1
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
2
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
3
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
4
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Ferreira NS, Mathias JLS, Albuquerque SRL, Almeida ACG, Dantas AC, Anselmo FC, Lima ES, Lacerda MVG, Nogueira PA, Ramasawmy R, Gonçalves MS, Moura Neto JP. Duffy blood system and G6PD genetic variants in vivax malaria patients from Manaus, Amazonas, Brazil. Malar J 2022; 21:144. [PMID: 35527254 PMCID: PMC9080172 DOI: 10.1186/s12936-022-04165-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Over a third of the world’s population is at risk of Plasmodium vivax-induced malaria. The unique aspect of the parasite’s biology and interactions with the human host make it harder to control and eliminate the disease. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Duffy-negative blood groups are two red blood cell (RBC) variations that can confer protection against malaria. Methods Molecular genotyping of G6PD and Duffy variants was performed in 225 unrelated patients (97 with uncomplicated and 128 with severe vivax malaria) recruited at a Reference Centre for Infectious Diseases in Manaus. G6PD and Duffy variants characterizations were performed using Real Time PCR (qPCR) and PCR–RFLP, respectively. Results The Duffy blood group system showed a phenotypic distribution Fy(a + b−) of 70 (31.1%), Fy(a + b +) 96 (42.7%), Fy(a−b +) 56 (24.9%) and Fy(a−b−) 1 (0.44%.) The genotype FY*A/FY*B was predominant in both uncomplicated (45.3%) and severe malaria (39.2%). Only one Duffy phenotype Fy(a-b) was found and this involved uncomplicated vivax malaria. The G6PD c.202G > A variant was found in 11 (4.88%) females and 18 (8.0%) males, while c.376A > G was found in 20 females (8.88%) and 23 (10.22%) male patients. When combined GATA mutated and c.202G > A and c.376A > G mutated, was observed at a lower frequency in uncomplicated (3.7%) in comparison to severe malaria (37.9%). The phenotype Fy(a−b +) (p = 0.022) with FY*B/FY*B (p = 0.015) genotype correlated with higher parasitaemia. Conclusions A high prevalence of G6PD c202G > A and c.376A > G and Duffy variants is observed in Manaus, an endemic area for vivax malaria. In addition, this study reports for the first time the Duffy null phenotype Fy(a-b-) in the population of the Amazonas state. Moreover, it is understood that the relationship between G6PD and Duffy variants can modify clinical symptoms in malaria caused by P. vivax and this deserves to be further investigated and explored among this population. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04165-y.
Collapse
|
6
|
Mancio-Silva L, Gural N, Real E, Wadsworth MH, Butty VL, March S, Nerurkar N, Hughes TK, Roobsoong W, Fleming HE, Whittaker CA, Levine SS, Sattabongkot J, Shalek AK, Bhatia SN. A single-cell liver atlas of Plasmodium vivax infection. Cell Host Microbe 2022; 30:1048-1060.e5. [PMID: 35443155 DOI: 10.1016/j.chom.2022.03.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.
Collapse
Affiliation(s)
- Liliana Mancio-Silva
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 75015 Paris, France.
| | - Nil Gural
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Eliana Real
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 75015 Paris, France
| | - Marc H Wadsworth
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Vincent L Butty
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; BioMicro Center, MIT, Cambridge, MA 02139, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Niketa Nerurkar
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Travis K Hughes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Chemistry, MIT, Cambridge, MA 02139, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine Mahidol University, Bangkok 10400, Thailand
| | - Heather E Fleming
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Charlie A Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; BioMicro Center, MIT, Cambridge, MA 02139, USA
| | - Stuart S Levine
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; BioMicro Center, MIT, Cambridge, MA 02139, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine Mahidol University, Bangkok 10400, Thailand
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemistry, MIT, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; The Wyss Institute for Biologically Inspired Engineering Harvard University Boston, MA 02215, USA.
| |
Collapse
|
7
|
Obaldía N, Barahona I, Lasso J, Avila M, Quijada M, Nuñez M, Marti M. Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Negl Trop Dis 2022; 16:e0010327. [PMID: 35394999 PMCID: PMC9020738 DOI: 10.1371/journal.pntd.0010327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND As the elimination of malaria in Mesoamerica progresses, detection of Plasmodium vivax using light microscopy (LM) becomes more difficult. Highly sensitive molecular tools have been developed to help determine the hidden reservoir of malaria transmission in low transmission settings. In this study we compare the performance of PvLAP5 and Pvs25 qRT-PCR assays to LM for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from malaria endemic regions of Panama. METHODS For this purpose, we collected a total of 83 malaria field samples during 2017-2020 preserved in RNAprotect (RNAp) of which 63 (76%) were confirmed P. vivax by LM and selected for further analysis. Additionally, 16 blood samples from local healthy malaria smear negative volunteers, as well as, from 15 malaria naïve lab-bred Aotus monkeys were used as controls. To optimize the assays, we first determined the minimum blood volume sufficient for detection of PvLAP5 and Pv18SrRNA using P. vivax infected Aotus blood that was preserved in RNAp and kept either at ambient temperature for up to 8 days before freezing or was snap-frozen at -80° Celsius at the time of bleeding. We then compared the mean differences in gametocyte detection rates of both qRT-PCR assays to LM and performed a multivariate correlation analysis of study variables. Finally, we determined the sensitivity (Se) and specificity (Sp) of the assays at detecting gametocytes compared to LM. RESULTS Blood volume optimization indicated that a blood volume of at least 60 μL was sufficient for detection of PvLAP5 and Pv18SrRNA and no significant differences were found between RNA storage conditions. Both PvLAP5 and Pvs25 qRT-PCR assays showed a 37-39% increase in gametocyte detection rate compared to LM respectively. Strong positive correlations were found between gametocytemia and parasitemia and both PvLAP5 and Pvs25 gametocyte markers. However, no significant differences were detected in the Se and Sp of the Pvs25 and PvLAP5 qRT-PCR assays, even though data from control samples suggested Pvs25 to be more abundant than PvLAP5. CONCLUSIONS This study shows that the PvLAP5 qRT-PCR assay is as Se and Sp as the gold standard Pvs25 assay and is at least 37% more sensitive than LM at detecting P. vivax gametocytes in field samples preserved in RNAp at ambient temperature from malaria endemic regions of Panama. AUTHOR SUMMARY Plasmodium vivax is one of the five species of malaria (P. falciparum, P. malariae, P. ovale and P. knowlesi) that are transmitted to man by the bite of female anopheles mosquitoes. It causes ~14.3 million cases mainly in Southeast Asia, India, the Western Pacific and the Americas annually. In the Americas, malaria remains a major problem in underdeveloped areas and indigenous communities in the Amazon region and eastern Panama, where it is endemic and difficult to eliminate. As malaria elimination progresses, detection of P. vivax by light microscopy (LM) becomes more difficult. Therefore, highly sensitive molecular tools have been developed that use genetic markers for the parasite to help determine the hidden reservoir of malaria transmission. This study compares the performance of two molecular assays based on the genetic markers of mature gametocytes PvLAP5 and Pvs25 with LM. The study shows that the PvLAP5 qRT-PCR assay is as sensitive and specific as the gold standard Pvs25 assay and is at least 37% more sensitive than LM at detecting P. vivax gametocytes. These data suggest that the PvLAP5 qRT-PCR assay can be a useful tool to help determine the hidden reservoir of transmission in endemic foci approaching elimination.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Departamento de Investigaciones en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá, Republic of Panamá
- Department of Immunology and Infectious Diseases, Harvard T.H. CHAN School of Public Health, Boston, Massachusetts, United States of America
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Itza Barahona
- Departamento de Control de Vectores, Dirección General de Salud Pública, Ministerio de Salud de Panamá, Panamá, Republic of Panamá
| | - José Lasso
- Departamento de Control de Vectores, Dirección General de Salud Pública, Ministerio de Salud de Panamá, Panamá, Republic of Panamá
| | - Mario Avila
- Departamento de Control de Vectores, Dirección General de Salud Pública, Ministerio de Salud de Panamá, Panamá, Republic of Panamá
| | - Mario Quijada
- Departamento de Investigaciones en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá, Republic of Panamá
| | - Marlon Nuñez
- Departamento de Investigaciones en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá, Republic of Panamá
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. CHAN School of Public Health, Boston, Massachusetts, United States of America
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
8
|
Bantuchai S, Imad H, Nguitragool W. Plasmodium vivax gametocytes and transmission. Parasitol Int 2021; 87:102497. [PMID: 34748969 DOI: 10.1016/j.parint.2021.102497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/14/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.
Collapse
Affiliation(s)
- Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Hisham Imad
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
9
|
Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-Infected Reticulocytes-The Younger the Better? Front Cell Infect Microbiol 2021; 11:675156. [PMID: 34055670 PMCID: PMC8162270 DOI: 10.3389/fcimb.2021.675156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
After a century of constant failure to produce an in vitro culture of the most widespread human malaria parasite Plasmodium vivax, recent advances have highlighted the difficulties to provide this parasite with a healthy host cell to invade, develop, and multiply under in vitro conditions. The actual level of understanding of the heterogeneous populations of cells—framed under the name ‘reticulocytes’—and, importantly, their adequate in vitro progression from very immature reticulocytes to normocytes (mature erythrocytes) is far from complete. The volatility of its individual stability may suggest the reticulocyte as a delusory cell, particularly to be used for stable culture purposes. Yet, the recent relevance gained by a specific subset of highly immature reticulocytes has brought some hope. Very immature reticulocytes are characterized by a peculiar membrane harboring a plethora of molecules potentially involved in P. vivax invasion and by an intracellular complexity dynamically changing upon its quick maturation into normocytes. We analyze the potentialities offered by this youngest reticulocyte subsets as an ideal in vitro host cell for P. vivax.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Schäfer C, Roobsoong W, Kangwanrangsan N, Bardelli M, Rawlinson TA, Dambrauskas N, Trakhimets O, Parthiban C, Goswami D, Reynolds LM, Kennedy SY, Flannery EL, Murphy SC, Sather DN, Draper SJ, Sattabongkot J, Mikolajczak SA, Kappe SHI. A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection. iScience 2020; 23:101381. [PMID: 32739836 PMCID: PMC7399188 DOI: 10.1016/j.isci.2020.101381] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection. Human liver-chimeric FRGN huHep mice infected with P. vivax sporozoites were infused with human reticulocytes, allowing transition of exo-erythrocytic merozoites to reticulocyte infection and development into all erythrocytic forms, including gametocytes, in vivo. In order to test the utility of this model for preclinical assessment of interventions, the invasion blocking potential of a monoclonal antibody targeting the essential interaction of the P. vivax Duffy Binding Protein with the Duffy antigen receptor was tested by passive immunization. This antibody inhibited invasion by over 95%, providing unprecedented in vivo evidence that PvDBP constitutes a promising blood stage vaccine candidate and proving our model highly suitable to test blood stage interventions.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Chaitra Parthiban
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura M Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
11
|
Ayala MJC, Villela DAM. Early transmission of sensitive strain slows down emergence of drug resistance in Plasmodium vivax. PLoS Comput Biol 2020; 16:e1007945. [PMID: 32555701 PMCID: PMC7363008 DOI: 10.1371/journal.pcbi.1007945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 06/29/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
The spread of drug resistance of Plasmodium falciparum and Plasmodium vivax parasites is a challenge towards malaria elimination. P. falciparum has shown an early and severe drug resistance in comparison to P. vivax in various countries. In fact, P. vivax differs in its life cycle and treatment in various factors: development and duration of sexual parasite forms differ, symptoms severity are unequal, relapses present only in P. vivax cases and the Artemisinin-based combination therapy (ACT) is only mandatory in P. falciparum cases. We compared the spread of drug resistance for both species through two compartmental models using ordinary differential equations. The model structure describes how sensitive and resistant parasite strains infect a human population treated with antimalarials. We found that an early transmission,i.e., before treatment and low effectiveness of drug coverage, supports the prevalence of sensitive parasites delaying the emergence of resistant P. vivax. These results imply that earlier attention of both symptomatic cases and reservoirs of P. vivax are essential in controlling transmission but also accelerate the spread of drug resistance.
Collapse
Affiliation(s)
- Mario J. C. Ayala
- Programa de Computação Científica, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Daniel A. M. Villela
- Programa de Computação Científica, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Galinski MR. Functional genomics of simian malaria parasites and host-parasite interactions. Brief Funct Genomics 2020; 18:270-280. [PMID: 31241151 PMCID: PMC6859816 DOI: 10.1093/bfgp/elz013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/21/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Two simian malaria parasite species, Plasmodium knowlesi and Plasmodium cynomolgi, cause zoonotic infections in Southeast Asia, and they have therefore gained recognition among scientists and public health officials. Notwithstanding, these species and others including Plasmodium coatneyi have served for decades as sources of knowledge on the biology, genetics and evolution of Plasmodium, and the diverse ramifications and outcomes of malaria in their monkey hosts. Experimental analysis of these species can help to fill gaps in knowledge beyond what may be possible studying the human malaria parasites or rodent parasite species. The genome sequences for these simian malaria parasite species were reported during the last decade, and functional genomics research has since been pursued. Here research on the functional genomics analysis involving these species is summarized and their importance is stressed, particularly for understanding host–parasite interactions, and potentially testing novel interventions. Importantly, while Plasmodium falciparum and Plasmodium vivax can be studied in small New World monkeys, the simian malaria parasites can be studied more effectively in the larger Old World monkey macaque hosts, which are more closely related to humans. In addition to ex vivo analyses, experimental scenarios can include passage through Anopheline mosquito hosts and longitudinal infections in monkeys to study acute and chronic infections, as well as relapses, all in the context of the in vivo host environment. Such experiments provide opportunities for understanding functional genomic elements that govern host–parasite interactions, immunity and pathogenesis in-depth, addressing hypotheses not possible from in vitro cultures or cross-sectional clinical studies with humans.
Collapse
Affiliation(s)
- Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Balasubramanian S, Rahman RS, Lon C, Parobek C, Ubalee R, Hathaway N, Kuntawunginn W, My M, Vy D, Saxe J, Lanteri C, Lin FC, Spring M, Meshnick SR, Juliano JJ, Saunders DL, Lin JT. Efficient Transmission of Mixed Plasmodium falciparum/vivax Infections From Humans to Mosquitoes. J Infect Dis 2020; 221:428-437. [PMID: 31549156 PMCID: PMC7184918 DOI: 10.1093/infdis/jiz388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Southeast Asia, people are often coinfected with different species of malaria (Plasmodium falciparum [Pf] and Plasmodium vivax [Pv]) as well as with multiple clones of the same species. Whether particular species or clones within mixed infections are more readily transmitted to mosquitoes remains unknown. METHODS Laboratory-reared Anopheles dirus were fed on blood from 119 Pf-infected Cambodian adults, with 5950 dissected to evaluate for transmitted infection. Among 12 persons who infected mosquitoes, polymerase chain reaction and amplicon deep sequencing were used to track species and clone-specific transmission to mosquitoes. RESULTS Seven of 12 persons that infected mosquitoes harbored mixed Pf/Pv infection. Among these 7 persons, all transmitted Pv with 2 transmitting both Pf and Pv, leading to Pf/Pv coinfection in 21% of infected mosquitoes. Up to 4 clones of each species were detected within persons. Shifts in clone frequency were detected during transmission. However, in general, all parasite clones in humans were transmitted to mosquitoes, with individual mosquitoes frequently carrying multiple transmitted clones. CONCLUSIONS Malaria diversity in human hosts was maintained in the parasite populations recovered from mosquitoes fed on their blood. However, in persons with mixed Pf/Pv malaria, Pv appears to be transmitted more readily, in association with more prevalent patent gametocytemia.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Rifat S Rahman
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Christian Parobek
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicholas Hathaway
- Department of Bioinformatics and Integrated Biology, University of Massachusetts, Worcester
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mok My
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Dav Vy
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Jeremy Saxe
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Charlotte Lanteri
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Michele Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - David L Saunders
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Army Medical Materiel Development Activity, Fort Detrick, Maryland
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| |
Collapse
|
14
|
Polymorphisms in genes associated with drug resistance of Plasmodium vivax in India. Parasitol Int 2019; 70:92-97. [DOI: 10.1016/j.parint.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
|