1
|
Mohamed DA, Mabrok HB, Ramadan AA, Elbakry HF. The potential role of alkaline diets in prevention of calcium oxalate kidney stone formation. Food Funct 2024; 15:12033-12046. [PMID: 39563640 DOI: 10.1039/d4fo03567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Formation of kidney stones is considered a major global problem. Diet plays an important role in the management of kidney stone formation. The main goal of the present research was to evaluate the protective role of fruit and vegetable mixtures as models of an alkaline diet on formation of kidney stones in rats and to conduct molecular docking study. The chemical compositions, phenolic compound profile, β-carotene content, vitamin C and antioxidant activity of both mixtures were assessed. Fruit (-42.419 ) and vegetable (-11.13) mixtures recorded a negative potential renal acid load in the presence of macro-/micro-nutrients, β-carotene and phenolic compounds; chlorogenic acid was the major content in both mixtures. Both mixtures exhibited high antioxidant activity. Molecular docking study proved that rutin displayed the highest binding affinities for glycolate oxidase (-11.8 kcal mol-1) and lactate dehydrogenase (-10.1 kcal mol-1). The kidney stone model in rats exhibited metabolic acidosis in the urinary profile through reduction of citrate; Ca, Mg and K excretion and elevation of oxalate, creatinine, creatinine clearance, uric acid, urea and protein. Additionally, there was a significant reduction in plasma Ca, Mg and K levels, while liver and kidney function parameters improved significantly. Fruit and vegetable mixtures as models of an alkaline diet proved improvement in all the parameters. Histopathological examination of kidney sections of the kidney stone model showed crystal deposition, inflammation, and severe necrosis. Kidney sections of alkaline diet models indicated mild and moderate changes. Conclusion: The results of this study proved that both alkaline diet models were effective in protecting against kidney stone formation in vivo and in molecular docking studies.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Hoda B Mabrok
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Asmaa A Ramadan
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Hagar F Elbakry
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| |
Collapse
|
2
|
Kwenda EP, Hernandez AD, Di Valerio E, Canales BK. Renal papillary tip biopsy in stone formers: a review of clinical safety and insights. Urolithiasis 2024; 52:93. [PMID: 38888601 DOI: 10.1007/s00240-024-01596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Alexander Randall first published renal papillary tip findings from stone formers in 1937, paving the way for endoscopic assessment to study stone pathogenesis. We performed a literature search to evaluate the safety of papillary tip biopsy and clinical insights gained from modern renal papillary investigations. A search on the topic of renal papillary biopsy provided an overview of Randall's plaques (RP), classification systems for renal papillary grading, and a summary of procedure type, complications, and outcomes. Within 26 identified manuscripts, 660 individuals underwent papillary tip biopsy percutaneously (n = 562), endoscopically (n = 37), or unspecified (n = 23). Post-operative hemoglobin changes were similar to controls. One individual (0.2%) reported fever > 38°, and long-term mean serum creatinine post-biopsy (n = 32) was unchanged. Biopsies during ureteroscopy or PCNL added ~20-30 min of procedure time. Compared to controls, papillary plaque-containing tissue had upregulation in pro-inflammatory genes, immune cells, and cellular apoptosis. Urinary calcium and papillary plaque coverage were found to differ between RP and non-RP stone formers, suggesting differing underlying pathophysiology for these groups. Two renal papillary scoring systems have been externally validated and are used to classify stone formers. Overall, this review shows that renal papillary biopsies have a low complication profile with high potential for further research. Systematic adaption of a papillary grading scale, newer tissue analysis techniques, and the development of animal models of Randall's plaque may allow further exploration of plaque pathogenesis and identify targets for prevention therapies in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Elizabeth P Kwenda
- Department of Urology, University of Florida, 1600 SW Archer Road, P.O. Box 100247, Gainesville, FL, 32610-0247, USA.
| | | | | | - Benjamin K Canales
- Department of Urology, University of Florida, 1600 SW Archer Road, P.O. Box 100247, Gainesville, FL, 32610-0247, USA
| |
Collapse
|
3
|
Wan W, Wu W, Amier Y, Li X, Yang J, Huang Y, Xun Y, Yu X. Engineered microorganisms: A new direction in kidney stone prevention and treatment. Synth Syst Biotechnol 2024; 9:294-303. [PMID: 38510204 PMCID: PMC10950756 DOI: 10.1016/j.synbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Numerous studies have shown that intestinal and urinary tract flora are closely related to the formation of kidney stones. The removal of probiotics represented by lactic acid bacteria and the colonization of pathogenic bacteria can directly or indirectly promote the occurrence of kidney stones. However, currently existing natural probiotics have limitations. Synthetic biology is an emerging discipline in which cells or living organisms are genetically designed and modified to have biological functions that meet human needs, or even create new biological systems, and has now become a research hotspot in various fields. Using synthetic biology approaches of microbial engineering and biological redesign to enable probiotic bacteria to acquire new phenotypes or heterologous protein expression capabilities is an important part of synthetic biology research. Synthetic biology modification of microorganisms in the gut and urinary tract can effectively inhibit the development of kidney stones by a range of means, including direct degradation of metabolites that promote stone production or indirect regulation of flora homeostasis. This article reviews the research status of engineered microorganisms in the prevention and treatment of kidney stones, to provide a new and effective idea for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Wenlong Wan
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weisong Wu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yirixiatijiang Amier
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianmiao Li
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Junyi Yang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yisheng Huang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Xun
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Aljohani A, Rashwan N, Vasani S, Alkhawashki A, Wu TT, Lu X, Castillo DA, Xiao J. The Health Benefits of Probiotic Lactiplantibacillus plantarum: A Systematic Review and Meta-Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10287-3. [PMID: 38816672 DOI: 10.1007/s12602-024-10287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
To ensure effective administration of probiotics in clinical practice, it is crucial to comprehend the specific strains and their association with human health. Therefore, we conducted a systematic review and meta-analysis to evaluate the scientific evidence on the impact of Lactiplantibacillus plantarum probiotic consumption on human health. Out of 11,831 records, 135 studies were assessed qualitatively, and 18 studies were included in the meta-analysis. This systematic review demonstrated that probiotic supplementation with L. plantarum, either alone or in combination, can significantly improve outcomes for patients with specific medical conditions. Meta-analysis revealed notable benefits in periodontal health, evidenced by reduced pocket depth and bleeding on probing (p < 0.001); in gastroenterological health, marked by significant reductions in abdominal pain (p < 0.001); and in infectious disease, through a reduction in C-reactive protein levels (p < 0.001). Cardiovascular benefits included lowered total cholesterol and low-density lipoprotein cholesterol in the L. plantarum intervention group (p < 0.05). Our study's clinical significance highlights the importance of considering probiotic strain and their application to specific diseases when planning future studies and clinical interventions, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Amal Aljohani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Noha Rashwan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Shruti Vasani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Alkhawashki
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
- Pediatrics, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Taheri H, Feizabadi MM, Keikha R, Afkari R. Therapeutic effects of probiotics and herbal medications on oxalate nephrolithiasis: a mini systematic review. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:4-18. [PMID: 38682062 PMCID: PMC11055440 DOI: 10.18502/ijm.v16i1.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives The majority of all kidney stone cases are oxalate urolithiasis with a high risk of recurrence. Beside its widespread occurrence, kidney stones are characterized by severe complications and high treatment costs. Probiotics and herbal medications could be forthcoming therapeutic interventions in the management of oxalate kidney stones. Materials and Methods The PubMed/MEDLINE database was searched for keywords "Oxalobacter formigenes" AND "Oxalate" OR "oxalate degradation" AND "Lactobacillus" OR "Bifidobacterium" OR "recombinant Lactobacillus" OR "Bacillus subtilis", and "urolithiasis" AND "herbal extract". The search returned 253 results, 38 of which were included in the review. Results Most of the oxalate-degrading probiotics belong to the Oxalobacter formigenes, Lactobacillus, Bifidobacterium, and Bacillus genus with a minimum dosage of 107 CFU in the form of capsules, sachets, and lyophilized powder. Oxalate concentration in media was 5-50mM with an incubation time ranging from 24h to 14 days. The majority of the studies suggested that probiotic supplementation might be useful for reducing urinary excretion of oxalate and urea and alleviation of stone formation. Different herbal extracts were used on murine models of nephrolithiasis (induced by 0.5-3% ethylene glycol) with reduction of renal inflammation and urinary parameters, and calcium oxalate crystals. Conclusion Several strains of probiotics and herbal extracts confer protective effects against kidney stone/nephrolithiasis, indicating their promising nature for being considered as elements of preventive / adjuvant therapeutic strategies.
Collapse
Affiliation(s)
- Hamed Taheri
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Mehdi Feizabadi
- Thoracic Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Keikha
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rouhi Afkari
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
6
|
Spangler JR, Cooper DN, Malanoski AP, Walper SA. Promoter Identification and Optimization for the Response of Lactobacillus plantarum WCFS1 to the Gram-Negative Pathogen-Associated Molecule N-3-Oxododecanoyl Homoserine Lactone. ACS Biomater Sci Eng 2023; 9:5111-5122. [PMID: 35708239 DOI: 10.1021/acsbiomaterials.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) in bacteria has been well studied as a cellular communication phenomenon for decades. In recent years, such systems have been repurposed for the use of biosensors in both cellular and cell-free contexts as well as for inducible protein expression in nontraditional chassis organisms. Such biosensors are particularly intriguing when considering the association between the pathogenesis of some bacteria and their signaling intermediates. Considering this relationship and considering the recent demonstration of the species Lactobacillus plantarum WCFS1 as both a synthetic biology chassis and an organism capable of detecting a pathogen-associated QS molecule, we wanted to develop this organism as a QS sentinel. We used an approach combining techniques from both systems and synthetic biology to identify a number of native QS-response genes and to alter associated promoter activity to tune the output of L. plantarum cultures exposed to N-3-oxododecanoyl homoserine lactone. The resulting engineered QS sentinel reinforces the potential of modified lactic acid bacteria (LAB) for use in human-health-promoting applications and also demonstrates a simple rational workflow to engineer sentinel organisms to respond to any environmental or chemical stimuli.
Collapse
Affiliation(s)
- Joseph R Spangler
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Denver N Cooper
- Spelman College, 350 Spelman Ln SW, Atlanta, Georgia 30314, United States
| | - Anthony P Malanoski
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| | - Scott A Walper
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave SW, Washington, D.C. 20375, United States
| |
Collapse
|
7
|
Modulatory effects of Lactiplantibacillus plantarum on chronic metabolic diseases. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Xu Z, Yao X, Duan C, Liu H, Xu H. Metabolic changes in kidney stone disease. Front Immunol 2023; 14:1142207. [PMID: 37228601 PMCID: PMC10203412 DOI: 10.3389/fimmu.2023.1142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, San Francisco, CA, United States
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Wu F, Cheng Y, Zhou J, Liu X, Lin R, Xiang S, Liu Z, Wang C. Zn 2+ regulates human oxalate metabolism by manipulating oxalate decarboxylase to treat calcium oxalate stones. Int J Biol Macromol 2023; 234:123320. [PMID: 36682657 DOI: 10.1016/j.ijbiomac.2023.123320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/21/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
A high concentration of oxalate is associated with an increased risk of kidney calcium oxalate (CaOx) stones, and the degradation of exogenous oxalate mostly depends on oxalate-degrading enzymes from the intestinal microbiome. We found that zinc gluconate supplement to patients with CaOx kidney stones could significantly improve the abundance of oxalate metabolizing bacteria in humans through clinical experiments on patients also subjected to antibiotic treatment. The analysis of clinical samples revealed that an imbalance of Lactobacillus and oxalate decarboxylase (OxDC) was involved in the formation of CaOx kidney stones. Then, we identified that Zn2+ could be used as an external factor to improve the activity of OxDC and promote Lactobacillus in the intestinal flora, and this treatment achieved a therapeutic effect on rats with stones aggravated by antibiotics. Finally, by analyzing the three-dimensional structure of OxDC and completing in vitro experiments, we propose a model of the Zn2+-induced reduction of CaOx kidney stone symptoms in rats by increasing the metabolism of oxalate through the positive effects of Zn2+ on Lactobacillus and OxDC.
Collapse
Affiliation(s)
- Fang Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Cheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianfu Zhou
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuehua Liu
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongwu Lin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Peerapen P, Thongboonkerd V. Kidney Stone Prevention. Adv Nutr 2023; 14:555-569. [PMID: 36906146 DOI: 10.1016/j.advnut.2023.03.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Kidney stone disease (KSD) (alternatively nephrolithiasis or urolithiasis) is a global health care problem that affects almost people in developed and developing countries. Its prevalence has been continuously increasing with a high recurrence rate after stone removal. Although effective therapeutic modalities are available, preventive strategies for both new and recurrent stones are required to reduce physical and financial burdens of KSD. To prevent kidney stone formation, its etiology and risk factors should be first considered. Low urine output and dehydration are the common risks of all stone types, whereas hypercalciuria, hyperoxaluria, and hypocitraturia are the major risks of calcium stones. In this article, up-to-date knowledge on strategies (nutrition-based mainly) to prevent KSD is provided. Important roles of fluid intake (2.5-3.0 L/d), diuresis (>2.0-2.5 L/d), lifestyle and habit modifications (for example, maintain normal body mass index, fluid compensation for working in high-temperature environment, and avoid cigarette smoking), and dietary management [for example, sufficient calcium at 1000-1200 mg/d, limit sodium at 2 or 3-5 g/d of sodium chloride (NaCl), limit oxalate-rich foods, avoid vitamin C and vitamin D supplements, limit animal proteins to 0.8-1.0 g/kg body weight/d but increase plant proteins in patients with calcium and uric acid stone and those with hyperuricosuria, increase proportion of citrus fruits, and consider lime powder supplementation] are summarized. Moreover, uses of natural bioactive products (for example, caffeine, epigallocatechin gallate, and diosmin), medications (for example, thiazides, alkaline citrate, other alkalinizing agents, and allopurinol), bacterial eradication, and probiotics are also discussed. Adv Nutr 2023;x:xx-xx.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Mehra Y, Rajesh NG, Viswanathan P. Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats. Probiotics Antimicrob Proteins 2022; 14:854-872. [PMID: 35699895 DOI: 10.1007/s12602-022-09958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.
Collapse
Affiliation(s)
- Yogita Mehra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
13
|
Zhang Y, Yang L, Zhang J, Huang K, Sun X, Yang Y, Wang T, Zhang Q, Zou Z, Jin M. Oral or intranasal immunization with recombinant Lactobacillus plantarum displaying head domain of Swine Influenza A virus hemagglutinin protects mice from H1N1 virus. Microb Cell Fact 2022; 21:185. [PMID: 36085207 PMCID: PMC9461438 DOI: 10.1186/s12934-022-01911-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine influenza A virus (swIAV) is a major concern for the swine industry owing to its highly contagious nature and acute viral disease. Currently, most commercial swIAV vaccines are traditional inactivated virus vaccines. The Lactobacillus plantarum-based vaccine platform is a promising approach for mucosal vaccine development. Oral and intranasal immunisations have the potential to induce a mucosal immune response, which confers protective immunity. The aim of this study was to evaluate the probiotic potential and adhesion ability of three L. plantarum strains. Furthermore, a recombinant L. plantarum strain expressing the head domain of swIAV antigen HA1 was constructed and evaluated for its ability to prevent swIAV infection. RESULTS The three L. plantarum strains isolated from healthy pig faecal samples maintained the highest survival rate when incubated at pH 3 and at bile salt concentration of 0.3%. They also showed high adherence to intestinal cells. All three L. plantarum strains were monitored in live mice, and no major differences in transit time were observed. Recombinant L. plantarum expressed swIAV HA1 protein (pSIP401-HA1-ZN-3) and conferred effective mucosal, cellular and systemic immune responses in the intestine as well as in the upper respiratory airways of mice. In conclusion, the oral and intranasal administration of L. plantarum strain pSIP401-HA1-ZN-3 in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. CONCLUSION In summary, these findings suggest that the engineered L. plantarum strain pSIP401-HA1-ZN-3 can be considered as an alternative approach for developing a novel vaccine during an swine influenza A pandemic.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Li Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiali Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Tian L, Liu Y, Xu X, Jiao P, Hu G, Cui Y, Chen J, Ma Y, Jin X, Wang K, Sun Q. Lactiplantibacillus plantarum J-15 reduced calcium oxalate kidney stones by regulating intestinal microbiota, metabolism, and inflammation in rats. FASEB J 2022; 36:e22340. [PMID: 35524736 DOI: 10.1096/fj.202101972rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023]
Abstract
The prevention role of Lactiplantibacillus plantarum against the formation of kidney stones has been increasingly recognized; its mechanism, however, has mainly been focused on inhibiting the inflammation in the colon in the gastrointestinal (GI) system, and the intestinal metabolites from microflora have not been revealed fully with regarding to the stone formation. In this study, we investigated the effect of L. plantarum J-15 on kidney stone formation in renal calcium oxalate (CaOx) rats induced by ethylene glycol and monitored the changes of intestinal microflora and their metabolites detected by 16S rRNA sequencing and widely targeted analysis, followed by the evaluation of the intestinal barrier function and inflammation levels in the colon, blood and kidney. The results showed that L. plantarum J-15 effectively reduced renal crystallization and urinary oxalic acid. Ten microbial genera, including anti-inflammatory and SCFAs-related Faecalibaculum, were enriched in the J-15 treatment group. There are 136 metabolites from 11 categories significantly different in the J-15 supplementation group compared with CaOx model rats, most of which were enriched in the amino acid metabolic and secondary bile acid pathways. The expression of intestinal tight junction protein Occludin and the concentration of pro-inflammatory cytokines and prostaglandin were decreased in the intestine, which further reduced the translocated lipopolysaccharide and inflammation levels in the blood upon J-15 treatment. Thus, the inflammation and injury in the kidney might be alleviated by downregulating TLR4/NF-κB/COX-2 signaling pathway. It suggested that L. plantarum J-15 might reduce kidney stone formation by restoring intestinal microflora and metabolic disorder, protecting intestinal barrier function, and alleviating inflammation. This finding provides new insights into the therapies for renal stones.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofang Xu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pengrui Jiao
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Gaofei Hu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yaqian Cui
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Wigner P, Bijak M, Saluk-Bijak J. Probiotics in the Prevention of the Calcium Oxalate Urolithiasis. Cells 2022; 11:cells11020284. [PMID: 35053400 PMCID: PMC8773937 DOI: 10.3390/cells11020284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Nephrolithiasis ranks third among urological diseases in terms of prevalence, making up about 15% of cases. The continued increase in the incidence of nephrolithiasis is most probably due to changes in eating habits (high protein, sodium, and sugar diets) and lifestyle (reduced physical activity) in all developed countries. Some 80% of all kidney stones cases are oxalate urolithiasis, which is also characterized by the highest risk of recurrence. Frequent relapses of nephrolithiasis contribute to severe complications and high treatment costs. Unfortunately, there is no known effective way to prevent urolithiasis at present. In cases of diet-related urolithiasis, dietary changes may prevent recurrence. However, in some patients, the condition is unrelated to diet; in such cases, there is evidence to support the use of stone-related medications. Interestingly, a growing body of evidence indicates the potential of the microbiome to reduce the risk of developing renal colic. Previous studies have primarily focused on the use of Oxalobacterformigenes in patients with urolithiasis. Unfortunately, this bacterium is not an ideal probiotic due to its antibiotic sensitivity and low pH. Therefore, subsequent studies sought to find bacteria which are capable of oxalate degradation, focusing on well-known probiotics including Lactobacillus and Bifidobacterium strains, Eubacterium lentum, Enterococcus faecalis, and Escherichia coli.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
- Correspondence:
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| |
Collapse
|
16
|
Liu Y, Jin X, Tian L, Jian Z, Ma Y, Cheng L, Cui Y, Li H, Sun Q, Wang K. Lactiplantibacillus plantarum Reduced Renal Calcium Oxalate Stones by Regulating Arginine Metabolism in Gut Microbiota. Front Microbiol 2021; 12:743097. [PMID: 34630369 PMCID: PMC8498331 DOI: 10.3389/fmicb.2021.743097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Renal calcium oxalate (CaOx) stones are a common kidney disease. There are few methods for reducing the formation of these stones. However, the potential of probiotics for reducing renal stones has received increasing interest. We previously isolated a strain of Lactiplantibacillus plantarum N-1 from traditional cheese in China. This study aimed to investigate the effects of N-1 on renal CaOx crystal deposition. Thirty rats were randomly allocated to three groups: control group (ddH2O by gavage), model group [ddH2O by gavage and 1% ethylene glycol (EG) in drinking water], and Lactiplantibacillus group (N-1 by gavage and 1% EG in drinking water). After 4 weeks, compared with the model group, the group treated with N-1 exhibited significantly reduced renal crystals (P < 0.05). In the ileum and caecum, the relative abundances of Lactobacillus and Eubacterium ventriosum were higher in the control group, and those of Ruminococcaceae UCG 007 and Rikenellaceae RC9 were higher in the N-1-supplemented group. In contrast, the relative abundances of Staphylococcus, Corynebacterium 1, Jeotgalicoccus, Psychrobacter, and Aerococcus were higher in the model group. We also predicted that the arginase level would be higher in the ileal microbiota of the model group than in the N-1-supplemented group with PICRUSt2. The arginase activity was higher, while the level of arginine was lower in the ileal contents of the model group than in the N-1-supplemented group. The arginine level in the blood was also higher in the N-1-supplemented group than in the model group. In vitro studies showed that exposure to arginine could reduce CaOx crystal adhesion to renal epithelial HK-2 cells. Our findings highlighted the important role of N-1 in reducing renal CaOx crystals by regulating arginine metabolism in the gut microbiota. Probiotics containing L. plantarum N-1 may be potential therapies for preventing renal CaOx stones.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Jin
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Tian
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yucheng Ma
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Cheng
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaqian Cui
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Li
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qun Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kunjie Wang
- Laboratory of Reconstructive Urology, Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
|
18
|
Albert A, Paul E, Rajakumar S, Saso L. Oxidative stress and endoplasmic stress in calcium oxalate stone disease: the chicken or the egg? Free Radic Res 2020; 54:244-253. [PMID: 32292073 DOI: 10.1080/10715762.2020.1751835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystal modulators play a significant role in the formation of calcium oxalate stone disease. When renal cells are subjected to oxalate stress, the loss in cell integrity leads to exposure of multiple proteins that assist and/or inhibit crystal attachment and retention. Contact between oxalate and calcium oxalate with urothelium proves fatal to cells as a result of reactive oxygen species generation and onset of oxidative stress. Hence, as a therapeutic strategy it was hypothesised that supplementation of antioxidants would suffice. On the contrary to popular belief, the detection of oxalate induced endoplasmic reticulum mediated apoptosis proved the ineffectiveness of antioxidant therapy alone. Thus, the inadequacy of antioxidant supplementation in oxalate stress invoked the presence of an alternative pathway for the induction of kidney fibrosis in hyperoxaluric rats. In addition to settling this query, the link between oxidative stress and ER stress is not well understood, especially in urolithiasis.
Collapse
Affiliation(s)
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvaraj Rajakumar
- Department of Pediatrics, Group of Molecular Cell Biology of Lipids, 315, Heritage Medical Research Center, University of Alberta, Edmonton, Canada
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Afkari R, Bokaeian M, Dabiri S, Ghaznavi H, Taheri M, Heidari Tajabadi F, Feizabadi MM. Reducing urinary oxalate by simultaneous using Sankol herbal drop with oxalate-degrading bacteria. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:460-467. [PMID: 32148677 PMCID: PMC7048961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Oxalate degrading bacteria and herbal extracts are new strategy for reducing hyperoxaluria. In Iranian traditional medicine, Sankol oral drop is widely used as an antispasmodic drug to reduce stones from urinary tract. This study aimed to evaluate the synergistic effect of oxalate-degrading bacteria and Sankol oral drop in reducing urinary oxalate in rat model. MATERIALS AND METHODS Several bacterial strains, including Lactobacillus (4), Bifidobacterium (2) and L. paracasei (2) (very strong in degrading oxalate in vitro) were used in this study. Male Wistar rats were divided into 6 groups (n = 6). The rats of Group I received normal diet and drinking water + 60% ethanol (positive group). Groups II (negative group), III, IV, V, and VI rats received diet containing ethylene glycol (3%) for 30 days. Groups III rats received Sankol with minimum concentration (7.5 ml/kg/b.w), Group IV rats received Sankol with maximum concentration (9 ml/kg/b.w), Group V rats received Sankol with minimum concentration + probiotic, and Group VI rats received Sankol with maximum concentration + probiotic for 30 days. RESULTS Treatment with Sankol (maximum concentration) and oxalate-degrading probiotic bacteria significantly reduced urinary oxalate (P = .0001). At the end of treatment period, rats in groups II (negative control) showed a high score of CaOx crystal, while rats in VI groups did not show any CaOx crystal. CONCLUSION This is the first study on the simultaneous use of Sankol herbal drop and oxalate-degrading probiotic bacteria that showed a significant reduction in urinary oxalate.
Collapse
Affiliation(s)
- Rouhi Afkari
- Department of Microbiology, School of Medicine, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Bokaeian
- Department of Microbiology, School of Medicine, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soroosh Dabiri
- Department of Laboratory Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Department of Genetics, School of Medicine, Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Mehdi Feizabadi, PhD, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran., Telefax: +98-21-88955810,
| |
Collapse
|
20
|
Yang A, Guo H, Fu M, Liu M. Inhibitive Effects of Huashi Pill on Formation of Renal Stones by Modulating Urine Biochemical Indexes and Osteopontin in Renal Stone Rat Models. Med Sci Monit 2019; 25:8335-8344. [PMID: 31690714 PMCID: PMC6857440 DOI: 10.12659/msm.916247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Renal stones are the accumulated or deposited crystals that form and appear in supersaturated urine. This study aimed to the investigate the therapeutic effects of Huashi Pill on clearance of renal stones. Material/Methods Sprague Dawley rats were divided into normal control, positive control, low-dosage Huashi Pill, medium-dosage Huashi Pill, and high-dosage Huashi Pill groups. A renal rat model was established by using ethylene glycol, ammonium chloride, and calcium gluconate. The urinary pH, urine protein, and uric acid levels, as well as the calcium, magnesium, and phosphorus levels were examined. The blood urea nitrogen (BUN) and creatinine (Cr) levels were also evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL) levels were evaluated. Crystal formation and calcium deposits were examined using hematoxylin and eosin (H and E) staining and von Kossa staining, respectively. Osteopontin (OPN) expression was evaluated with quantitative real-time polymerase chain reaction assay and immunohistochemical assay. Results A renal stone rat model was successfully established. Huashi Pill significantly improved water and food intake and enhanced pH value of urine (P<0.05). Huashi Pill significantly improved the liver functions by decreasing ALT and TBIL levels (P<0.05). Huashi Pill regulated the amounts of microelements. Huashi Pill significantly decreased the urine protein, uric acid, and Cr levels (P<0.05). Huashi Pill inhibited formation of stone crystals and reduced the insoluble calcium deposition. Huashi Pill significantly downregulated expression of OPN in the kidney tissues of renal rat models (P<0.05). Conclusions Huashi Pill inhibited stone formation by regulating urine biochemical indexes and reducing OPN expression in kidney tissue in a renal stone rat model.
Collapse
Affiliation(s)
- Ailing Yang
- Medical Laboratory Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Huimeng Guo
- Medical Laboratory Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Manling Fu
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Minyong Liu
- Medical Device Research and Development Room, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
21
|
Kumar V, Irfan M, Datta A. Manipulation of oxalate metabolism in plants for improving food quality and productivity. PHYTOCHEMISTRY 2019; 158:103-109. [PMID: 30500595 DOI: 10.1016/j.phytochem.2018.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 05/25/2023]
Abstract
Oxalic acid is a naturally occurring metabolite in plants and a common constituent of all plant-derived human diets. Oxalic acid has diverse unrelated roles in plant metabolism, including pH regulation in association with nitrogen metabolism, metal ion homeostasis and calcium storage. In plants, oxalic acid is also a pathogenesis factor and is secreted by various fungi during host infection. Unlike those of plants, fungi and bacteria, the human genome does not contain any oxalate-degrading genes, and therefore, the consumption of large amounts of plant-derived oxalate is considered detrimental to human health. In this review, we discuss recent biotechnological approaches that have been used to reduce the oxalate content of plant tissues.
Collapse
Affiliation(s)
- Vinay Kumar
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
22
|
Chromosomal integration of heterologous oxalate decarboxylase in Lactobacillus plantarum WCFS1 using mobile genetic element Ll.LtrB. Arch Microbiol 2018; 201:467-476. [PMID: 30349983 DOI: 10.1007/s00203-018-1585-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum WCFS1 (L. plantarum WCFS1) is commonly used as a potential cell factory because of its 'generally recognized as safe' status. The plasmid instability and the presence of antibiotic selection marker complicate the application of genetically modified L. plantarum in human clinical trials. In the present study, we aimed to integrate oxalate decarboxylase (oxdC) gene of Bacillus subtilis origin by targeted chromosomal mutation in L. plantarum using mobile genetic element Ll.LtrB as a therapeutic tool against calcium oxalate stone disease. oxdC expression cassette was constructed and integrated into a targeted gene, thymidylate synthase (thyA) in the L. plantarum genome. The dependence on external thymidine for growth and survival was established by live dead population assay and SEM (scanning electron microscopy) analysis. The western blotting assay showed the secretion of 44 kDa OxdC protein in the culture supernatant of L. plantarum ∆thyA:OxdC. The biologically contained recombinant strain significantly reduced the oxalate concentration by 53% and exhibited a loss of viability when introduced to environmental samples. Biologically contained L. plantarum secreting OxdC constructed using group II intron has the ability to degrade oxalate present in the extracellular environment and could be used as a therapeutic tool for the calcium oxalate stone disease.
Collapse
|
23
|
Paul E, Albert A, Ponnusamy S, Mishra SR, Vignesh AG, Sivakumar SM, Sivasamy G, Sadasivam SG. Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II intron degrades intestinal oxalate in hyperoxaluric rats. Microbiol Res 2018; 215:65-75. [DOI: 10.1016/j.micres.2018.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/28/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022]
|
24
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
25
|
Zhao C, Yang H, Zhu X, Li Y, Wang N, Han S, Xu H, Chen Z, Ye Z. Oxalate-Degrading Enzyme Recombined Lactic Acid Bacteria Strains Reduce Hyperoxaluria. Urology 2017; 113:253.e1-253.e7. [PMID: 29198849 DOI: 10.1016/j.urology.2017.11.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 11/21/2017] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To develop recombinant lactic acid bacteria (LAB) strains that express oxalate-degrading enzymes through biotechnology-based approach for the treatment of hyperoxaluria by oral administration. MATERIAL AND METHODS The coding gene of oxalate decarboxylase (ODC) and oxalate oxidase (OxO) was transformed into Lactococcus lactis MG1363. The oxalate degradation ability in vitro was evaluated in media with high concentration of oxalate. Hyperoxaluria rat models through high oxalate diet were given recombinant LAB through oral administration. Twenty-four-hour urinary oxalate was measured, and kidney stone formation was investigated. RESULTS LAB recombined with the coding gene of ODC could effectively decrease the amount of oxalate in the media and in the urine of rats. Moreover, the formation of calcium oxalate crystals in kidneys was also inhibited. The acid-induced promoter p170 significantly enhanced the reduction of hyperoxaluria. However, recombinant LAB expressing heterologous OxO showed less efficiency in oxalate degradation even in the presence of p170. CONCLUSION LAB expressing ODC is more efficient in degradation of oxalate in vitro and in vivo than that expressing OxO. This present study provided novel recombinant probiotic strains as a potential treatment tool against oxalosis.
Collapse
Affiliation(s)
- Chenming Zhao
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Yang
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Zhu
- College of Life Science, Hubei University, Wuhan, China
| | - Yang Li
- College of Life Science, Hubei University, Wuhan, China
| | - Ning Wang
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shanfu Han
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Albert A, Tiwari V, Paul E, Ponnusamy S, Ganesan D, Prabhakaran R, Mariaraj Sivakumar S, Govindan Sadasivam S. Oral administration of oxalate-enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats. Toxicol Mech Methods 2017; 28:195-204. [DOI: 10.1080/15376516.2017.1388459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Abhishek Albert
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Vidhi Tiwari
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Sasikumar Ponnusamy
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Divya Ganesan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Rajkumar Prabhakaran
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvi Mariaraj Sivakumar
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvam Govindan Sadasivam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
27
|
Parthenolide attenuates 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. Mol Cell Biochem 2017; 440:11-22. [PMID: 28801714 DOI: 10.1007/s11010-017-3151-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/05/2017] [Indexed: 01/01/2023]
Abstract
Over the decades, the survival rates for oral cancer have not improved despite development in novel diagnostic and therapeutic strategies. Therefore, the present study is aimed at investigating the chemopreventive potential of parthenolide in DMBA-induced hamster buccal pouch carcinogenesis. The hamsters were divided into 4 groups (n = 6/group). Group I was treated as control. Groups II and III were painted with a solution of 0.5% DMBA three times per week for 14 weeks on the left buccal pouches. In addition, group III were orally administrated with parthenolide 2 mg/kg b.w on days alternate to the DMBA application. Group IV received only parthenolide. At the end of 14th week all hamsters were sacrificed. Buccal tissues from all hamsters were evaluated for histopathology. Biochemical studies were carried out using plasma, liver, and buccal mucosa of control and experimental hamsters. Gene and protein expression studies of apoptotic markers p53, Bcl-2, and Bax were performed. The results showed 100% tumor formation and marked alterations in histopathology, status of detoxification enzymes, lipid peroxidation, and antioxidant profile in group II hamsters. Oral administration of parthenolide completely prevented tumor formation and significantly reduced the severity of histopathological changes in group III hamsters. The status of detoxification enzymes, lipid peroxidation, and antioxidants were significantly restored in parthenolide treated group compared to group II hamsters. The apoptotic gene p53 and antiapoptotic gene Bcl-2 were significantly down regulated; whereas, pro-apoptotic gene Bax was up regulated in group III hamsters compared to group II. The results of the present study suggest that parthenolide have potent chemopreventive, antioxidant, and apoptotic effect in DMBA-induced oral carcinogenesis.
Collapse
|
28
|
Albert A, Tiwari V, Paul E, Ganesan D, Ayyavu M, Kujur R, Ponnusamy S, Shanmugam K, Saso L, Govindan Sadasivam S. Expression of heterologous oxalate decarboxylase in HEK293 cells confers protection against oxalate induced oxidative stress as a therapeutic approach for calcium oxalate stone disease. J Enzyme Inhib Med Chem 2017; 32:426-433. [PMID: 28118755 PMCID: PMC6010120 DOI: 10.1080/14756366.2016.1256884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Oxalates stimulate alterations in renal epithelial cells and thereby induce calcium oxalate (CaOx) stone formation. Bacillus subtilis YvrK gene encodes for oxalate decarboxylase (OxdC) which degrades oxalate to formate and CO2. The present work is aimed to clone the oxdC gene in a mammalian expression vector pcDNA and transfect into Human Embryonic Kidney 293 (HEK293) cells and evaluate the oxdC expression, cell survival rate and oxalate degrading efficiency. The results indicate cell survival rate of HEK293/pcDNAOXDC cells pre-incubated with oxalate was enhanced by 28%. HEK293/pcDNAOXDC cells expressing OxdC treated with oxalate, significantly restored antioxidant activity, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) generation compared with HEK293/pcDNA. Apoptotic marker caspase 3 downregulation illustrates HEK293/pcDNAOXDC cells were able to survive under oxalate-mediated oxidative stress. The findings suggest HEK293 cells expressing oxdC capable of degrading oxalate protect cells from oxidative damage and thus serve as a therapeutic option for prevention of CaOx stone disease.
Collapse
Affiliation(s)
- Abhishek Albert
- a Department of Biochemistry, Centre for Excellence in Genomics Science , School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| | - Vidhi Tiwari
- a Department of Biochemistry, Centre for Excellence in Genomics Science , School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| | - Eldho Paul
- a Department of Biochemistry, Centre for Excellence in Genomics Science , School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| | - Divya Ganesan
- a Department of Biochemistry, Centre for Excellence in Genomics Science , School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| | - Mahesh Ayyavu
- b DBT-IPLS Programme, School of Biological Science , Madurai Kamaraj University , Madurai , India
| | - Ritu Kujur
- a Department of Biochemistry, Centre for Excellence in Genomics Science , School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| | - Sasikumar Ponnusamy
- c Department of Oral Biology, School of Dental Medicine , University at Buffalo , Buffalo , NY , USA
| | - Kathiresan Shanmugam
- d Department of Molecular Biology , Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| | - Luciano Saso
- e Department of Physiology and Pharmacology "Vittorio Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Selvam Govindan Sadasivam
- a Department of Biochemistry, Centre for Excellence in Genomics Science , School of Biological Sciences, Madurai Kamaraj University , Madurai , India
| |
Collapse
|
29
|
Sasikumar P, Paul E, Gomathi S, Abhishek A, Sasikumar S, Selvam GS. Mobile group II intron based gene targeting in Lactobacillus plantarum WCFS1. J Basic Microbiol 2016; 56:1107-1116. [PMID: 27119622 DOI: 10.1002/jobm.201500746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 11/09/2022]
Abstract
The usage of recombinant lactic acid bacteria for delivery of therapeutic proteins to the mucosa has been emerging. In the present study, an attempt was made to engineer a thyA mutant of Lactobacillus plantarum (L. plantarum) using lactococcal group II intron Ll.LtrB for the development of biologically contained recombinant L. plantarum for prevention of calcium oxalate stone disease. The 3 kb Ll.LtrB intron donor cassettes from the source vector pACD4C was PCR amplified, ligated into pSIP series of lactobacillus vector pLp_3050sAmyA, yielding a novel vector pLpACD4C (8.6 kb). The quantitative real-time PCR experiment shows 94-fold increased expression of Ll.LtrB intron and 14-fold increased expression of ltrA gene in recombinant L. plantarum containing pLpACD4C. In order to target the thyA gene, the potential intron RNA binding sites in the thyA gene of L. plantarum was predicted with help of computer algorithm. The insertion location 188|189s of thyA gene (lowest E-0.134) was chosen and the wild type intron Ll.LtrB was PCR modified, yielding a retargeted intron of pLpACDthyA. The retargeted intron was expressed by using induction peptide (sppIP), subsequently the integration of intron in thyA gene was identified by PCR screening and finally ThyA- mutant of L. plantarum (ThyA18) was detected. In vitro growth curve result showed that in the absence of thymidine, colony forming units of mutant ThyA18 was decreased, whereas high thymidine concentration (10 μM) supported the growth of the culture until saturation. In conclusion, ThyA- mutant of L. plantarum (ThyA18) constructed in this study will be used as a biologically contained recombinant probiotic to deliver oxalate decarboxylase into the lumen for treatment of hyperoxaluria and calcium oxalate stone deposition.
Collapse
Affiliation(s)
- Ponnusamy Sasikumar
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Sivasamy Gomathi
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Albert Abhishek
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Sundaresan Sasikumar
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
30
|
Cao Y, Liu W, Hui L, Zhao J, Yang X, Wang Y, Niu H. Renal tubular injury induced by ischemia promotes the formation of calcium oxalate crystals in rats with hyperoxaluria. Urolithiasis 2016; 44:389-97. [PMID: 27040948 DOI: 10.1007/s00240-016-0876-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 03/22/2016] [Indexed: 11/25/2022]
Abstract
Hyperoxaluria and cell injury are key factors in urolithiasis. Oxalate metabolism may be altered by renal dysfunction and therefore, impact the deposition of calcium oxalate (CaOx) crystals. We investigated the relationship of renal function, oxalate metabolism and CaOx crystal deposition in renal ischemia. One hundred male Sprague-Dawley rats were randomly divided into four groups. Hyperoxaluria model (Group A and B) was established by feeding rats with 0.75 % ethylene glycol (EG). The left renal pedicle was clamped for 30 min to establish renal ischemia Groups (B and C), while Groups A and D underwent sham operation. Then, serum and urine oxalate (Ox), creatinine (Cr) and urea nitrogen (UN) levels were evaluated by liquid chromatography mass spectrometry (LCMS) and ion mass spectrum (IMS) at days 0, 2, 4, 7, and 14. CaOx crystallization was assessed by transmission electron microscope (TEM). A temporal and significant increase of serum Cr and UN levels was observed in Groups B and C compared to values obtained for Groups A and D (P < 0.05). Ox levels in serum and urine were significantly higher in Groups A and B than in the other two groups from day 7 (P < 0.05). In addition, CaOx crystallization was observed in both Groups A and B, but Group B showed earlier and more pronounced crystal deposition in the renal tissue. Our results indicated that renal tubular injury induced by renal ischemia might not affect Ox levels but could promote CaOx crystal retention under hyperoxaluria.
Collapse
Affiliation(s)
- Yanwei Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, Haier Road No. 59, Qingdao, 266101, Shandong Province, People's Republic of China
| | - Wanpeng Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Youzheng Street No. 23, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Limei Hui
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei Province, People's Republic of China
| | - Jianjun Zhao
- Department of Urology, Affiliated Hospital of Hebei University of Engineering, Congtai Road No. 81, Handan, 056002, Hebei Province, People's Republic of China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Haier Road No. 59, Qingdao, 266101, Shandong Province, People's Republic of China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Haier Road No. 59, Qingdao, 266101, Shandong Province, People's Republic of China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Haier Road No. 59, Qingdao, 266101, Shandong Province, People's Republic of China.
| |
Collapse
|
31
|
Arasu MV, Al-Dhabi NA, Ilavenil S, Choi KC, Srigopalram S. In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi J Biol Sci 2016; 23:S6-S10. [PMID: 26858567 PMCID: PMC4705246 DOI: 10.1016/j.sjbs.2015.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 01/09/2023] Open
Abstract
Lactobacillus plantarum is a Gram positive lactic acid bacterium commonly found in fermented food and in the gastro intestinal tract and is commonly used in the food industry as a potential starter probiotic. Recently, the consumption of food together with probiotics has tremendously increased. Among the lactic acid bacteria, L. plantarum attracted many researchers because of its wide applications in the medical field with antioxidant, anticancer, anti-inflammatory, antiproliferative, anti-obesity and antidiabetic properties. The present study aimed to investigate the in vitro importance of L. plantarum toward medical applications. Moreover, this report short listed various reports related to the applications of this promising strain. In conclusion, this study would attract the researchers in commercializing this strain toward the welfare of humans related to medical needs.
Collapse
Affiliation(s)
- Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si 330 801, Chungnam, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si 330 801, Chungnam, Republic of Korea
| | - Srisesharam Srigopalram
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si 330 801, Chungnam, Republic of Korea
| |
Collapse
|
32
|
Yang G, Jiang Y, Yang W, Du F, Yao Y, Shi C, Wang C. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Fact 2015; 14:202. [PMID: 26691527 PMCID: PMC4687296 DOI: 10.1186/s12934-015-0394-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Hypertension is considered the most serious risk factor for cardiovascular disease. Angiotensin-converting enzyme inhibitory peptides (ACEIPs), which are made from tuna frame protein (TFP) and yellow fin sole frame protein (YFP), have been used previously to treat hypertension. However, the production of these short peptides is usually dependent on enzymatic hydrolysis, resulting in a digested mixture that makes it difficult to purify the ACEIPs. Although it has been reported that ACEIPs could be produced in recombinant Escherichia coli strains, the use of lactic acid bacteria in the production of ACEIPs has not been demonstrated. Results In this study, the ACEIP coding sequences from TFP and YFP were joined through an arginine linker and expressed in the Lactobacillus plantarum (Lb. plantarum) NC8 strain by an inducible vector pSIP-409. Then, the antihypertensive effects were determined in the model of spontaneously hypertensive rats (SHRs) by measuring the blood pressure, hematology, blood biochemistry and nitric oxide (NO), endothelin (ET) and angiotensin II (Ang II) levels. The results showed that oral administration
of recombinant Lb. plantarum NC8 (RLP) significantly decreased systolic blood pressure (P < 0.01) during treatment, which lasted for at least 10 days after the last dose. Furthermore, the presence of RLP resulted in an increased level of NO, as well as decreased levels of ET and Ang II in plasma, heart, and kidney. In addition, a dramatically decreased triglyceride level was also observed even though there was no significant change in hematology or blood biochemistry. Although some drawbacks were still observed, such as the presence of an antibiotic selection marker, no obvious side effects or bacterial translocation were observed in vivo, indicating the potential application of RLP in the treatment of hypertension. Conclusion These results demonstrated the effectiveness and safety of RLP on the treatment of hypertension.
Collapse
Affiliation(s)
- Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Fang Du
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Yunbao Yao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
33
|
Protection against Foot-and-Mouth Disease Virus in Guinea Pigs via Oral Administration of Recombinant Lactobacillus plantarum Expressing VP1. PLoS One 2015; 10:e0143750. [PMID: 26629822 PMCID: PMC4667879 DOI: 10.1371/journal.pone.0143750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
Abstract
Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV). In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses) with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA) and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs.
Collapse
|
34
|
Gomathi S, Sasikumar P, Anbazhagan K, Neha SA, Sasikumar S, Selvi M, Selvam GS. Oral administration of indigenous oxalate degrading lactic acid bacteria and quercetin prevents calcium oxalate stone formation in rats fed with oxalate rich diet. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|