Proteobacteria (30.8 ± 9.1%) followed by Actinobacteriota (20.4 ± 7.6%), Firmicutes (19.5 ± 10.1%), Bacteroidota (8.5 ± 5.0%) and Deinococcota (7.2 ± 14.8%). Among 229 genera identified, Corynebacterium (7.4 ± 6.5%) was the most abundant genus in skin sites of horses, followed by Deinococcus (7.1 ± 14.9%) and Macrococcus (5.0 ± 8.2%). Indices for the richness and diversity of species within bacterial populations for five regions of horses skin revealed no significant variations observed for species richness (Chao1, p-value 0.2001) but significant result for species evenness (Shannon, p-value 0.0049) with maximum on the neck and minimum on the back skin site. The clustering was seen across samples from different skin sites but also across samples collected from individual horses.
Collapse
Affiliation(s)
- Viola Strompfová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01, Košice, Slovakia.
| | - Lucia Štempelová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, 040 01, Košice, Slovakia
| |
Collapse
|
6
|
Filek K, Vuković BB, Žižek M, Kanjer L, Trotta A, Di Bello A, Corrente M, Bosak S. Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities. MICROBIAL ECOLOGY 2024; 87:79. [PMID: 38814337 PMCID: PMC11139726 DOI: 10.1007/s00248-024-02388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.
Collapse
Affiliation(s)
- Klara Filek
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Borna Branimir Vuković
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Marta Žižek
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Lucija Kanjer
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| | - Adriana Trotta
- Campus Universitario, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, BA, Italy
| | - Antonio Di Bello
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia.
| |
Collapse
|
7
|
Wang X, Jing M, Ma Q, Lin Y, Zheng T, Yan J, Yun L, Wang C, Li Y. Oral microbiome sequencing revealed the enrichment of Fusobacterium sp., Porphyromonas sp., Campylobacter sp., and Neisseria sp. on the oral malignant fibroma surface of giant panda. Front Cell Infect Microbiol 2024; 14:1356907. [PMID: 38863832 PMCID: PMC11165184 DOI: 10.3389/fcimb.2024.1356907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Microbial community composition is closely associated with host disease onset and progression, underscoring the importance of understanding host-microbiota dynamics in various health contexts. Methods In this study, we utilized full-length 16S rRNA gene sequencing to conduct species-level identification of the microorganisms in the oral cavity of a giant panda (Ailuropoda melanoleuca) with oral malignant fibroma. Results We observed a significant difference between the microbial community of the tumor side and non-tumor side of the oral cavity of the giant panda, with the latter exhibiting higher microbial diversity. The tumor side was dominated by specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline oral taxon 078, that have been reported to be associated with tumorigenic processes and periodontal diseases in other organisms. According to the linear discriminant analysis effect size analysis, more than 9 distinct biomarkers were obtained between the tumor side and non-tumor side samples. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral microbiota of the giant panda was significantly associated with genetic information processing and metabolism, particularly cofactor and vitamin, amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial invasion of epithelial cells was predicted in the tumor side. Discussion This study provides crucial insights into the association between oral microbiota and oral tumors in giant pandas and offers potential biomarkers that may guide future health assessments and preventive strategies for captive and aging giant pandas.
Collapse
Affiliation(s)
- Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongwang Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Libing Yun
- Department of Forensic Pathology, West China School of Basic Medical Sciences and Forensic Science, Sichuan University, Chengdu, Sichuan, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant Panda, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Hu X, Yang L, Zhang Y, Yang M, Li J, Fan Y, Guo P, Tian Z. Fecal and oral microbiome analysis of snakes from China reveals a novel natural emerging disease reservoir. Front Microbiol 2024; 14:1339188. [PMID: 38274764 PMCID: PMC10808610 DOI: 10.3389/fmicb.2023.1339188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The gastrointestinal tract and oral cavity of animal species harbor complex microbial communities, the composition of which is indicative of the behavior, co-evolution, diet, and immune system of the host. Methods This study investigated the microbial composition in snakes from varying altitudinal ranges by assessing the fecal and oral bacterial communities in Protobothrops mucrosquamatus, Elaphe dione, and Gloydius angusticeps from Sichuan Province, China, using metagenomic sequencing. Results and discussion It was revealed that Bacteroidetes, Proteobacteria, Firmicutes, and Fusobacteria were the core microbial phyla in fecal samples across all three species, while Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were the core microbial phyla in oral samples across all three species. Notably, the dominance of Armatimonadetes was documented for the first time in the feces of all three species. Comparative analysis of the microbiomes of the three species indicated distinct microbiological profiles between snakes living at low- and high-altitude regions. Furthermore, 12 to 17 and 22 to 31 bacterial pathogens were detected in the oral and fecal samples, respectively, suggesting that snakes may serve as a novel reservoir for emerging diseases. Overall, this study provides a comparative analysis of the fecal and oral microbiomes in three snake species. Future investigations are anticipated to further elucidate the influence of age, genetics, behavior, diet, environment, ecology, and evolution on the gut and oral microbial communities of snakes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhige Tian
- Yibin Key Laboratory of Zoological Diversity and Ecological Conservation, Faculty of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, China
| |
Collapse
|
9
|
Montoya-Ciriaco N, Hereira-Pacheco S, Estrada-Torres A, Dendooven L, Méndez de la Cruz FR, Gómez-Acata ES, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Maternal transmission of bacterial microbiota during embryonic development in a viviparous lizard. Microbiol Spectr 2023; 11:e0178023. [PMID: 37847033 PMCID: PMC10714757 DOI: 10.1128/spectrum.01780-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE We investigated the presence and diversity of bacteria in the embryos of the viviparous lizard Sceloporus grammicus and their amniotic environment. We compared this diversity to that found in the maternal intestine, mouth, and cloaca. We detected bacterial DNA in the embryos, albeit with a lower bacterial species diversity than found in maternal tissues. Most of the bacterial species detected in the embryos were also found in the mother, although not all of them. Interestingly, we detected a high similarity in the composition of bacterial species among embryos from different mothers. These findings suggest that there may be a mechanism controlling the transmission of bacteria from the mother to the embryo. Our results highlight the possibility that the interaction between maternal bacteria and the embryo may affect the development of the lizards.
Collapse
Affiliation(s)
- Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Stephanie Hereira-Pacheco
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Arturo Estrada-Torres
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV, Mexico City, Mexico
| | - Fausto R. Méndez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Selene Gómez-Acata
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H. Díaz de la Vega-Pérez
- Consejo Nacional de Ciencia, Humanidades y Tecnología-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala., Tlaxcala, Mexico
| | - Yendi E. Navarro-Noya
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|