1
|
Lin TC, Uchino H, Ito M, Yamaguchi S, Ishi Y, Fujimura M. Moyamoya syndrome after proton beam therapy in a pediatric patient with a pineal germ cell tumor and a germline polymorphism in RNF213. Childs Nerv Syst 2024; 40:3873-3878. [PMID: 39167199 DOI: 10.1007/s00381-024-06576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The effects of RNF213, which leads to moyamoya disease susceptibility, on radiation-induced moyamoya syndrome (MMS) remain unknown. We report a case of MMS after proton beam therapy (PBT) was deployed to treat a brain tumor in a patient with an RNF213 polymorphism. An 8-year-old boy underwent whole ventricular and local PBT for a pineal germ cell tumor and was diagnosed with radiation-induced MMS 9 months later. He underwent right and left revascularization surgeries for cerebral hemodynamic compromise at 17- and 18-years of age, respectively. Genetic analysis revealed a heterozygous germline polymorphism RNF213 p.R4810K. This is the first report to suggest an association between RNF213 polymorphism and radiation-induced MMS.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
2
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Tsunoda S, Inoue T, Ohwaki K, Takeuchi N, Shinkai T, Fukuda A, Segawa M, Kawashima M, Akabane A, Miyawaki S, Saito N. Influence of an improvement in frontal lobe hemodynamics on neurocognitive function in adult patients with moyamoya disease. Neurosurg Rev 2024; 47:395. [PMID: 39093494 DOI: 10.1007/s10143-024-02639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND In adults, moyamoya disease (MMD) often presents with slight neurocognitive impairment, which may result from frontal lobe hemodynamic insufficiency. METHODS In this study, we performed revascularization surgery by superficial temporal artery-anterior cerebral artery (ACA) direct bypass in 20 adults with MMD with poor anterograde ACA flow (Group M). The pre- and postoperative neurocognitive test results of these patients were retrospectively analyzed. The comparative group (Group C) included 23 patients with unruptured aneurysms or brain tumors who underwent craniotomy, as well as the same neurocognitive tests as Group M. We calculated the compositive frontal lobe function index (CFFI) based on the results of seven neurocognitive tests for each patient, and the difference between the pre- and postoperative CFFI values (CFFI Post - Pre) was compared between the two groups. RESULTS Frontal perfusion improved postoperatively in all patients in Group M. The CFFI Post - Pre was significantly higher in Group M than in Group C (0.23 ± 0.44 vs. - 0.20 ± 0.32; p < 0.001). After adjusting for postoperative age, sex, preoperative non-verbal intelligence quotient, and preoperative period of stress, Group M had a significantly higher CFFI Post - Pre than Group C in the multiple regression analysis (t value = 4.01; p < 0.001). CONCLUSION Improving frontal lobe hemodynamics might be the key for improving neurocognitive dysfunction in adults with MMD. The surgical indication and method should be considered from the perspective of both stroke prevention and neurocognitive improvement or protection.
Collapse
Affiliation(s)
- Sho Tsunoda
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22, Higashigotanda, Shinagawa-Ku, Tokyo, 141-0022, Japan.
| | - Tomohiro Inoue
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22, Higashigotanda, Shinagawa-Ku, Tokyo, 141-0022, Japan
| | - Kazuhiro Ohwaki
- Teikyo University Graduate School of Public Health, Kaga, Itabashi-Ku, Tokyo, Japan
| | - Naoko Takeuchi
- Department of Rehabilitation, NTT Medical Center Tokyo, Higashigotanda, Shinagawa-Ku, Tokyo, Japan
| | - Takako Shinkai
- Department of Rehabilitation, NTT Medical Center Tokyo, Higashigotanda, Shinagawa-Ku, Tokyo, Japan
| | - Akira Fukuda
- Department of Rehabilitation, NTT Medical Center Tokyo, Higashigotanda, Shinagawa-Ku, Tokyo, Japan
| | - Masafumi Segawa
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22, Higashigotanda, Shinagawa-Ku, Tokyo, 141-0022, Japan
| | - Mariko Kawashima
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22, Higashigotanda, Shinagawa-Ku, Tokyo, 141-0022, Japan
| | - Atsuya Akabane
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22, Higashigotanda, Shinagawa-Ku, Tokyo, 141-0022, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, The University of Tokyo Hospital, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, Hongo, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
4
|
Cheng B, Yang R, Xu H, Wang L, Jiang N, Song T, Dong C. Peripheral Blood miRNA Expression in Patients with Essential Hypertension in the Han Chinese Population in Hefei, China. Biochem Genet 2024:10.1007/s10528-024-10867-6. [PMID: 38907084 DOI: 10.1007/s10528-024-10867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Primary hypertension is a significant risk factor for cardiovascular diseases. However, the pathogenesis of primary hypertension involves multiple biological processes, including the nervous system, circulatory system, endocrine system, and more. Despite extensive research, there is no clear understanding of the regulatory mechanism underlying its pathogenesis. In recent years, miRNAs have gained attention as a regulatory factor capable of modulating the expression of related molecules through gene silencing. Therefore, exploring differentially expressed miRNAs in patients with essential hypertension (EH) may offer a novel approach for future diagnosis and treatment of EH. This study included a total of twenty Han Chinese population samples from Hefei, China. The samples consisted of 10 healthy individuals and 10 patients with EH. Statistical analysis was conducted to analyze the general information of the two-sample groups. High-throughput sequencing and base identification were performed to obtain the original sequencing sequences. These sequences were then annotated using various databases including Rfam, cDNA sequences, species repetitive sequences library, and miRBase database. The number of miRNA species contained in the samples was measured. Next, TPM values were calculated to determine the expression level of each miRNA. The bioinformatics of the differentiated miRNAs were analyzed using the OECloud tool, and RPM values were calculated. Furthermore, the reliability of the expression was analyzed by calculating the area under the Roc curve using the OECloud tools. Statistical analysis revealed no significant differences between the two samples in terms of age distribution, gender composition, smoking history, and alcohol consumption history (P > 0.05). However, there was a notable presence of family genetic history and high BMI in the EH population (P < 0.05). The sequencing results identified a total of 245 miRNAs, out of which 16 miRNAs exhibited differential expression. Among the highly expressed miRNAs were let-7d-5p, miR-101-3p, miR-122-5p, miR-122b-3p, miR-192-5p, and miR-6722-3p. On the other hand, the lowly expressed miRNAs included miR-103a-3p, miR-16-5p, miR-181a-2-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-221-3p, miR-30d-5p, miR-342-5p, and miR-543. This study initially identified 16 miRNAs that are aberrantly expressed and function in various processes associated with the onset and progression of essential hypertension. These miRNAs have the potential to be targeted for future diagnosis and treatment of EH. However, further samples are required to provide additional support for this study.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Xu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Li Wang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Jiang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tingting Song
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China.
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
5
|
Uchino H, Ito M, Fujima N, Tokairin K, Tatezawa R, Sugiyama T, Fujimura M. Predictive value of the hemispheric magnetic resonance angiography score on the development of indirect pial synangiosis after combined revascularization surgery for adult moyamoya disease. Acta Neurochir (Wien) 2024; 166:181. [PMID: 38630203 DOI: 10.1007/s00701-024-06079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE It is difficult to precisely predict indirect bypass development in the context of combined bypass procedures in moyamoya disease (MMD). We aimed to investigate the predictive value of magnetic resonance angiography (MRA) signal intensity in the peripheral portion of the major cerebral arteries for indirect bypass development in adult patients with MMD. METHODS We studied 93 hemispheres from 62 adult patients who underwent combined direct and indirect revascularization between 2005 and 2019 and genetic analysis for RNF213 p.R4810K. The signal intensity of the peripheral portion of the major intracranial arteries during preoperative MRA was graded as a hemispheric MRA score (0-3 in the middle cerebral artery and 0-2 in the anterior cerebral and posterior cerebral arteries, with a high score representing low visibility) according to each vessel's visibility. Postoperative bypass development was qualitatively evaluated using MRA, and we evaluated the correlation between preoperative factors, including the hemispheric MRA score and bypass development, using univariate and multivariate analyses. RESULTS A good indirect bypass was observed in 70% of the hemispheres. Hemispheric MRA scores were significantly higher in hemispheres with good indirect bypass development than in those with poor indirect bypass development (median: 3 vs. 1; p < 0.0001). Multiple logistic regression analysis revealed hemispheric MRA score as an independent predictor of good indirect bypass development (odds ratio, 2.1; 95% confidence interval, 1.3-3.6; p < 0.01). The low hemispheric MRA score (< 2) and wild-type RNF213 predicted poor indirect bypass development with a specificity of 0.92. CONCLUSION Hemispheric MRA score was a predictive factor for indirect bypass development in adult patients who underwent a combined bypass procedure for MMD. Predicting poor indirect bypass development may lead to future tailored bypass surgeries for MMD.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Noriyuki Fujima
- Department of Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kikutaro Tokairin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Ryota Tatezawa
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
6
|
Zanoni P, Steindl K, Sticht H, Oneda B, Joset P, Ivanovski I, Horn AHC, Cabello EM, Laube J, Zweier M, Baumer A, Rauch A, Khan N. The genetic landscape and clinical implication of pediatric Moyamoya angiopathy in an international cohort. Eur J Hum Genet 2023; 31:784-792. [PMID: 37012328 PMCID: PMC10325976 DOI: 10.1038/s41431-023-01320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 04/05/2023] Open
Abstract
Pediatric Moyamoya Angiopathy (MMA) is a progressive intracranial occlusive arteriopathy that represents a leading cause of transient ischemic attacks and strokes in childhood. Despite this, up to now no large, exclusively pediatric MMA cohort has been subjected to systematic genetic investigation. In this study, we performed molecular karyotyping, exome sequencing and automated structural assessment of missense variants on a series of 88 pediatric MMA patients and correlated genetic, angiographic and clinical (stroke burden) findings. The two largest subgroups in our cohort consisted of RNF213 and neurofibromatosis type 1 (NF1) patients. While deleterious RNF213 variants were associated with a severe MMA clinical course with early symptom onset, frequent posterior cerebral artery involvement and higher stroke rates in multiple territories, NF1 patients had a similar infarct burden compared to non-NF1 individuals and were often diagnosed incidentally during routine MRIs. Additionally, we found that MMA-associated RNF213 variants have lower predicted functional impact compared to those associated with aortic disease. We also raise the question of MMA as a feature of recurrent as well as rare chromosomal imbalances and further support the possible association of MMA with STAT3 deficiency. In conclusion, we provide a comprehensive characterization at the genetic and clinical level of a large exclusively pediatric MMA population. Due to the clinical differences found across genetic subgroups, we propose genetic testing for risk stratification as part of the routine assessment of pediatric MMA patients.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland.
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Elena M Cabello
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Julia Laube
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, 8000, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8000, Switzerland.
- Moyamoya Center, University Children's Hospital, University of Zurich, Zurich, 8032, Switzerland.
| | - Nadia Khan
- Moyamoya Center, University Children's Hospital, University of Zurich, Zurich, 8032, Switzerland.
| |
Collapse
|
7
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
8
|
Uchino H, Ito M, Tokairin K, Tatezawa R, Sugiyama T, Kazumata K, Fujimura M. Association of RNF213 polymorphism and cortical hyperintensity sign on fluid-attenuated inversion recovery images after revascularization surgery for moyamoya disease: possible involvement of intrinsic vascular vulnerability. Neurosurg Rev 2023; 46:119. [PMID: 37166684 DOI: 10.1007/s10143-023-02030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
A cortical hyperintensity on fluid-attenuated inversion recovery images (FLAIR cortical hyperintensity (FCH)) is an abnormal finding after revascularization surgery for moyamoya disease. This study aimed to investigate the pathophysiology of FCH through genetic analyses of RNF213 p.R4810K polymorphism and perioperative hemodynamic studies using single-photon emission computed tomography. We studied 96 hemispheres in 65 adults and 47 hemispheres in 27 children, who underwent combined direct and indirect revascularization. Early or late FCH was defined when it was observed on postoperative days 0-2 and 6-9, respectively. FCH scores (range: 0-6) were evaluated according to the extent of FCH in the operated hemisphere. FCHs were significantly more prevalent in adult patients than pediatric patients (early: 94% vs. 78%; late: 97% vs. 59%). In pediatric patients, FCH scores were significantly improved from the early to late phase regardless of the RNF213 genotype (mutant median [IQR]: 2 [1-5] vs. 1 [0-2]; wild-type median: 4 [0.5-6] vs. 0.5 [0-1.75]). In adults, FCH scores were significantly improved in patients with the wild-type RNF213 allele (median: 4 [2-5.25] vs. 2 [2, 3]); however, they showed no significant improvement in patients with the RNF213 mutation. FCH scores were significantly higher in patients with symptomatic cerebral hyperperfusion than those without it (early median: 5 [4, 5] vs. 4 [2-5]; late median: 4 [3-5] vs. 3 [2-4]). In conclusion, the RNF213 p.R4810K polymorphism was associated with prolonged FCH, and extensive FCH was associated with symptomatic cerebral hyperperfusion in adult patients with moyamoya disease.
Collapse
Affiliation(s)
- Haruto Uchino
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kikutaro Tokairin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ryota Tatezawa
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
9
|
Dong XY, Yang J, Yang CH. The effect of dilated cardiomyopathy with moyamoya disease in a 31-year-old Chinese man: A case report. Medicine (Baltimore) 2022; 101:e31675. [PMID: 36550853 PMCID: PMC9771247 DOI: 10.1097/md.0000000000031675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a clinically common and refractory disease; however, few cases of dilated cardiomyopathy have been reported in patients with moyamoya diseases treated by combining traditional Chinese Medicine (TCM) and Western medicine, which has a higher risk of rehabilitation. CASE SUMMARY A 31-year-old man was admitted due to paroxysmal chest tightness and shortness of breath. He denied a history of DCM, hypertension, diabetes, pericarditis, smoking, and alcohol consumption. On admission, his transesophageal echocardiography (Fig. 1A) showed the larger heart with poor myocardial systolic function (left ventricular end diastolic diameter [LVEDd] 60 mm, left ventricular ejection fraction [LVEF] 38% [Teich]). On day 14 of admission, heart-related indicators were better than before. CONCLUSION The present case is the first report demonstrating appearance the dilated cardiomyopathy (DCM) and moyamoya disease simultaneously in a 31-year-old Chinese man, aimed to report the treatment of such patients using a combination of TCM and Western medicine and analyzing the necessity and advantages of using this treatment for patients suffering from DCM and moyamoya disease, so as to improve the level of clinical diagnosis and treatment of such diseases.
Collapse
Affiliation(s)
- Xia Yun Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of cardiovascular medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- * Correspondence: Jie Yang, Department of Cardiovascular Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, Lixia District, Jinan 250011, China (e-mail: )
| | - Chuan Hua Yang
- Department of cardiovascular medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Carratto TMT, Moraes VMS, Recalde TSF, Oliveira MLGD, Teixeira Mendes-Junior C. Applications of massively parallel sequencing in forensic genetics. Genet Mol Biol 2022; 45:e20220077. [PMID: 36121926 PMCID: PMC9514793 DOI: 10.1590/1678-4685-gmb-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | - Vitor Matheus Soares Moraes
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | | | | | - Celso Teixeira Mendes-Junior
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Kawabori M, Ito M, Kazumata K, Tokairin K, Hatanaka KC, Ishikawa S, Houkin K, Fujimura M. Impact of RNF213 c.14576G>A Variant on the Development of Direct and Indirect Revascularization in Pediatric Moyamoya Disease. Cerebrovasc Dis 2022; 52:171-176. [PMID: 36063804 PMCID: PMC10906473 DOI: 10.1159/000526089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Superficial temporal artery (direct) and encephalomyosynangiosis (indirect) revascularization may develop after combined bypass surgery in pediatric patients with moyamoya disease (MMD). However, arterial development varies widely among patients, and the underlying mechanisms remain unknown. OBJECTIVES We evaluated the relationship between the development of donor arteries after bypass surgery in pediatric patients with MMD and the MMD-susceptibility gene variant c.14576G>A of ring finger protein (RNF) 213. METHODS The data of pediatric patients with MMD (age <16 years at the time of surgery) treated with combined bypass surgery between September 2013 and April 2019 were consecutively analyzed. Quantitative measurements of the superficial temporal artery (STA), deep temporal artery (DTA), and middle meningeal artery (MMA) diameters with magnetic resonance angiography (MRA) source imaging were performed preoperatively and at 6-12 months postoperatively. The postoperative caliber change ratios (CCRs) were calculated. The relationship between CCRs and RNF213 c.14576G>A status was examined. RESULTS Forty-eight hemispheres from 28 pediatric patients with MMD were examined. Three hemispheres belonged to patients with the AA genotype; 33 to patients with the AG genotype (AA/AG group); and 12 to patients with the GG genotype (GG group; wild type). The CCRs for the DTA were significantly higher in patients with RNF213 variant (AA/AG group; 2.5 ± 0.1) than in the GG group (2.0 ± 0.2) (p = 0.03), whereas the CCRs for the STA were significantly higher in the GG (1.6 ± 0.1) than in the AA/AG group (1.3 ± 0.6) (p = 0.02). There was no significant difference in the CCRs for the MMA and basilar artery between the groups. Other factors, including sex, age, and MRA grading, were not associated with the development of specific bypass development. CONCLUSIONS The extent of collateral development associated with direct or indirect bypass was found to differ between the genotypes of the RNF213 c.14576G>A associated with pediatric MMD. This genetic variant correlates with the development of the disease and affects revascularization after bypass surgery in pediatric patients with MMD.
Collapse
Affiliation(s)
- Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kikutaro Tokairin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako C. Hatanaka
- Clinical Biobank, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Susumu Ishikawa
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Impact of RNF213 founder polymorphism (p.R4810K) on the postoperative development of indirect pial synangiosis after direct/indirect combined revascularization surgery for adult Moyamoya disease. Neurosurg Rev 2022; 45:2305-2313. [DOI: 10.1007/s10143-022-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
13
|
Mertens R, Graupera M, Gerhardt H, Bersano A, Tournier-Lasserve E, Mensah MA, Mundlos S, Vajkoczy P. The Genetic Basis of Moyamoya Disease. Transl Stroke Res 2021; 13:25-45. [PMID: 34529262 PMCID: PMC8766392 DOI: 10.1007/s12975-021-00940-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive spontaneous bilateral occlusion of the intracranial internal cerebral arteries (ICA) and their major branches with compensatory capillary collaterals resembling a “puff of smoke” (Japanese: Moyamoya) on cerebral angiography. These pathological alterations of the vessels are called Moyamoya arteriopathy or vasculopathy and a further distinction is made between primary and secondary MMD. Clinical presentation depends on age and population, with hemorrhage and ischemic infarcts in particular leading to severe neurological dysfunction or even death. Although the diagnostic suspicion can be posed by MRA or CTA, cerebral angiography is mandatory for diagnostic confirmation. Since no therapy to limit the stenotic lesions or the development of a collateral network is available, the only treatment established so far is surgical revascularization. The pathophysiology still remains unknown. Due to the early age of onset, familial cases and the variable incidence rate between different ethnic groups, the focus was put on genetic aspects early on. Several genetic risk loci as well as individual risk genes have been reported; however, few of them could be replicated in independent series. Linkage studies revealed linkage to the 17q25 locus. Multiple studies on the association of SNPs and MMD have been conducted, mainly focussing on the endothelium, smooth muscle cells, cytokines and growth factors. A variant of the RNF213 gene was shown to be strongly associated with MMD with a founder effect in the East Asian population. Although it is unknown how mutations in the RNF213 gene, encoding for a ubiquitously expressed 591 kDa cytosolic protein, lead to clinical features of MMD, RNF213 has been confirmed as a susceptibility gene in several studies with a gene dosage-dependent clinical phenotype, allowing preventive screening and possibly the development of new therapeutic approaches. This review focuses on the genetic basis of primary MMD only.
Collapse
Affiliation(s)
- R Mertens
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Berlin, Germany
| | - M Graupera
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Barcelona, Spain
| | - H Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - A Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - E Tournier-Lasserve
- Department of Genetics, NeuroDiderot, Lariboisière Hospital and INSERM UMR-1141, Paris-Diderot University, Paris, France
| | - M A Mensah
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Berlin, Germany.,BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Mundlos
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Berlin, Germany.,Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
| | - P Vajkoczy
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Berlin, Germany.
| |
Collapse
|
14
|
Fang YC, Wei LF, Hu CJ, Tu YK. Pathological Circulating Factors in Moyamoya Disease. Int J Mol Sci 2021; 22:ijms22041696. [PMID: 33567654 PMCID: PMC7915927 DOI: 10.3390/ijms22041696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular disease that presents with vascular stenosis and a hazy network of collateral formations in angiography. However, the detailed pathogenic pathway remains unknown. Studies have indicated that in addition to variations in the of genetic factor RNF213, unusual circulating angiogenetic factors observed in patients with MMD may play a critical role in producing “Moyamoya vessels”. Circulating angiogenetic factors, such as growth factors, vascular progenitor cells, cytokines, inflammatory factors, and other circulating proteins, could promote intimal hyperplasia in vessels and excessive collateral formation with defect structures through endothelial hyperplasia, smooth muscle migration, and atypical neovascularization. This study summarizes the hypothesized pathophysiology of how these circulating factors affect MMD and the interactive modulation between them.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Ling-Fei Wei
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| |
Collapse
|
15
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
16
|
Tokairin K, Hamauchi S, Ito M, Kazumata K, Sugiyama T, Nakayama N, Kawabori M, Osanai T, Houkin K. Vascular Smooth Muscle Cell Derived from IPS Cell of Moyamoya Disease - Comparative Characterization with Endothelial Cell Transcriptome. J Stroke Cerebrovasc Dis 2020; 29:105305. [PMID: 32992193 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Moyamoya disease (MMD) is an occlusive cerebrovascular disease, causing stroke in children and young adults with unknown etiology. The fundamental pathology is fibrocellular intimal thickening of cerebral arteries, in which vascular smooth muscle cells (VSMCs) are observed as one of the major cell types. Although the characteristics of circulating smooth muscle progenitor cells have been previously reported, the VSMCs are poorly characterized in MMD. We aimed to characterize VSMCs in MMD using induced pluripotent stem cell (iPSC)-technology. METHODS We differentiated VSMCs from neural crest stem cells (NCSCs) using peripheral blood mononuclear cell-derived iPSCs and compared biological and transcriptome features under naïve culture conditions between three independent healthy control (HC) subjects and three MMD patients. VSMC transcriptome profiles were also compared to those of endothelial cells (ECs) differentiated from the same iPSCs. RESULTS Homogeneous spindle-shaped cells differentiated from iPSCs exhibited smooth muscle cell marker expressions, including α-smooth muscle actin (αSMA, 82.3 ± 6.7% and 81.0 ± 6.7%); calponin (91.3 ± 2.1% and 90.9 ± 1.3%); myosin heavy chain-11 (MYH11, 96.9 ± 0.7% and 97.1 ± 0.3%) without significance of differences between the two groups. Real-time PCR showed few PECAM1 and CD34 gene expressions in both groups, indicating features of differentiated VSMCs. There were no significant differences in cellular proliferation (p = 0.45), migration (p = 0.60), and contractile abilities (p = 0.96) between the two groups. Transcriptome analysis demonstrated similar gene expression profiles of VSMCs in HC subjects and MMD patients with six differentially expressed genes (DEGs); while ECs showed a distinct transcriptome profile in MMD patients with 120 DEGs. The Wnt-signaling pathway was a significant pathway in VSMCs. CONCLUSIONS This is the first study that established VSMCs from NCSCs using MMD patient-derived iPSCs and demonstrated similar biological function and transcriptome profile of iPSC-derived VMSCs in MMD patients and HC subjects under naïve single culture condition. Comparative transcriptome features between iPSC-derived VSMCs and ECs, displaying distinct transcriptome in the ECs, suggested that pathological traits can be driven by naïve ECs predominantly and VSMCs may require specific environmental factors in MMD, which provides novel insight into the pathophysiology of MMD. Our iPSC derived VSMC model can contribute to further investigations of diagnostic and therapeutic target of MMD in addition to the current iPSC derived EC model.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| | - Shuji Hamauchi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| | - Masaki Ito
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638; Department of Neurosurgery, Kushiro Rosai Hospital, Kushiro, Japan, 085-8533.
| | - Ken Kazumata
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| | - Taku Sugiyama
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| | - Naoki Nakayama
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638
| | - Toshiya Osanai
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan, 060-8638.
| |
Collapse
|
17
|
Liu L, He D, Wang Y, Sheng M. Integrated analysis of DNA methylation and transcriptome profiling of polycystic ovary syndrome. Mol Med Rep 2020; 21:2138-2150. [PMID: 32323770 PMCID: PMC7115196 DOI: 10.3892/mmr.2020.11005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to identify potentially important biomarkers associated with polycystic ovary syndrome (PCOS) by integrating DNA methylation with transcriptome profiling. The transcription (E‑MTAB‑3768) and methylation (E‑MTAB‑3777) datasets were retrieved from ArrayExpress. Paired transcription and methylation profiling data of 10 cases of PCOS and 10 healthy controls were available for screening differentially expressed genes (DEGs) and differentially methylated genes (DMGs). Genes with a negative correlation between expression levels and methylation levels were retained by correlation analysis to construct a protein‑protein interaction (PPI) network. Subsequently, functional and pathway enrichment analyses were performed to identify genes in the PPI network. Additionally, a disease‑associated pathway network was also established. A total of 491 overlapping genes, and the expression levels of 237 genes, were negatively correlated with their methylation levels. Functional enrichment analysis revealed that genes in the PPI network were mainly involved with biological processes of cellular response to stress, negative regulation of the biosynthetic process, and regulation of cell proliferation. The constructed pathway network associated with PCOS led to the identification of four important genes (SPP1, F2R, IL12B and RBP4) and two important pathways (Jak‑STAT signaling pathway and neuroactive ligand‑receptor interaction). Taken, together, the results from the present study have revealed numerous important genes with abnormal DNA methylation levels and altered mRNA expression levels, along with their associated functions and pathways. These findings may contribute to an improved understanding of the possible pathophysiology of PCOS.
Collapse
Affiliation(s)
- Li Liu
- Reproductive Medical Center, Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Dongyun He
- Reproductive Medical Center, Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Yang Wang
- Department of Dermatology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130031, P.R. China
| | - Minjia Sheng
- Reproductive Medical Center, Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| |
Collapse
|
18
|
Lee MJ, Fallen S, Zhou Y, Baxter D, Scherler K, Kuo MF, Wang K. The Impact of Moyamoya Disease and RNF213 Mutations on the Spectrum of Plasma Protein and MicroRNA. J Clin Med 2019; 8:jcm8101648. [PMID: 31658621 PMCID: PMC6832561 DOI: 10.3390/jcm8101648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disorder characterized by occlusion of bilateral internal carotid and intracerebral arteries with the compensatory growth of fragile small vessels. MMD patients develop recurrent infarctions in the basal ganglia and subcortical regions. Symptoms include transient ischemic attack or stroke, seizures, and headaches, which may occur suddenly or in a stepwise progression. Mutations in Ring Finger Protein 213 (RNF213), a Zinc ring finger protein, have been identified in some MMD patients but the etiology of MMD is still largely unknown. To gain insight into the pathophysiology of MMD, we characterized the impact of the RNF213 mutations on plasma protein and RNA profiles. Isobaric tags for relative and absolute quantitation and proximity extension assay were used to characterize the plasma proteome. Next generation sequencing-based small RNAseq was used to analyze the cell-free small RNAs in whole plasma and RNA encapsulated in extracellular vesicles. The changes of miRNAs and proteins identified are associated with signaling processes including angiogenesis and immune activities which may reflect the pathology and progression of MMD.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | | | - Yong Zhou
- Institute for Systems Biology, Seattle, WA 98109, USA.
| | - David Baxter
- Institute for Systems Biology, Seattle, WA 98109, USA.
| | | | - Meng-Fai Kuo
- Department of Neurosurgery, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|