1
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
2
|
Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, Shah P, Primorac D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024; 13:504. [PMID: 38534348 DOI: 10.3390/cells13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The integration of whole genome sequencing (WGS) into all aspects of modern medicine represents the next step in the evolution of healthcare. Using this technology, scientists and physicians can observe the entire human genome comprehensively, generating a plethora of new sequencing data. Modern computational analysis entails advanced algorithms for variant detection, as well as complex models for classification. Data science and machine learning play a crucial role in the processing and interpretation of results, using enormous databases and statistics to discover new and support current genotype-phenotype correlations. In clinical practice, this technology has greatly enabled the development of personalized medicine, approaching each patient individually and in accordance with their genetic and biochemical profile. The most propulsive areas include rare disease genomics, oncogenomics, pharmacogenomics, neonatal screening, and infectious disease genomics. Another crucial application of WGS lies in the field of multi-omics, working towards the complete integration of human biomolecular data. Further technological development of sequencing technologies has led to the birth of third and fourth-generation sequencing, which include long-read sequencing, single-cell genomics, and nanopore sequencing. These technologies, alongside their continued implementation into medical research and practice, show great promise for the future of the field of medicine.
Collapse
Affiliation(s)
- Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Matea Bračić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
| | - Petar Projić
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
| | | | - Nidhi Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Parth Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- REGIOMED Kliniken, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- National Forensic Sciences University, Gujarat 382007, India
| |
Collapse
|
3
|
Choi J, Kim S, Kim J, Son HY, Yoo SK, Kim CU, Park YJ, Moon S, Cha B, Jeon MC, Park K, Yun JM, Cho B, Kim N, Kim C, Kwon NJ, Park YJ, Matsuda F, Momozawa Y, Kubo M, Kim HJ, Park JH, Seo JS, Kim JI, Im SW. A whole-genome reference panel of 14,393 individuals for East Asian populations accelerates discovery of rare functional variants. SCIENCE ADVANCES 2023; 9:eadg6319. [PMID: 37556544 PMCID: PMC10411914 DOI: 10.1126/sciadv.adg6319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Underrepresentation of non-European (EUR) populations hinders growth of global precision medicine. Resources such as imputation reference panels that match the study population are necessary to find low-frequency variants with substantial effects. We created a reference panel consisting of 14,393 whole-genome sequences including more than 11,000 Asian individuals. Genome-wide association studies were conducted using the reference panel and a population-specific genotype array of 72,298 subjects for eight phenotypes. This panel yields improved imputation accuracy of rare and low-frequency variants within East Asian populations compared with the largest reference panel. Thirty-nine previously unidentified associations were found, and more than half of the variants were East Asian specific. We discovered genes with rare protein-altering variants, including LTBP1 for height and GPR75 for body mass index, as well as putative regulatory mechanisms for rare noncoding variants with cell type-specific effects. We suggest that this dataset will add to the potential value of Asian precision medicine.
Collapse
Affiliation(s)
- Jaeyong Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Seong-Keun Yoo
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Young Jun Park
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungji Moon
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bukyoung Cha
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | - Young Joo Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Macrogen Inc., Seoul, Republic of Korea
- Asian Genome Center, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Republic of Korea
| |
Collapse
|
4
|
Quinonez SC, Terefework Z. The introduction of clinical genetic testing in Ethiopia: Experiences and lessons learned. Am J Med Genet A 2021; 185:2995-3004. [PMID: 34169623 DOI: 10.1002/ajmg.a.62396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
Abstract
Limited data are available on genetic testing laboratories in low- and middle-income countries including those in sub-Saharan Africa (SSA). To characterize the need for genetic testing in SSA we describe the experience of MRC-ET Advanced Laboratory, a genetic testing laboratory in Ethiopia. Test results were analyzed based on indication(s) for testing, referral category, and diagnostic yield. A total of 1311 tests were run using the full MRC-Holland catalogue of Multiplex-Ligation Probe Amplification assays. Of all samples, 77% were postnatal samples, 15% products of conception (POC), and 8% amniotic samples. Of postnatal samples, the most common testing categories were multiple congenital anomalies (32%), disorders of sex development (17%), and Obstetrics/Gynecology (16%). Forty-three percent of postnatal samples were diagnostic, 11% were variants of uncertain significance (VUS), and 46% were normal with Trisomy 21 the most common diagnosis. Of POC samples, 10% were diagnostic, 34% revealed VUSs, and 55% were normal with Trisomy 18 the most common diagnosis. Of amniotic samples 17.5% were diagnostic, 3% revealed VUSs, and 79% were normal with Trisomy 18 the most common diagnosis. There is increasing demand for genetic testing in Ethiopia. Diagnostic genetic testing in SSA deserves increased attention as testing platforms become more affordable.
Collapse
Affiliation(s)
- Shane C Quinonez
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, Michigan Medicine, Ann Arbor, Michigan, USA.,Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
5
|
Samson CA, Whitford W, Snell RG, Jacobsen JC, Lehnert K. Contaminating DNA in human saliva alters the detection of variants from whole genome sequencing. Sci Rep 2020; 10:19255. [PMID: 33159102 PMCID: PMC7648094 DOI: 10.1038/s41598-020-76022-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cells obtained from human saliva are commonly used as an alternative DNA source when blood is difficult or less convenient to collect. Although DNA extracted from saliva is considered to be of comparable quality to that derived from blood, recent studies have shown that non-human contaminating DNA derived from saliva can confound whole genome sequencing results. The most concerning complication is that non-human reads align to the human reference genome using standard methodology, which can critically affect the resulting variant genotypes identified in a genome. We identified clusters of anomalous variants in saliva DNA derived reads which aligned in an atypical manner. These reads had only short regions of identity to the human reference sequence, flanked by soft clipped sequence. Sequence comparisons of atypically aligning reads from eight human saliva-derived samples to RefSeq genomes revealed the majority to be of bacterial origin (63.46%). To partition the non-human reads during the alignment step, a decoy of the most prevalent bacterial genome sequences was designed and utilised. This reduced the number of atypically aligning reads when trialled on the eight saliva-derived samples by 44% and most importantly prevented the associated anomalous genotype calls. Saliva derived DNA is often contaminated by DNA from other species. This can lead to non-human reads aligning to the human reference genome using current alignment best-practices, impacting variant identification. This problem can be diminished by using a bacterial decoy in the alignment process.
Collapse
Affiliation(s)
- C A Samson
- School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - W Whitford
- School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - R G Snell
- School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - J C Jacobsen
- School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| | - K Lehnert
- School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T. Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Front Genet 2020; 11:544162. [PMID: 33193618 PMCID: PMC7649788 DOI: 10.3389/fgene.2020.544162] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Mendelian and complex genetic trait diseases continue to burden and affect society both socially and economically. The lack of effective tests has hampered diagnosis thus, the affected lack proper prognosis. Mendelian diseases are caused by genetic mutations in a singular gene while complex trait diseases are caused by the accumulation of mutations in either linked or unlinked genomic regions. Significant advances have been made in identifying novel diseases associated mutations especially with the introduction of next generation and third generation sequencing. Regardless, some diseases are still without diagnosis as most tests rely on SNP genotyping panels developed from population based genetic analyses. Analysis of family genetic inheritance using whole genomes, whole exomes or a panel of genes has been shown to be effective in identifying disease-causing mutations. In this review, we discuss next generation and third generation sequencing platforms, bioinformatic tools and genetic resources commonly used to analyze family based genomic data with a focus on identifying inherited or novel disease-causing mutations. Additionally, we also highlight the analytical, ethical and regulatory challenges associated with analyzing personal genomes which constitute the data used for family genetic inheritance.
Collapse
Affiliation(s)
- Aquillah M. Kanzi
- Kwazulu-Natal Research and Innovation Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | | | | | | | |
Collapse
|
7
|
Buckley RM, Davis BW, Brashear WA, Farias FHG, Kuroki K, Graves T, Hillier LW, Kremitzki M, Li G, Middleton RP, Minx P, Tomlinson C, Lyons LA, Murphy WJ, Warren WC. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet 2020; 16:e1008926. [PMID: 33090996 PMCID: PMC7581003 DOI: 10.1371/journal.pgen.1008926] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models. The practice of genomic medicine is predicated on the availability of a high quality reference genome and an understanding of the impact of genome variation. Such resources have lead to countless discoveries in humans, however by working exclusively within the framework of human genetics, our potential for understanding diseases biology is limited, as similar analyses in other species have often lead to novel insights. The generation of Felis_catus_9.0, a new high quality reference genome for the domestic cat, helps facilitate the expansion of genomic medicine into the Felis lineage. Using Felis_catus_9.0 we analyze the landscape of genomic variation from a collection of 54 cats within the context of human gene constraint. The distribution of variant impacts in cats is correlated with patterns of gene constraint in humans, indicating the utility of this reference for identifying novel mutations that cause phenotypes relevant to human and cat health. Moreover, structural variant analysis revealed a novel variant for feline dwarfism in UGDH, a gene that has not been associated with dwarfism in any other species, suggesting a role for UGDH in cases of undiagnosed dwarfism in humans.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley A. Brashear
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Kei Kuroki
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tina Graves
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - LaDeana W. Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | | | - Patrick Minx
- Donald Danforth Plant Science, St Louis, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley C. Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
8
|
Köhler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine JP, Gargano M, Harris NL, Matentzoglu N, McMurry JA, Osumi-Sutherland D, Cipriani V, Balhoff JP, Conlin T, Blau H, Baynam G, Palmer R, Gratian D, Dawkins H, Segal M, Jansen AC, Muaz A, Chang WH, Bergerson J, Laulederkind SJF, Yüksel Z, Beltran S, Freeman AF, Sergouniotis PI, Durkin D, Storm AL, Hanauer M, Brudno M, Bello SM, Sincan M, Rageth K, Wheeler MT, Oegema R, Lourghi H, Della Rocca MG, Thompson R, Castellanos F, Priest J, Cunningham-Rundles C, Hegde A, Lovering RC, Hajek C, Olry A, Notarangelo L, Similuk M, Zhang XA, Gómez-Andrés D, Lochmüller H, Dollfus H, Rosenzweig S, Marwaha S, Rath A, Sullivan K, Smith C, Milner JD, Leroux D, Boerkoel CF, Klion A, Carter MC, Groza T, Smedley D, Haendel MA, Mungall C, Robinson PN. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res 2020; 47:D1018-D1027. [PMID: 30476213 PMCID: PMC6324074 DOI: 10.1093/nar/gky1105] [Citation(s) in RCA: 414] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
The Human Phenotype Ontology (HPO)—a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases—is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO’s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.
Collapse
Affiliation(s)
- Sebastian Köhler
- Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany.,Einstein Center Digital Future, Berlin 10117, Germany.,Monarch Initiative, monarchinitiative.org
| | - Leigh Carmody
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nicole Vasilevsky
- Monarch Initiative, monarchinitiative.org.,Oregon Health & Science University, Portland, OR 97217, USA
| | - Julius O B Jacobsen
- Monarch Initiative, monarchinitiative.org.,Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel Danis
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jean-Philippe Gourdine
- Monarch Initiative, monarchinitiative.org.,Oregon Health & Science University, Portland, OR 97217, USA
| | - Michael Gargano
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nomi L Harris
- Monarch Initiative, monarchinitiative.org.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nicolas Matentzoglu
- Monarch Initiative, monarchinitiative.org.,European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Julie A McMurry
- Monarch Initiative, monarchinitiative.org.,Linus Pauling institute, Oregon State University, Corvallis, OR, USA
| | - David Osumi-Sutherland
- Monarch Initiative, monarchinitiative.org.,European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Valentina Cipriani
- Monarch Initiative, monarchinitiative.org.,William Harvey Research Institute, Queen Mary University College of London.,UCL Genetics Institute, University College of London.,UCL Institute of Ophthalmology, University College of London
| | - James P Balhoff
- Monarch Initiative, monarchinitiative.org.,Renaissance Computing Institute, University of North Carolina at Chapel Hill
| | - Tom Conlin
- Monarch Initiative, monarchinitiative.org.,Linus Pauling institute, Oregon State University, Corvallis, OR, USA
| | - Hannah Blau
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, Department of Health, Government of Western Australia, WA, Australia.,School of Paediatrics and Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia.,The Office of Population Health Genomics, Department of Health, Government of Western Australia, Perth, WA, Australia
| | - Richard Palmer
- Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Dylan Gratian
- Western Australian Register of Developmental Anomalies and Genetic Services of Western Australia, Department of Health, Government of Western Australia, WA, Australia
| | - Hugh Dawkins
- The Office of Population Health Genomics, Department of Health, Government of Western Australia, Perth, WA, Australia
| | | | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Ahmed Muaz
- Monarch Initiative, monarchinitiative.org.,Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Willie H Chang
- Centre for Computational Medicine, Hospital for Sick Children and Department of Computer Science, University of Toronto, Toronto, Canada
| | - Jenna Bergerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stanley J F Laulederkind
- Rat Genome Database, Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, 8701 Watertown Plank Road Milwaukee, WI 53226, USA
| | | | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Daniel Durkin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Andrea L Storm
- ICF, Rockville, MD, USA.,National Center for Advancing Translational Sciences, Office of Rare Diseases Research, National Institutes of Health, Bethesda, MD, USA
| | - Marc Hanauer
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Michael Brudno
- Centre for Computational Medicine, Hospital for Sick Children and Department of Computer Science, University of Toronto, Toronto, Canada
| | | | - Murat Sincan
- Sanford Imagenetics, Sanford Health, Sioux Falls, SD, USA
| | - Kayli Rageth
- Sanford Imagenetics, Sanford Health, Sioux Falls, SD, USA
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, the Netherlands
| | - Halima Lourghi
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Maria G Della Rocca
- ICF, Rockville, MD, USA.,National Center for Advancing Translational Sciences, Office of Rare Diseases Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel Thompson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - James Priest
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ayushi Hegde
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ruth C Lovering
- Institute of Cardiovascular Science, University College London, UK
| | | | - Annie Olry
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Luigi Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morgan Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xingmin A Zhang
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - David Gómez-Andrés
- Child Neurology Unit. Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Hélène Dollfus
- Centre for Rare Eye Diseases CARGO, SENSGENE FSMR Network, Strasbourg University Hospital, Strasbourg, France
| | - Sergio Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Shruti Marwaha
- Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | - Ana Rath
- INSERM, US14-Orphanet, Plateforme Maladies Rares, 75014 Paris, France
| | - Kathleen Sullivan
- Department of Pediatrics, Division of Allergy Immunology, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | - Joshua D Milner
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dorothée Leroux
- Centre for Rare Eye Diseases CARGO, SENSGENE FSMR Network, Strasbourg University Hospital, Strasbourg, France
| | | | - Amy Klion
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Melody C Carter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tudor Groza
- Monarch Initiative, monarchinitiative.org.,Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Damian Smedley
- Monarch Initiative, monarchinitiative.org.,Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London EC1M 6BQ, UK
| | - Melissa A Haendel
- Monarch Initiative, monarchinitiative.org.,Oregon Health & Science University, Portland, OR 97217, USA.,Linus Pauling institute, Oregon State University, Corvallis, OR, USA
| | - Chris Mungall
- Monarch Initiative, monarchinitiative.org.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peter N Robinson
- Monarch Initiative, monarchinitiative.org.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
9
|
Haga SB, Orlando LA. The enduring importance of family health history in the era of genomic medicine and risk assessment. Per Med 2020; 17:229-239. [PMID: 32320338 DOI: 10.2217/pme-2019-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Improving disease risk prediction and tailoring preventive interventions to patient risk factors is one of the primary goals of precision medicine. Family health history is the traditional approach to quickly gather genetic and environmental data relevant to the patient. While the utility of family health history is well-documented, its utilization is variable, in part due to lack of patient and provider knowledge and incomplete or inaccurate data. With the advances and reduced costs of sequencing technologies, comprehensive sequencing tests can be performed as a risk assessment tool. We provide an overview of each of these risk assessment approaches, the benefits and limitations and implementation challenges.
Collapse
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| | - Lori A Orlando
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| |
Collapse
|
10
|
Identification of De Novo JAK2 and MAPK7 Mutations Related to Autism Spectrum Disorder Using Whole-Exome Sequencing in a Chinese Child and Adolescent Trio-Based Sample. J Mol Neurosci 2019; 70:219-229. [PMID: 31838722 PMCID: PMC7018782 DOI: 10.1007/s12031-019-01456-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high phenotypic and genetic heterogeneity. Whole-exome sequencing studies have shown that de novo single-nucleotide variations (SNVs) play an important role in sporadic ASD. The present study aimed to search for de novo SNVs using whole-exome sequencing in 59 unrelated Chinese ASD sporadic trios, and found 24 genes (including five reported ASD candidate genes CACNA1D, ACHE, YY1, TTN, and FBXO11) with de novo harmful SNVs. Five genes (CACNA1D, JAK2, ACHE, MAPK7, and PRKAG2) classified as “medium-confidence” genes were found to be related to ASD using the Phenolyzer gene analysis tool, which predicts the correlation between the candidate genes and the ASD phenotype. De novo SNVs in JAK2, MAPK7, and PRKAG2 were first found in ASD. Both JAK2 and MAPK7 were involved in the regulation of the MAPK signaling pathway. Gene co-expression and inter-gene interaction networks were constructed and gene expression data in different brain regions were further extracted, revealing that JAK2 and MAPK7 genes were associated with certain previously reported ASD genes and played an important role in early brain development. The findings of this study suggest that the aforementioned five reported ASD genes and JAK2 and MAPK7 may be related to ASD susceptibility. Further investigations of expression studies in cellular and animal models are needed to explore the mechanism underlying the involvement of JAK2 and MAPK7 in ASD.
Collapse
|
11
|
Wise AL, Manolio TA, Mensah GA, Peterson JF, Roden DM, Tamburro C, Williams MS, Green ED. Genomic medicine for undiagnosed diseases. Lancet 2019; 394:533-540. [PMID: 31395441 PMCID: PMC6709871 DOI: 10.1016/s0140-6736(19)31274-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022]
Abstract
One of the primary goals of genomic medicine is to improve diagnosis through identification of genomic conditions, which could improve clinical management, prevent complications, and promote health. We explore how genomic medicine is being used to obtain molecular diagnoses for patients with previously undiagnosed diseases in prenatal, paediatric, and adult clinical settings. We focus on the role of clinical genomic sequencing (exome and genome) in aiding patients with conditions that are undiagnosed even after extensive clinical evaluation and testing. In particular, we explore the impact of combining genomic and phenotypic data and integrating multiple data types to improve diagnoses for patients with undiagnosed diseases, and we discuss how these genomic sequencing diagnoses could change clinical management.
Collapse
Affiliation(s)
- Anastasia L Wise
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - George A Mensah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Josh F Peterson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecelia Tamburro
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Eric D Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Fujiwara T, Yamamoto Y, Kim JD, Buske O, Takagi T. PubCaseFinder: A Case-Report-Based, Phenotype-Driven Differential-Diagnosis System for Rare Diseases. Am J Hum Genet 2018; 103:389-399. [PMID: 30173820 DOI: 10.1016/j.ajhg.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/01/2018] [Indexed: 01/29/2023] Open
Abstract
Recently, to speed up the differential-diagnosis process based on symptoms and signs observed from an affected individual in the diagnosis of rare diseases, researchers have developed and implemented phenotype-driven differential-diagnosis systems. The performance of those systems relies on the quantity and quality of underlying databases of disease-phenotype associations (DPAs). Although such databases are often developed by manual curation, they inherently suffer from limited coverage. To address this problem, we propose a text-mining approach to increase the coverage of DPA databases and consequently improve the performance of differential-diagnosis systems. Our analysis showed that a text-mining approach using one million case reports obtained from PubMed could increase the coverage of manually curated DPAs in Orphanet by 125.6%. We also present PubCaseFinder (see Web Resources), a new phenotype-driven differential-diagnosis system in a freely available web application. By utilizing automatically extracted DPAs from case reports in addition to manually curated DPAs, PubCaseFinder improves the performance of automated differential diagnosis. Moreover, PubCaseFinder helps clinicians search for relevant case reports by using phenotype-based comparisons and confirm the results with detailed contextual information.
Collapse
|
13
|
Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes. Am J Hum Genet 2018; 103:58-73. [PMID: 29961570 DOI: 10.1016/j.ajhg.2018.05.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Integration of detailed phenotype information with genetic data is well established to facilitate accurate diagnosis of hereditary disorders. As a rich source of phenotype information, electronic health records (EHRs) promise to empower diagnostic variant interpretation. However, how to accurately and efficiently extract phenotypes from heterogeneous EHR narratives remains a challenge. Here, we present EHR-Phenolyzer, a high-throughput EHR framework for extracting and analyzing phenotypes. EHR-Phenolyzer extracts and normalizes Human Phenotype Ontology (HPO) concepts from EHR narratives and then prioritizes genes with causal variants on the basis of the HPO-coded phenotype manifestations. We assessed EHR-Phenolyzer on 28 pediatric individuals with confirmed diagnoses of monogenic diseases and found that the genes with causal variants were ranked among the top 100 genes selected by EHR-Phenolyzer for 16/28 individuals (p < 2.2 × 10-16), supporting the value of phenotype-driven gene prioritization in diagnostic sequence interpretation. To assess the generalizability, we replicated this finding on an independent EHR dataset of ten individuals with a positive diagnosis from a different institution. We then assessed the broader utility by examining two additional EHR datasets, including 31 individuals who were suspected of having a Mendelian disease and underwent different types of genetic testing and 20 individuals with positive diagnoses of specific Mendelian etiologies of chronic kidney disease from exome sequencing. Finally, through several retrospective case studies, we demonstrated how combined analyses of genotype data and deep phenotype data from EHRs can expedite genetic diagnoses. In summary, EHR-Phenolyzer leverages EHR narratives to automate phenotype-driven analysis of clinical exomes or genomes, facilitating the broader implementation of genomic medicine.
Collapse
|
14
|
Herkert JC, Abbott KM, Birnie E, Meems-Veldhuis MT, Boven LG, Benjamins M, du Marchie Sarvaas GJ, Barge-Schaapveld DQCM, van Tintelen JP, van der Zwaag PA, Vos YJ, Sinke RJ, van den Berg MP, van Langen IM, Jongbloed JDH. Toward an effective exome-based genetic testing strategy in pediatric dilated cardiomyopathy. Genet Med 2018. [DOI: 10.1038/gim.2018.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|