1
|
Righi D, Manco C, Pardini M, Stufano A, Schino V, Pelagotti V, Massa F, Stefano ND, Plantone D. Investigating interleukin-8 in Alzheimer's disease: A comprehensive review. J Alzheimers Dis 2025; 103:38-55. [PMID: 39558604 DOI: 10.1177/13872877241298973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Several studies indicate that the development of Alzheimer's disease (AD) has strong interactions with immune mechanisms within the brain, indicating a close association between inflammation in the central nervous system and the progression of neurodegeneration. Despite considerable progress in understanding the inflammatory aspects of AD, several of them remain unresolved. Pro-inflammatory cytokines and microglia are pivotal components in the inflammatory cascade. Among these, the role of interleukin-8 (IL-8) in neurodegeneration seems complex and multifaceted, involving inflammation, neurotoxicity, blood-brain barrier disruption, and oxidative stress, and is still poorly characterized. We conducted a review to describe the evidence of IL-8 involvement in AD. IL-8 is a cytokine known for its proinflammatory properties and typically produced by macrophages, predominantly functions as a chemotactic signal for attracting neutrophils to inflamed sites in the bloodstream. Interestingly, IL-8 is also present in the brain, where it is primarily released by microglia in response to inflammatory signals. This review aims to provide a comprehensive overview of the structure, function, and regulatory mechanisms of IL-8 relevant to AD pathology.
Collapse
Affiliation(s)
- Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Angela Stufano
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Schino
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Virginia Pelagotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Cai H, Zhang B, Ahrenfeldt J, Joseph JV, Riedel M, Gao Z, Thomsen SK, Christensen DS, Bak RO, Hager H, Vendelbo MH, Gao X, Birkbak N, Thomsen MK. CRISPR/Cas9 model of prostate cancer identifies Kmt2c deficiency as a metastatic driver by Odam/Cabs1 gene cluster expression. Nat Commun 2024; 15:2088. [PMID: 38453924 PMCID: PMC10920892 DOI: 10.1038/s41467-024-46370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Metastatic prostate cancer (PCa) poses a significant therapeutic challenge with high mortality rates. Utilizing CRISPR-Cas9 in vivo, we target five potential tumor suppressor genes (Pten, Trp53, Rb1, Stk11, and RnaseL) in the mouse prostate, reaching humane endpoint after eight weeks without metastasis. By further depleting three epigenetic factors (Kmt2c, Kmt2d, and Zbtb16), lung metastases are present in all mice. While whole genome sequencing reveals few mutations in coding sequence, RNA sequencing shows significant dysregulation, especially in a conserved genomic region at chr5qE1 regulated by KMT2C. Depleting Odam and Cabs1 in this region prevents metastasis. Notably, the gene expression signatures, resulting from our study, predict progression-free and overall survival and distinguish primary and metastatic human prostate cancer. This study emphasizes positive genetic interactions between classical tumor suppressor genes and epigenetic modulators in metastatic PCa progression, offering insights into potential treatments.
Collapse
Affiliation(s)
- Huiqiang Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bin Zhang
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Johanne Ahrenfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Justin V Joseph
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Maria Riedel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zongliang Gao
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ditte S Christensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nicolai Birkbak
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Martin K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Giguet‐Valard A, Thevenin C, Dreux S, Decatrelle V, Juve M, Yazza S, Adenet C, Lesueur M, Bouvagnet P, Gueneret M. Antenatal description of large 4q13.2q21.23 deletion and outcomes. Mol Genet Genomic Med 2024; 12:e2397. [PMID: 38351708 PMCID: PMC10864926 DOI: 10.1002/mgg3.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND 4q21 microdeletion syndrome is an emergent non-recurrent genomic disorder characterized by facial dysmorphy, progressive growth retardation, severe intellectual deficit, and absent or severely delayed speech. Deletions occur in clusters along 4q interstitial or terminal regions. 4q chromosomal aberrations are variable in type, size, and breakpoint. Genotype-phenotype correlation is a challenging task. The recurrent antenatal feature associated a posteriori with this syndrome is intrauterine growth retardation. There are very few precise antenatal descriptions of this syndrome. METHODS We report here the first antenatal history of one of the largest deletion of this region. RESULTS Our case harbored a 16.9 Mb deletion encompassing 135 protein coding genes including 20 OMIM morbid genes involved in neurological and cognitive abilities. Those breakpoints overlap two clusters of described microdeletion syndromes of cytogenetic band 4q13 and 4q21. CONCLUSION From the end of the second trimester, set of call signs associated with this syndrome can be completed by: excess of amniotic fluid, mild growth retardation, short long bones, bony anomalies of the extremities, and bulging cheeks. So, emphasis should be placed on the examination of the extremities, and the face during the routine targeted prenatal ultrasound.
Collapse
Affiliation(s)
- Anna‐Gaëlle Giguet‐Valard
- Multidisciplinary Department for Antenatal Diagnosis/Rare Neurological and Neuromuscular DisordersUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| | - Christelle Thevenin
- Private Laboratory for Biological Tests – BIOLAB MartiniqueFort‐de‐FranceFrance
| | - Sophie Dreux
- Pre‐Natal Biochemistry Unit, Biochemistry‐Hormonology LaboratoryRobert Debré Hospital, DMU Biogem AP‐HPParisFrance
| | - Valérie Decatrelle
- Multidisciplinary Department for Antenatal Diagnosis/Rare Neurological and Neuromuscular DisordersUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| | - Marie‐Laure Juve
- Multidisciplinary Department for Antenatal Diagnosis/Rare Neurological and Neuromuscular DisordersUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| | - Soraya Yazza
- Multidisciplinary Department for Antenatal Diagnosis/Rare Neurological and Neuromuscular DisordersUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| | - Clara Adenet
- Radiology DepartmentUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| | - Marion Lesueur
- Genomic LaboratoryUniversity Hospital of NeckerParisFrance
| | - Patrice Bouvagnet
- Multidisciplinary Department for Antenatal Diagnosis/Rare Neurological and Neuromuscular DisordersUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| | - Michèle Gueneret
- Multidisciplinary Department for Antenatal Diagnosis/Rare Neurological and Neuromuscular DisordersUniversity Hospital Center of MartiniqueFort‐de‐FranceFrance
| |
Collapse
|
4
|
Chopra M, McEntagart M, Clayton-Smith J, Platzer K, Shukla A, Girisha KM, Kaur A, Kaur P, Pfundt R, Veenstra-Knol H, Mancini GM, Cappuccio G, Brunetti-Pierri N, Kortüm F, Hempel M, Denecke J, Lehman A, Kleefstra T, Stuurman KE, Wilke M, Thompson ML, Bebin EM, Bijlsma EK, Hoffer MJ, Peeters-Scholte C, Slavotinek A, Weiss WA, Yip T, Hodoglugil U, Whittle A, diMonda J, Neira J, Yang S, Kirby A, Pinz H, Lechner R, Sleutels F, Helbig I, McKeown S, Helbig K, Willaert R, Juusola J, Semotok J, Hadonou M, Short J, Yachelevich N, Lala S, Fernández-Jaen A, Pelayo JP, Klöckner C, Kamphausen SB, Abou Jamra R, Arelin M, Innes AM, Niskakoski A, Amin S, Williams M, Evans J, Smithson S, Smedley D, de Burca A, Kini U, Delatycki MB, Gallacher L, Yeung A, Pais L, Field M, Martin E, Charles P, Courtin T, Keren B, Iascone M, Cereda A, Poke G, Abadie V, Chalouhi C, Parthasarathy P, Halliday BJ, Robertson SP, Lyonnet S, Amiel J, Gordon CT, Amiel J, Gordon CT. Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism. Am J Hum Genet 2021; 108:1138-1150. [PMID: 33909992 DOI: 10.1016/j.ajhg.2021.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/05/2021] [Indexed: 01/02/2023] Open
Abstract
ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), and Institut Imagine, Paris 75015, France; Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, Paris 75015, France
| | - Christopher T Gordon
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, Paris 75015, France.
| |
Collapse
|