1
|
Brosda S, Aoude LG, Bonazzi VF, Patel K, Lonie JM, Belle CJ, Newell F, Koufariotis LT, Addala V, Naeini MM, Pearson JV, Krause L, Waddell N, Barbour AP. Spatial intra-tumour heterogeneity and treatment-induced genomic evolution in oesophageal adenocarcinoma: implications for prognosis and therapy. Genome Med 2024; 16:90. [PMID: 39020404 PMCID: PMC11253399 DOI: 10.1186/s13073-024-01362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance. METHODS Whole-genome sequencing data from 59 treatment-naïve and 18 post-treatment samples from 29 OAC patients was analysed. Twenty-seven of these were enrolled in the DOCTOR trial, sponsored by the Australasian Gastro-Intestinal Trials Group. Two biopsies from each treatment-naïve tumour were assessed to define 'shared' (between both samples) and 'private' (present in one sample) mutations. RESULTS Mutational signatures SBS2/13 (APOBEC) and SBS3 (BRCA) were almost exclusively detected in private mutation populations of treatment-naïve tumours. Patients presenting these signatures had significantly worse disease specific survival. Furthermore, mutational signatures associated with platinum-based chemotherapy treatment as well as high platinum enrichment scores were only detected in post-treatment samples. Additionally, clones with high putative neoantigen binding scores were detected in some treatment-naïve samples suggesting immunoediting of clones. CONCLUSIONS This study demonstrates the high intra-tumour heterogeneity in OAC, as well as indicators for treatment-induced changes during tumour evolution. Intra-tumour heterogeneity remains a problem for successful treatment strategies in OAC.
Collapse
Affiliation(s)
- Sandra Brosda
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Vanessa F Bonazzi
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - James M Lonie
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Clemence J Belle
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Marjan M Naeini
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Lutz Krause
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Microba Life Sciences, Brisbane, QLD, 4000, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Andrew P Barbour
- Frazer Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
2
|
Deboever N, Jones CM, Yamashita K, Ajani JA, Hofstetter WL. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024; 385:e074962. [PMID: 38830686 DOI: 10.1136/bmj-2023-074962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Esophageal cancer is the seventh most common malignancy worldwide, with over 470 000 new cases diagnosed each year. Two distinct histological subtypes predominate, and should be considered biologically separate disease entities.1 These subtypes are esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Outcomes remain poor regardless of subtype, with most patients presenting with late stage disease.2 Novel strategies to improve early detection of the respective precursor lesions, squamous dysplasia, and Barrett's esophagus offer the potential to improve outcomes. The introduction of a limited number of biologic agents, as well as immune checkpoint inhibitors, is resulting in improvements in the systemic treatment of locally advanced and metastatic esophageal cancer. These developments, coupled with improvements in minimally invasive surgical and endoscopic treatment approaches, as well as adaptive and precision radiotherapy technologies, offer the potential to improve outcomes still further. This review summarizes the latest advances in the diagnosis and management of esophageal cancer, and the developments in understanding of the biology of this disease.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Jones
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Bao C, Tourdot RW, Brunette GJ, Stewart C, Sun L, Baba H, Watanabe M, Agoston AT, Jajoo K, Davison JM, Nason KS, Getz G, Wang KK, Imamura Y, Odze R, Bass AJ, Stachler MD, Zhang CZ. Genomic signatures of past and present chromosomal instability in Barrett's esophagus and early esophageal adenocarcinoma. Nat Commun 2023; 14:6203. [PMID: 37794034 PMCID: PMC10550953 DOI: 10.1038/s41467-023-41805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The progression of precancerous lesions to malignancy is often accompanied by increasing complexity of chromosomal alterations but how these alterations arise is poorly understood. Here we perform haplotype-specific analysis of chromosomal copy-number evolution in the progression of Barrett's esophagus (BE) to esophageal adenocarcinoma (EAC) on multiregional whole-genome sequencing data of BE with dysplasia and microscopic EAC foci. We identify distinct patterns of copy-number evolution indicating multigenerational chromosomal instability that is initiated by cell division errors but propagated only after p53 loss. While abnormal mitosis, including whole-genome duplication, underlies chromosomal copy-number changes, segmental alterations display signatures of successive breakage-fusion-bridge cycles and chromothripsis of unstable dicentric chromosomes. Our analysis elucidates how multigenerational chromosomal instability generates copy-number variation in BE cells, precipitates complex alterations including DNA amplifications, and promotes their independent clonal expansion and transformation. In particular, we suggest sloping copy-number variation as a signature of ongoing chromosomal instability that precedes copy-number complexity. These findings suggest copy-number heterogeneity in advanced cancers originates from chromosomal instability in precancerous cells and such instability may be identified from the presence of sloping copy-number variation in bulk sequencing data.
Collapse
Affiliation(s)
- Chunyang Bao
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, 10 Shattuck St, Boston, MA, 02115, USA
| | - Gregory J Brunette
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, 10 Shattuck St, Boston, MA, 02115, USA
| | - Chip Stewart
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Lili Sun
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
- Single-Cell Sequencing Program, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 2 Chome-40-1 Kurokami, Chuo Ward, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation of Cancer Research, 3-8-31 Ariake, Koto, Tokyo, Japan
| | - Agoston T Agoston
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Kunal Jajoo
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Jon M Davison
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Katie S Nason
- Department of Surgery, Baystate Medical Center, University of Massachusetts Medical School, 759 Chestnut St, Springfield, MA, 01107, USA
| | - Gad Getz
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Kenneth K Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation of Cancer Research, 3-8-31 Ariake, Koto, Tokyo, Japan
| | - Robert Odze
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
- Department of Pathology and Lab Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA.
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | - Matthew D Stachler
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA.
- Department of Pathology, University of California, San Francisco. 513 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
- Cancer Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Karlsson K, Przybilla MJ, Kotler E, Khan A, Xu H, Karagyozova K, Sockell A, Wong WH, Liu K, Mah A, Lo YH, Lu B, Houlahan KE, Ma Z, Suarez CJ, Barnes CP, Kuo CJ, Curtis C. Deterministic evolution and stringent selection during preneoplasia. Nature 2023; 618:383-393. [PMID: 37258665 PMCID: PMC10247377 DOI: 10.1038/s41586-023-06102-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 06/02/2023]
Abstract
The earliest events during human tumour initiation, although poorly characterized, may hold clues to malignancy detection and prevention1. Here we model occult preneoplasia by biallelic inactivation of TP53, a common early event in gastric cancer, in human gastric organoids. Causal relationships between this initiating genetic lesion and resulting phenotypes were established using experimental evolution in multiple clonally derived cultures over 2 years. TP53 loss elicited progressive aneuploidy, including copy number alterations and structural variants prevalent in gastric cancers, with evident preferred orders. Longitudinal single-cell sequencing of TP53-deficient gastric organoids similarly indicates progression towards malignant transcriptional programmes. Moreover, high-throughput lineage tracing with expressed cellular barcodes demonstrates reproducible dynamics whereby initially rare subclones with shared transcriptional programmes repeatedly attain clonal dominance. This powerful platform for experimental evolution exposes stringent selection, clonal interference and a marked degree of phenotypic convergence in premalignant epithelial organoids. These data imply predictability in the earliest stages of tumorigenesis and show evolutionary constraints and barriers to malignant transformation, with implications for earlier detection and interception of aggressive, genome-instable tumours.
Collapse
Affiliation(s)
- Kasper Karlsson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Science for Life Laboratory and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Moritz J Przybilla
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Wellcome Sanger Institute & University of Cambridge, Hinxton, UK
| | - Eran Kotler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aziz Khan
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hang Xu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kremena Karagyozova
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra Sockell
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wing H Wong
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Liu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda Mah
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingxin Lu
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kathleen E Houlahan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhicheng Ma
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
M Naeini M, Newell F, Aoude LG, Bonazzi VF, Patel K, Lampe G, Koufariotis LT, Lakis V, Addala V, Kondrashova O, Johnston RL, Sharma S, Brosda S, Holmes O, Leonard C, Wood S, Xu Q, Thomas J, Walpole E, Tao Mai G, Ackland SP, Martin J, Burge M, Finch R, Karapetis CS, Shannon J, Nott L, Bohmer R, Wilson K, Barnes E, Zalcberg JR, Mark Smithers B, Simes J, Price T, Gebski V, Nones K, Watson DI, Pearson JV, Barbour AP, Waddell N. Multi-omic features of oesophageal adenocarcinoma in patients treated with preoperative neoadjuvant therapy. Nat Commun 2023; 14:3155. [PMID: 37258531 PMCID: PMC10232490 DOI: 10.1038/s41467-023-38891-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
Oesophageal adenocarcinoma is a poor prognosis cancer and the molecular features underpinning response to treatment remain unclear. We investigate whole genome, transcriptomic and methylation data from 115 oesophageal adenocarcinoma patients mostly from the DOCTOR phase II clinical trial (Australian New Zealand Clinical Trials Registry-ACTRN12609000665235), with exploratory analysis pre-specified in the study protocol of the trial. We report genomic features associated with poorer overall survival, such as the APOBEC mutational and RS3-like rearrangement signatures. We also show that positron emission tomography non-responders have more sub-clonal genomic copy number alterations. Transcriptomic analysis categorises patients into four immune clusters correlated with survival. The immune suppressed cluster is associated with worse survival, enriched with myeloid-derived cells, and an epithelial-mesenchymal transition signature. The immune hot cluster is associated with better survival, enriched with lymphocytes, myeloid-derived cells, and an immune signature including CCL5, CD8A, and NKG7. The immune clusters highlight patients who may respond to immunotherapy and thus may guide future clinical trials.
Collapse
Affiliation(s)
- Marjan M Naeini
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Lauren G Aoude
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Vanessa F Bonazzi
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Kalpana Patel
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Guy Lampe
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| | | | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Venkateswar Addala
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Sowmya Sharma
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, 4006, Australia
- Anatomical Pathology, Australian Clinical Labs, 2153, Sydney, Australia
| | - Sandra Brosda
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Janine Thomas
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
- Mater Research Institute, Mater Misericordiae, South Brisbane, QLD, 4101, Australia
| | - Euan Walpole
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| | - G Tao Mai
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
| | - Stephen P Ackland
- Department of Medical Oncology, Calvary Mater Newcastle, Waratah, NSW, 2298, Australia
| | - Jarad Martin
- Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, NSW, 2298, Australia
| | - Matthew Burge
- Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Robert Finch
- Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Christos S Karapetis
- Flinders University Department of Medical Oncology, Flinders Medical Centre, Adelaide, SA, 5042, Australia
| | - Jenny Shannon
- Nepean Cancer Care Centre, Nepean Hospital, Sydney, NSW, 2747, Australia
| | - Louise Nott
- Department of Medical Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Robert Bohmer
- Department of General Surgery, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Kate Wilson
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth Barnes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - John R Zalcberg
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - B Mark Smithers
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, 4006, Australia
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Timothy Price
- Medical Oncology Unit, The Queen Elizabeth Hospital and University of Adelaide, Adelaide, SA, 5011, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - David I Watson
- Flinders University Discipline of Surgery, Flinders Medical Centre, Adelaide, SA, 5042, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Andrew P Barbour
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
- Princess Alexandra Hospital, Woolloongabba, QLD, 4102, Australia.
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
6
|
Maslenkina K, Mikhaleva L, Naumenko M, Vandysheva R, Gushchin M, Atiakshin D, Buchwalow I, Tiemann M. Signaling Pathways in the Pathogenesis of Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24119304. [PMID: 37298253 DOI: 10.3390/ijms24119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Barrett's esophagus (BE) is a premalignant lesion that can develop into esophageal adenocarcinoma (EAC). The development of Barrett's esophagus is caused by biliary reflux, which causes extensive mutagenesis in the stem cells of the epithelium in the distal esophagus and gastro-esophageal junction. Other possible cellular origins of BE include the stem cells of the mucosal esophageal glands and their ducts, the stem cells of the stomach, residual embryonic cells and circulating bone marrow stem cells. The classical concept of healing a caustic lesion has been replaced by the concept of a cytokine storm, which forms an inflammatory microenvironment eliciting a phenotypic shift toward intestinal metaplasia of the distal esophagus. This review describes the roles of the NOTCH, hedgehog, NF-κB and IL6/STAT3 molecular pathways in the pathogenesis of BE and EAC.
Collapse
Affiliation(s)
- Ksenia Maslenkina
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Maxim Naumenko
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Michail Gushchin
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| |
Collapse
|
7
|
Jajosky A, Fels Elliott DR. Esophageal Cancer Genetics and Clinical Translation. Thorac Surg Clin 2022; 32:425-435. [DOI: 10.1016/j.thorsurg.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Jiang J, Ding Y, Lu J, Chen Y, Chen Y, Zhao W, Chen W, Kong M, Li C, Teng X, Zhou Q, Xu N, Zhou D, Zhou Z, Wang H, Teng L. Integrative analysis reveals a clinicogenomic landscape associated with liver metastasis and poor prognosis in hepatoid adenocarcinoma of the stomach. Int J Biol Sci 2022; 18:5554-5574. [PMID: 36147475 PMCID: PMC9461653 DOI: 10.7150/ijbs.71449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer (GC) that histologically resembles hepatocellular carcinoma (HCC). Despite its low incidence, HAS had a poor 5-year survival rate. Currently, the linkages between clinicopathological and genomic features of HAS and its therapeutic targets remain largely unknown. Herein, we enrolled 90 HAS patients and 270 stage-matched non-HAS patients from our institution for comparing clinicopathological features. We found that HAS had worse overall survival and were more prone to develop liver metastasis than non-HAS in our cohort, which was validated via meta-analysis. By comparing whole-exome sequencing data of HAS (n=30), non-HAS (n=63), and HCC (n=355, The Cancer Genome Atlas), we identified a genomic landscape associated with unfavorable clinical features in HAS, which contained frequent somatic mutations and widespread copy number variations. Notably, signaling pathways regulating pluripotency of stem cells affected by frequent genomic alterations might contribute to liver metastasis and poor prognosis in HAS patients. Furthermore, HAS developed abundant multiclonal architecture associated with liver metastasis. Encouragingly, target analysis suggested that HAS patients might potentially benefit from anti-ERBB2 or anti-PD-1 therapy. Taken together, this study systematically demonstrated a high risk of liver metastasis and poor prognosis in HAS, provided a clinicogenomic landscape underlying these unfavorable clinical features, and identified potential therapeutic targets, laying the foundations for developing precise diagnosis and therapy in this rare but lethal disease.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Zhao
- Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenfan Chen
- Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Zhou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism & Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Hamdan A, Ewing A. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis. J Pathol 2022; 257:479-493. [PMID: 35355264 PMCID: PMC9321913 DOI: 10.1002/path.5901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alhafidz Hamdan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
Paulson TG, Galipeau PC, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Hadi K, Shah M, Arora K, Shelton J, Johnson M, Corvelo A, Maley CC, Yao X, Sanghvi R, Venturini E, Emde AK, Hubert B, Imielinski M, Robine N, Reid BJ, Li X. Somatic whole genome dynamics of precancer in Barrett's esophagus reveals features associated with disease progression. Nat Commun 2022; 13:2300. [PMID: 35484108 PMCID: PMC9050715 DOI: 10.1038/s41467-022-29767-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett’s esophagus compared to 40 Barrett’s patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett’s tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett’s versus those who progress to cancer is acquisition and expansion of TP53−/− cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett’s esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies. Barrett’s esophagus is a pre-malignant condition that can progress to esophageal cancer. Here, the authors carry out whole genome sequencing of samples from patients who did or did not progress to cancer and find that mutations in many genes occur regardless of progression status, but also find features associated with progressive disease.
Collapse
Affiliation(s)
- Thomas G Paulson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.
| | - Patricia C Galipeau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Kenji M Oman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Carissa A Sanchez
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195-5065, USA
| | - Lucian P Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA
| | - Kevin Hadi
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Minita Shah
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Kanika Arora
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | | | - Molly Johnson
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Andre Corvelo
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Xiaotong Yao
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | | | | | | | | | - Marcin Imielinski
- New York Genome Center (NYGC), New York, NY, 10013, USA.,Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, Institute for Computational Biomedicine and Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - Brian J Reid
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195-5065, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xiaohong Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.
| |
Collapse
|
11
|
Katz-Summercorn AC, Jammula S, Frangou A, Peneva I, O'Donovan M, Tripathi M, Malhotra S, di Pietro M, Abbas S, Devonshire G, Januszewicz W, Blasko A, Nowicki-Osuch K, MacRae S, Northrop A, Redmond AM, Wedge DC, Fitzgerald RC. Multi-omic cross-sectional cohort study of pre-malignant Barrett's esophagus reveals early structural variation and retrotransposon activity. Nat Commun 2022; 13:1407. [PMID: 35301290 PMCID: PMC8931005 DOI: 10.1038/s41467-022-28237-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Barrett's esophagus is a pre-malignant lesion that can progress to esophageal adenocarcinoma. We perform a multi-omic analysis of pre-cancer samples from 146 patients with a range of outcomes, comprising 642 person years of follow-up. Whole genome sequencing reveals complex structural variants and LINE-1 retrotransposons, as well as known copy number changes, occurring even prior to dysplasia. The structural variant burden captures the most variance across the cohort and genomic profiles do not always match consensus clinical pathology dysplasia grades. Increasing structural variant burden is associated with: high levels of chromothripsis and breakage-fusion-bridge events; increased expression of genes related to cell cycle checkpoint, DNA repair and chromosomal instability; and epigenetic silencing of Wnt signalling and cell cycle genes. Timing analysis reveals molecular events triggering genomic instability with more clonal expansion in dysplastic samples. Overall genomic complexity occurs early in the Barrett's natural history and may inform the potential for cancer beyond the clinically discernible phenotype.
Collapse
Affiliation(s)
- A C Katz-Summercorn
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - S Jammula
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - A Frangou
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - I Peneva
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - M O'Donovan
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - M Tripathi
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - S Malhotra
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - M di Pietro
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - S Abbas
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - G Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - W Januszewicz
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - A Blasko
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - K Nowicki-Osuch
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - S MacRae
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - A Northrop
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - A M Redmond
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - D C Wedge
- Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, UK
| | - R C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
12
|
Saller JJ, Mora LB, Nasir A, Mayer Z, Shahid M, Coppola D. Expression of DNA Mismatch Repair Proteins, PD1 and PDL1 in Barrett's Neoplasia. Cancer Genomics Proteomics 2022; 19:145-150. [PMID: 35181584 DOI: 10.21873/cgp.20310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/AIM Cancers with a microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) status respond to immune checkpoint inhibition (ICI). Regardless of the tumor type, MSI-H/dMMR status is a reliable biomarker for ICI responsiveness. This study aimed at determining the MSI-H status in precursor lesions to esophageal adenocarcinoma (EAC) such as Barrett's esophagus (BE) and BE with either low-grade dysplasia (LGD) or high-grade dysplasia (HGD). PATIENTS AND METHODS We performed immunohistochemical staining (IHC) for PMS2, MSH6, PD1, and PD-L1. RESULTS All cases of BE (50), LGD (48), and HGD (50) had intact PMS2 and MSH6 nuclear expression; were negative for PD1; and had a PD-L1 combined positive score (CPS) score <1. One EAC case (2%) was negative for PMS2 nuclear expression. One HGD case (2%) and two EAC cases (4%) were PD1 positive (CPS score <1 applied to PD1). One EAC case (2%) had a CPS score >1, and one EAC case (2%) was MSI-H. MSI-H tumors usually show PD-L1 expression, although the MSI-H EAC in this study had a PD-L1 CPS score of <1. CONCLUSION Further studies investigating EAC and its precursor lesions for PD1, PD-L1, and dMMR status may be informative regarding the immunogenicity of the evolution of EAC.
Collapse
Affiliation(s)
- James J Saller
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, U.S.A
| | - Linda B Mora
- Pathology Laboratory, Florida Digestive Health Specialists, Bradenton, FL, U.S.A
| | - Aejaz Nasir
- Pathology Laboratory, Florida Digestive Health Specialists, Bradenton, FL, U.S.A
| | - Zachary Mayer
- College of Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Mohammad Shahid
- Pathology Laboratory, Florida Digestive Health Specialists, Bradenton, FL, U.S.A
| | - Domenico Coppola
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, U.S.A.; .,Pathology Laboratory, Florida Digestive Health Specialists, Bradenton, FL, U.S.A
| |
Collapse
|
13
|
Schmidt M, Hackett RJ, Baker AM, McDonald SAC, Quante M, Graham TA. Evolutionary dynamics in Barrett oesophagus: implications for surveillance, risk stratification and therapy. Nat Rev Gastroenterol Hepatol 2022; 19:95-111. [PMID: 34728819 DOI: 10.1038/s41575-021-00531-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer development is a dynamic evolutionary process characterized by marked intratumoural heterogeneity at the genetic, epigenetic and phenotypic levels. Barrett oesophagus, the pre-malignant condition to oesophageal adenocarcinoma (EAC), is an exemplary system to longitudinally study the evolution of malignancy. Evidence has emerged of Barrett oesophagus lesions pre-programmed for progression to EAC many years before clinical detection, indicating a considerable window for therapeutic intervention. In this Review, we explore the mechanisms underlying clonal expansion and contraction that establish the Barrett oesophagus clonal mosaicism over time and space and discuss intrinsic genotypic and extrinsic environmental drivers that direct the evolutionary trajectory of Barrett oesophagus towards a malignant phenotype. We propose that understanding and exploiting the evolutionary dynamics of Barrett oesophagus will identify novel therapeutic targets, improve prognostic tools and offer the opportunity for personalized surveillance programmes geared to prevent progression to EAC.
Collapse
Affiliation(s)
- Melissa Schmidt
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
| | - Richard J Hackett
- Clonal Dynamics in Epithelia Group; Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stuart A C McDonald
- Clonal Dynamics in Epithelia Group; Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Quante
- Department of Medicine II, Klinikum rechts der Isar, Technical University Munich (TUM), München, Germany
- Department of Medicine II, Universitaetsklinikum Freiburg, Freiburg, Germany
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Maslyonkina KS, Konyukova AK, Alexeeva DY, Sinelnikov MY, Mikhaleva LM. Barrett's esophagus: The pathomorphological and molecular genetic keystones of neoplastic progression. Cancer Med 2022; 11:447-478. [PMID: 34870375 PMCID: PMC8729054 DOI: 10.1002/cam4.4447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Barrett's esophagus is a widespread chronically progressing disease of heterogeneous nature. A life threatening complication of this condition is neoplastic transformation, which is often overlooked due to lack of standardized approaches in diagnosis, preventative measures and treatment. In this essay, we aim to stratify existing data to show specific associations between neoplastic transformation and the underlying processes which predate cancerous transition. We discuss pathomorphological, genetic, epigenetic, molecular and immunohistochemical methods related to neoplasia detection on the basis of Barrett's esophagus. Our review sheds light on pathways of such neoplastic progression in the distal esophagus, providing valuable insight into progression assessment, preventative targets and treatment modalities. Our results suggest that molecular, genetic and epigenetic alterations in the esophagus arise earlier than cancerous transformation, meaning the discussed targets can help form preventative strategies in at-risk patient groups.
Collapse
|
15
|
Molecular characterization of Barrett's esophagus at single-cell resolution. Proc Natl Acad Sci U S A 2021; 118:2113061118. [PMID: 34795059 PMCID: PMC8617519 DOI: 10.1073/pnas.2113061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Barrett’s esophagus (BE), the premalignant condition of esophageal adenocarcinoma, is categorized into different stages which correlate with the risk of developing carcinoma. We performed single-cell DNA-sequencing experiments with fresh biopsies, which revealed the appearance of a specific T > C and T > G mutational signature, known as COSMIC signature SBS17, in BE cells that are chromosomally unstable. The SBS17-specific mutations were, however, not detected in chromosomally stable BE cells. Additionally, we performed single-cell RNA sequencing experiments which identified seven genes that facilitate the distinction between different BE stages on histological sections. Barrett’s esophagus (BE) is categorized, based on morphological appearance, into different stages, which correlate with the risk of developing esophageal adenocarcinoma. More advanced stages are more likely to acquire chromosomal instabilities, but stage-specific markers remain elusive. Here, we performed single-cell DNA-sequencing experiments (scDNAseq) with fresh BE biopsies. Dysplastic BE cells frequently contained chromosomal instability (CIN) regions, and these CIN cells carried mutations corresponding to the COSMIC mutational signature SBS17, which were not present in biopsy-matched chromosomally stable (CS) cells or patient-matched nondiseased control cells. CS cells were predominantly found in nondysplastic BE biopsies. The single-base substitution (SBS) signatures of all CS BE cells analyzed were indistinguishable from those of nondiseased esophageal or gastric cells. Single-cell RNA-sequencing (scRNAseq) experiments with BE biopsies identified two sets of marker genes which facilitate the distinction between columnar BE epithelium and nondysplastic/dysplastic stages. Moreover, histological validation confirmed a correlation between increased CLDN2 expression and the presence of dysplastic BE stages. Our scDNAseq and scRNAseq datasets, which are a useful resource for the community, provide insight into the mutational landscape and gene expression pattern at different stages of BE development.
Collapse
|
16
|
Killcoyne S, Fitzgerald RC. Evolution and progression of Barrett's oesophagus to oesophageal cancer. Nat Rev Cancer 2021; 21:731-741. [PMID: 34545238 DOI: 10.1038/s41568-021-00400-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are shaped through an evolutionary process of DNA mutation, cell selection and population expansion. Early steps in this process are driven by a set of mutated driver genes and structural alterations to the genome through copy number gains or losses. Oesophageal adenocarcinoma (EAC) and the pre-invasive tissue, Barrett's oesophagus (BE), provide an ideal example in which to observe and study this evolution. BE displays early genomic instability, specifically in copy number changes that may later be observed in EAC. Furthermore, these early changes result in patterns of progression (that is, 'born bad', gradual or catastrophic) that may help to describe the evolution of EAC. As only a small proportion of patients with BE will go on to develop cancer, a better understanding of these patterns and the resulting genomic changes should improve early detection in EAC and may provide clues for the evolution of cancer more broadly.
Collapse
Affiliation(s)
- Sarah Killcoyne
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Sharma S, George P, Waddell N. Precision diagnostics: Integration of tissue pathology and genomics in cancer. Pathology 2021; 53:809-817. [PMID: 34635323 DOI: 10.1016/j.pathol.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/09/2022]
Abstract
Traditionally, cancer diagnosis and management has been reactionary in that symptoms lead to investigations, then a diagnosis is followed by clinical management. This process is heavily dependent on tissue diagnosis mainly by histopathology and to a lesser extent, cytopathology. However, in recent times there has been a shift towards precision medicine to enable prevention, prediction and personalisation in healthcare. The core of precision medicine is optimising therapeutic benefit for patients, by using genomic and molecular profiling, analogously termed precision pathology. This review explores (1) the evolution of pathology from a para-clinical discipline to a mainstream medical field integral to oncology tumour boards; (2) its critical role in preventative, diagnostic, therapeutic and follow-up cancer care; (3) the future of tissue pathology in the era of precision oncology; and (4) how pathologists may evolve to future-proof their profession.
Collapse
Affiliation(s)
- Sowmya Sharma
- Medlab Pathology, Auburn, NSW, Australia; QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Qld, Australia; Faculty of Medicine, University of Queensland, Brisbane, Qld, Australia.
| | - Peter George
- Medlab Pathology, Auburn, NSW, Australia; genomiQa, Brisbane, Qld, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, Qld, Australia; Faculty of Medicine, University of Queensland, Brisbane, Qld, Australia; genomiQa, Brisbane, Qld, Australia
| |
Collapse
|
18
|
Panda A, Shin MR, Cheng C, Bajpai M. Barrett's Epithelium to Esophageal Adenocarcinoma: Is There a "Point of No Return"? Front Genet 2021; 12:706706. [PMID: 34603373 PMCID: PMC8485939 DOI: 10.3389/fgene.2021.706706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Esophageal adenocarcinoma (EA) arises from Barrett's epithelium (BE), and chronic gastroesophageal reflux disease is considered the strongest risk factor for disease progression. All BE patients undergo acid suppressive therapy, surveillance, and BE removal by surgery or endoscopic ablation, yet the incidence of EAC continues to increase. Despite the known side effects and mortality, the one-size-fits-all approach is the standard clinical management as there are no reliable methods for risk stratification. Methods: Paired-end Illumina NextSeq500 RNA sequencing was performed on total RNA extracted from 20-week intervals (0, 20, 40, and 60 W) of an in vitro BE carcinogenesis (BEC) model to construct time series global gene expression patterns (GEPs). The cells from two strategic time points (20 and 40 W) based on the GEPs were grown for another 20 weeks, with and without further acid and bile salt (ABS) stimulation, and the recurrent neoplastic cell phenotypes were evaluated. Results: Hierarchical clustering of 866 genes with ≥ twofold change in transcript levels across the four time points revealed maximum variation between the BEC20W and BEC40W cells. Enrichment analysis confirmed that the genes altered ≥ twofold during this window period associated with carcinogenesis and malignancy. Intriguingly, the BEC20W cells required further ABS exposure to gain neoplastic changes, but the BEC40W cells progressed to malignant transformation after 20 weeks even in the absence of additional ABS. Discussion: The transcriptomic gene expression patterns in the BEC model demonstrate evidence of a clear threshold in the progression of BE to malignancy. Catastrophic transcriptomic changes during a window period culminate in the commitment of the BE cells to a "point of no return," and removal of ABS is not effective in preventing their malignant transformation. Discerning this "point of no return" during BE surveillance by tracking the GEPs has the potential to evaluate risk of BE progression and enable personalized clinical management.
Collapse
Affiliation(s)
- Anshuman Panda
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Mi Ryung Shin
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Christina Cheng
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Manisha Bajpai
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Peters Y, Al-Kaabi A, Shaheen NJ, Chak A, Blum A, Souza RF, Di Pietro M, Iyer PG, Pech O, Fitzgerald RC, Siersema PD. Barrett oesophagus. Nat Rev Dis Primers 2019; 5:35. [PMID: 31123267 DOI: 10.1038/s41572-019-0086-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Barrett oesophagus (BE), the only known histological precursor of oesophageal adenocarcinoma (EAC), is a condition in which the squamous epithelium of the oesophagus is replaced by columnar epithelium as an adaptive response to gastro-oesophageal reflux. EAC has one of the fastest rising incidences of cancers in Western countries and has a dismal prognosis. BE is usually detected during endoscopic examination, and diagnosis is confirmed by the histological presence of intestinal metaplasia. Advances in genomics and transcriptomics have improved our understanding of the pathogenesis and malignant progression of intestinal metaplasia. As the majority of EAC cases are diagnosed in individuals without a known history of BE, screening for BE could potentially decrease disease-related mortality. Owing to the pre-malignant nature of BE, endoscopic surveillance of patients with BE is imperative for early detection and treatment of dysplasia to prevent further progression to invasive EAC. Developments in endoscopic therapy have resulted in a major shift in the treatment of patients with BE who have dysplasia or early EAC, from surgical resection to endoscopic resection and ablation. In addition to symptom control by optimization of lifestyle and pharmacological therapy with proton pump inhibitors, chemopreventive strategies based on NSAIDs and statins are currently being investigated for BE management.
Collapse
Affiliation(s)
- Yonne Peters
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ali Al-Kaabi
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicholas J Shaheen
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amitabh Chak
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Blum
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Rhonda F Souza
- Department of Medicine and the Center for Esophageal Diseases, Baylor University Medical Center at Dallas and the Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA
| | | | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Oliver Pech
- Department of Gastroenterology, St John of God Hospital, Regensburg, Germany
| | | | - Peter D Siersema
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands.
| |
Collapse
|