1
|
Zuo JY, Chen HX, Yang Q, Liu ZG, He GW. Tetralogy of Fallot: variants of MYH6 gene promoter and cellular functional analyses. Pediatr Res 2024; 96:338-346. [PMID: 38135727 DOI: 10.1038/s41390-023-02955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development. METHODS In 608 subjects, including 315 TOF patients, we investigated the MYH6 gene promoter variants and verified the effect on gene expression by using cellular functional experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analysis. RESULTS In the MYH6 gene promoter, 12 variants were identified from 608 subjects. Five variants were found only in patients with TOF and two of them (g.3384G>T and g.4518T>C) were novel. Electrophoretic mobility shift assay with three cell lines (HEK-293, HL-1, and H9C2) showed significant changes in the transcription factors bound by the promoter variants compared to the wild-type. Dual luciferase reporter showed that four of the five variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.05). CONCLUSIONS This study is the first to test the cellular function of variants in the promoter region of the MYH6 gene in patients with TOF, which provides new insights into the genetic basis of TOF and provides a basis for further study of the mechanism of TOF formation. IMPACT DNA from 608 human subjects was sequenced for MYH6 gene promoter region variants with five variants found only in TOF patients and two were novel. EMSA and dual luciferase reporter experiments in three cell lines found these variants pathological. Prediction by JASPAR database indicated that these variants alter the transcription factor binding sites. The study, for the first time, confirmed that there are variants at the MYH6 gene promoter region and these variants alter the cellular function. The variants found in this study suggest the possible pathological role in the formation of TOF.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Zhi-Gang Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| |
Collapse
|
3
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE, Zhang J. SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies. Cells 2024; 13:168. [PMID: 38247859 PMCID: PMC10814623 DOI: 10.3390/cells13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| |
Collapse
|
4
|
Bosch E, Popp B, Güse E, Skinner C, van der Sluijs PJ, Maystadt I, Pinto AM, Renieri A, Bruno LP, Granata S, Marcelis C, Baysal Ö, Hartwich D, Holthöfer L, Isidor B, Cogne B, Wieczorek D, Capra V, Scala M, De Marco P, Ognibene M, Jamra RA, Platzer K, Carter LB, Kuismin O, van Haeringen A, Maroofian R, Valenzuela I, Cuscó I, Martinez-Agosto JA, Rabani AM, Mefford HC, Pereira EM, Close C, Anyane-Yeboa K, Wagner M, Hannibal MC, Zacher P, Thiffault I, Beunders G, Umair M, Bhola PT, McGinnis E, Millichap J, van de Kamp JM, Prijoles EJ, Dobson A, Shillington A, Graham BH, Garcia EJ, Galindo MK, Ropers FG, Nibbeling EAR, Hubbard G, Karimov C, Goj G, Bend R, Rath J, Morrow MM, Millan F, Salpietro V, Torella A, Nigro V, Kurki M, Stevenson RE, Santen GWE, Zweier M, Campeau PM, Severino M, Reis A, Accogli A, Vasileiou G. Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals. Genet Med 2023; 25:100950. [PMID: 37551667 DOI: 10.1016/j.gim.2023.100950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. METHODS Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. RESULTS Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. CONCLUSION This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated.
Collapse
Affiliation(s)
- Elisabeth Bosch
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Berlin Institute of Health at Charitè, Universitätsklinikum Berlin, Centre of Functional Genomics, Berlin, Germany; Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Esther Güse
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Isabelle Maystadt
- Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics Unit, University of Siena, Siena, Italy
| | - Lucia Pia Bruno
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Stefania Granata
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy; Medical Genetics Unit, University of Siena, Siena, Italy
| | - Carlo Marcelis
- Human Genetics department, Radboud university medical center, Nijmegen, The Netherlands
| | - Özlem Baysal
- Human Genetics department, Radboud university medical center, Nijmegen, The Netherlands
| | - Dewi Hartwich
- Institute of Human Genetics - University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Laura Holthöfer
- Institute of Human Genetics - University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, Service de Génétique médicale, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia De Marco
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marzia Ognibene
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Lauren B Carter
- Department of Pediatrics, Division of Medical Genetics, Levine Children's Hospital, Atrium Health, Charlotte, NC
| | - Outi Kuismin
- Department of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Ivon Cuscó
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Julian A Martinez-Agosto
- Departments of Human Genetics, Pediatrics, and Psychiatry, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ahna M Rabani
- Department of Pediatrics & Institute for Precision Health, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Charlotte Close
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Mallory Wagner
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, University of Michigan, Ann Arbor, MI
| | - Mark C Hannibal
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Health System, University of Michigan, Ann Arbor, MI
| | - Pia Zacher
- Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Isabelle Thiffault
- Department of Pediatrics and Pathology, Genomic Medicine Center, Children's Mercy Kansas City and Children's Mercy Research Institute, Kansas City, MO
| | - Gea Beunders
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia; Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Priya T Bhola
- Department of Genetics, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| | - Erin McGinnis
- Division of Neurology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - John Millichap
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jiddeke M van de Kamp
- Department of Human Genetics, Amsterdam UMC, location VU Medical Center, Amsterdam, The Netherlands
| | | | | | - Amelle Shillington
- Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Evan-Jacob Garcia
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Fabienne G Ropers
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, The Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gail Hubbard
- Department of Medical Genetics, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Catherine Karimov
- Department of Medical Genetics, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Guido Goj
- Vestische Kinder- und Jugendklinik, Datteln, Germany
| | - Renee Bend
- PreventionGenetics, Part of Exact Sciences, Marshfield, WI
| | - Julie Rath
- PreventionGenetics, Part of Exact Sciences, Marshfield, WI
| | | | | | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annalaura Torella
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus Zweier
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, Switzerland
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | | | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - Andrea Accogli
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre; Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany.
| |
Collapse
|
5
|
Zhang Y, Wang J, Zhao J, Huang G, Liu K, Pan W, Sun L, Li J, Xu W, He C, Zhang Y, Li S, Zhang H, Zhu J, He Y. Current status and challenges in prenatal and neonatal screening, diagnosis, and management of congenital heart disease in China. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:479-489. [PMID: 37301215 DOI: 10.1016/s2352-4642(23)00051-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/12/2023]
Abstract
Congenital heart disease (CHD), a wide spectrum of diseases with varied outcomes, is the most common congenital malformation worldwide. In this Series of three papers, we describe the burden of CHD in China; the development of screening, diagnosis, treatment, and follow-up strategies; and challenges associated with the disease. We also propose solutions and recommendations for policies and actions to improve the outcomes of CHD. In the first paper in this Series, we focus on prenatal and neonatal screening, diagnosis, and management of CHD. Based on advanced international knowledge, the Chinese Government has developed a network system comprising prenatal screening, diagnosis of CHD subtypes, specialist consultation appointments, and treatment centres for CHD. A new professional discipline, fetal cardiology, has been formed and rapidly developed. Consequently, the overall coverage of prenatal and neonatal screening and the accuracy of CHD diagnoses have gradually improved, and the neonatal CHD mortality rate has decreased substantially. However, China still faces several challenges in the prevention and treatment of CHD, such as insufficient diagnostic capabilities and unqualified consultation services in some regions and rural areas. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Yingying Zhang
- Maternal-Fetal Medicine Centre in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China; Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jingyi Wang
- Maternal-Fetal Medicine Centre in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China; Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Jianxin Zhao
- National Office for Maternal and Child Health Surveillance of China, National Centre for Birth Defect Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guoying Huang
- Pediatric Heart Centre, Children's Hospital of Fudan University, Shanghai, China
| | - Kaibo Liu
- Department of Perinatal Health, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Department of Perinatal Health, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Wei Pan
- Department of Maternal-Fetal Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Luming Sun
- Department of Fetal Medicine & Prenatal Diagnosis Centre, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Li
- Department of Ultrasound, Xijing Hospital, Xi'an, China
| | - Wenli Xu
- National Office for Maternal and Child Health Surveillance of China, National Centre for Birth Defect Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chunhua He
- National Office for Maternal and Child Health Surveillance of China, National Centre for Birth Defect Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yunting Zhang
- Child Health Advocacy Institute, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shoujun Li
- Pediatric Cardiac Surgery Center and State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease and Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhu
- National Office for Maternal and Child Health Surveillance of China, National Centre for Birth Defect Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, and Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihua He
- Maternal-Fetal Medicine Centre in Fetal Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Maternal-Fetal Medicine in Fetal Heart Disease, Beijing, China; Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China.
| |
Collapse
|